package dose3
Dose library (part of Mancoosi tools)
Install
Dune Dependency
Authors
Maintainers
Sources
dose3-7.0.0.tar.gz
md5=bc99cbcea8fca29dca3ebbee54be45e1
sha512=98dc4bd28e9f4aa8384be71b31783ae1afac577ea587118b8457b554ffe302c98e83d0098971e6b81803ee5c4f2befe3a98ef196d6b0da8feb4121e982ad5c2f
doc/src/dose3.algo/depsolver.ml.html
Source file depsolver.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
(**************************************************************************************) (* Copyright (C) 2009 Pietro Abate <pietro.abate@pps.jussieu.fr> *) (* Copyright (C) 2009 Mancoosi Project *) (* *) (* This library is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as *) (* published by the Free Software Foundation, either version 3 of the *) (* License, or (at your option) any later version. A special linking *) (* exception to the GNU Lesser General Public License applies to this *) (* library, see the COPYING file for more information. *) (**************************************************************************************) open ExtLib open Dose_common open CudfAdd include Util.Logging (struct let label = "dose_algo.depsolver" end) type solver = Depsolver_int.solver let timer_solver = Util.Timer.create "Algo.Depsolver.solver" let timer_init = Util.Timer.create "Algo.Depsolver.init" let load ?(global_constraints = []) universe = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in Depsolver_int.init_solver_univ ~global_constraints universe (** [univcheck ?callback universe] check all packages in the universe for installability @return the number of packages that cannot be installed *) let univcheck ?(global_constraints = []) ?callback ?(explain = true) universe = let aux ?callback univ = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in Util.Timer.start timer_init ; let solver = Depsolver_int.init_solver_univ ~global_constraints ~explain univ in Util.Timer.stop timer_init () ; Util.Timer.start timer_solver ; let failed = ref 0 in (* This is size + 1 because we encode the global constraint of the * universe as a package that must be tested like any other *) let size = Cudf.universe_size univ + 1 in let tested = Array.make size false in Util.Progress.set_total Depsolver_int.progressbar_univcheck (Cudf.universe_size univ) ; let check = Depsolver_int.pkgcheck callback explain solver tested in (* we do not test the last package that encodes the global constraints * on the universe as it is tested all the time with all other packages. *) for id = 0 to size - 2 do if not (check id) then incr failed done ; Util.Progress.reset Depsolver_int.progressbar_univcheck ; Util.Timer.stop timer_solver !failed in let map = new Dose_common.Util.identity in match callback with | None -> aux universe | Some f -> let callback_int (res, req) = f (Diagnostic.diagnosis map universe res req) in aux ~callback:callback_int universe (** [listcheck ?callback universe pkglist] check if a subset of packages un the universe are installable. @param pkglist list of packages to be checked @return the number of packages that cannot be installed *) let listcheck ?(global_constraints = []) ?callback ?(explain = true) universe pkglist = let aux ?callback univ idlist = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in Util.Timer.start timer_init ; let solver = Depsolver_int.init_solver_univ ~global_constraints ~explain univ in Util.Timer.stop timer_init () ; Util.Timer.start timer_solver ; let failed = ref 0 in let size = Cudf.universe_size univ + 1 in let tested = Array.make size false in Util.Progress.set_total Depsolver_int.progressbar_univcheck (List.length idlist) ; let check = Depsolver_int.pkgcheck callback explain solver tested in (match fst solver.Depsolver_int.globalid with | (false, false) -> List.iter (fun id -> if not (check id) then incr failed) idlist | _ -> let gid = snd solver.Depsolver_int.globalid in List.iter (function | id when id = gid -> () | id -> if not (check id) then incr failed) idlist) ; Util.Progress.reset Depsolver_int.progressbar_univcheck ; Util.Timer.stop timer_solver !failed in let idlist = List.map (CudfAdd.pkgtoint universe) pkglist in let map = new Dose_common.Util.identity in match callback with | None -> aux universe idlist | Some f -> let callback_int (res, req) = f (Diagnostic.diagnosis map universe res req) in aux ~callback:callback_int universe idlist let univcheck_lowmem ?(global_constraints = []) ?callback ?(explain = true) universe = let pkglist = Cudf.get_packages universe in let keeplist = List.flatten (List.map snd global_constraints) in (* Split the universe in 10 subuniverses of size 1/10 *) let chunkssize = (Cudf.universe_size universe / 20) + 1 in (* The set of packages that must be present in each universe *) let keepset = CudfAdd.to_set (CudfAdd.cone universe keeplist) in debug "univcheck lowmem make paritions chunksize=%d" chunkssize ; let partitions keepset l = let rec aux (univ, tested) = function | [] -> (univ, []) | pkg :: rest -> if not (Cudf_set.mem pkg tested || Cudf_set.mem pkg univ) then let pkgcone = CudfAdd.to_set (CudfAdd.cone universe [pkg]) in let newuniv = Cudf_set.union pkgcone univ in (*debug "Old Universe %d" (Cudf_set.cardinal univ);*) (*debug "Cone %d" (Cudf_set.cardinal pkgcone);*) (*debug "Cone+Keep %d" (Cudf_set.cardinal newuniv);*) if Cudf_set.cardinal newuniv >= chunkssize then (newuniv, rest) else aux (newuniv, tested) rest else aux (univ, tested) rest in let rec make lr count = Enum.make ~next:(fun () -> match !lr with | (_, []) -> raise Enum.No_more_elements | (tested, t) -> decr count ; let (newuniv, rest) = aux (keepset, tested) t in let totest = Cudf_set.diff newuniv tested in let tested = Cudf_set.union tested totest in (*debug "New Universe %d" (Cudf_set.cardinal newuniv);*) (*debug "Tested %d" (Cudf_set.cardinal tested);*) (*debug "ToTest %d" (Cudf_set.cardinal totest);*) lr := (tested, rest) ; (newuniv, totest)) ~count:(fun () -> if !count < 0 then count := List.length (snd !lr) ; !count) ~clone:(fun () -> make (ref !lr) (ref !count)) in make (ref (CudfAdd.Cudf_set.empty, l)) (ref (-1)) in Enum.fold (fun (su, stt) acc -> (*debug "univcheck lowmem run : %d" (CudfAdd.Cudf_set.cardinal su);*) (*debug "univcheck lowmem totest : %d" (CudfAdd.Cudf_set.cardinal stt);*) let l = CudfAdd.Cudf_set.elements su in let u = Cudf.load_universe l in let pkglist = CudfAdd.Cudf_set.elements stt in let b = listcheck ~global_constraints ?callback ~explain u pkglist in b + acc) 0 (partitions keepset pkglist) let edos_install_cache univ cudfpool pkglist = let idlist = List.map (CudfAdd.pkgtoint univ) pkglist in let closure = Depsolver_int.dependency_closure_cache cudfpool idlist in let solver = Depsolver_int.init_solver_closure ~global_constraints:[] cudfpool closure in let res = Depsolver_int.solve solver ~explain:true idlist in Diagnostic.diagnosis solver.Depsolver_int.map univ res idlist let edos_install ?(global_constraints = []) universe pkg = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in let cudfpool = Depsolver_int.init_pool_univ ~global_constraints universe in edos_install_cache universe cudfpool [pkg] let edos_coinstall ?(global_constraints = []) universe pkglist = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in let cudfpool = Depsolver_int.init_pool_univ ~global_constraints universe in edos_install_cache universe cudfpool pkglist let edos_coinstall_prod ?(global_constraints = []) universe ll = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in let cudfpool = Depsolver_int.init_pool_univ ~global_constraints universe in let return a = [a] in let bind m f = List.flatten (List.map f m) in let rec permutation = function | [] -> return [] | h :: t -> bind (permutation t) (fun t1 -> List.map (fun h1 -> h1 :: t1) h) in List.map (edos_install_cache universe cudfpool) (permutation ll) let is_consistent univ = match Cudf_checker.is_consistent univ with | (true, None) -> { Diagnostic.request = []; result = Diagnostic.Success (fun ?(all = false) () -> if all then Cudf.get_packages ~filter:(fun p -> p.Cudf.installed) univ else []) } | (false, Some (`Unsat_dep (nv, vpkgformula))) -> let pkg = Cudf.lookup_package univ nv in { Diagnostic.request = [pkg]; result = Diagnostic.Failure (fun () -> List.map (fun vpkglist -> Diagnostic.Missing (pkg, vpkglist)) vpkgformula) } | (false, Some (`Conflict (nv, vpkglist))) -> let pkg1 = Cudf.lookup_package univ nv in { Diagnostic.request = [pkg1]; result = Diagnostic.Failure (fun () -> List.flatten (List.map (fun vpkg -> List.map (fun pkg2 -> Diagnostic.Conflict (pkg1, pkg2, vpkg)) (CudfAdd.who_provides univ vpkg)) vpkglist)) } | ((true | false), _) -> fatal "Bug in Cudf_checker.is_consistent" let trim ?(global_constraints = []) universe = let trimmed_pkgs = ref [] in let callback d = if Diagnostic.is_solution d then match d.Diagnostic.request with | [p] -> trimmed_pkgs := p :: !trimmed_pkgs | _ -> assert false in ignore (univcheck ~global_constraints ~callback universe) ; Cudf.load_universe !trimmed_pkgs let trimlist ?(global_constraints = []) universe pkglist = let trimmed_pkgs = ref [] in let callback d = if Diagnostic.is_solution d then match d.Diagnostic.request with | [p] -> trimmed_pkgs := p :: !trimmed_pkgs | _ -> assert false in ignore (listcheck ~global_constraints ~callback universe pkglist) ; !trimmed_pkgs let find_broken ?(global_constraints = []) universe = let broken_pkgs = ref [] in let callback d = if not (Diagnostic.is_solution d) then match d.Diagnostic.request with | [p] -> broken_pkgs := p :: !broken_pkgs | _ -> assert false in ignore (univcheck ~global_constraints ~callback universe) ; !broken_pkgs let callback_aux acc d = match d.Diagnostic.request with | [p] when Diagnostic.is_solution d -> acc := p :: !acc | [p] -> warning "Package %s is not installable" (CudfAdd.string_of_package p) | _ -> () let find_installable ?(global_constraints = []) universe = let acc = ref [] in let callback = callback_aux acc in ignore (univcheck ~global_constraints ~callback universe) ; !acc let find_listinstallable ?(global_constraints = []) universe pkglist = let acc = ref [] in let callback = callback_aux acc in ignore (listcheck ~global_constraints ~callback universe pkglist) ; !acc let find_listbroken ?(global_constraints = []) universe pkglist = let broken_pkgs = ref [] in let callback d = if not (Diagnostic.is_solution d) then match d.Diagnostic.request with | [p] -> broken_pkgs := p :: !broken_pkgs | _ -> assert false in ignore (listcheck ~global_constraints ~callback universe pkglist) ; !broken_pkgs (** [dependency_closure index l] return the union of the dependency closure of all packages in [l] . @param maxdepth the maximum cone depth (infinite by default) @param conjunctive consider only conjunctive dependencies (false by default) @param universe the package universe @param pkglist a subset of [universe] *) let dependency_closure ?(global_constraints = []) ?maxdepth ?conjunctive universe pkglist = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in let idlist = let l = List.map (CudfAdd.pkgtoint universe) pkglist in List.flatten (List.map snd global_constraints) @ l in let pool = Depsolver_int.init_pool_univ ~global_constraints universe in let l = Depsolver_int.dependency_closure_cache ?maxdepth ?conjunctive pool idlist in let size = Cudf.universe_size universe in List.filter_map (fun p -> if p <> size then Some (CudfAdd.inttopkg universe p) else None) l let reverse_dependencies univ = let rev = Depsolver_int.reverse_dependencies univ in let h = Cudf_hashtbl.create (Array.length rev) in Array.iteri (fun i l -> Cudf_hashtbl.add h (CudfAdd.inttopkg univ i) (List.map (CudfAdd.inttopkg univ) l)) rev ; h let reverse_dependency_closure ?maxdepth univ pkglist = let idlist = List.map (CudfAdd.pkgtoint univ) pkglist in let reverse = Depsolver_int.reverse_dependencies univ in let closure = Depsolver_int.reverse_dependency_closure ?maxdepth reverse idlist in List.map (CudfAdd.inttopkg univ) closure type enc = Cnf | Dimacs let output_clauses ?(global_constraints = []) ?(enc = Cnf) universe = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in let solver = Depsolver_int.init_solver_univ ~global_constraints ~buffer:true universe in let clauses = Depsolver_int.S.dump solver.Depsolver_int.constraints in let size = Cudf.universe_size universe in let buff = Buffer.create size in let to_cnf dump = let str (v, p) = if abs v != size then (* the last index *) let pkg = (CudfAdd.inttopkg universe) (abs v) in let pol = if p then "" else "!" in Printf.sprintf "%s%s-%d" pol pkg.Cudf.package pkg.Cudf.version else "" in List.iter (fun l -> List.iter (fun var -> Printf.bprintf buff " %s" (str var)) l ; Printf.bprintf buff "\n") dump in let to_dimacs dump = let str (v, p) = if v != size then if p then Printf.sprintf "%d" v else Printf.sprintf "-%d" v else "" in let varnum = size in let closenum = List.length clauses in Printf.bprintf buff "p cnf %d %d\n" varnum closenum ; List.iter (fun l -> List.iter (fun var -> Printf.bprintf buff " %s" (str var)) l ; Printf.bprintf buff " 0\n") dump in if enc = Cnf then to_cnf clauses ; if enc = Dimacs then to_dimacs clauses ; Buffer.contents buff type solver_result = | Sat of (Cudf.preamble option * Cudf.universe) | Unsat of Diagnostic.diagnosis option | Error of string let dummy_request = { Cudf.default_package with Cudf.package = "dose-dummy-request"; version = 1 } (* add a version constraint to ensure name is upgraded *) let upgrade_constr universe name = match Cudf.get_installed universe name with | [] -> (name, None) | [p] -> (name, Some (`Geq, p.Cudf.version)) | pl -> let p = List.hd (List.sort ~cmp:Cudf.( >% ) pl) in (name, Some (`Geq, p.Cudf.version)) let add_dummy universe request dummy = let deps = let il = request.Cudf.install in (* we preserve the user defined constraints, while adding the upgrade constraint *) let ulc = List.filter (function (_, Some _) -> true | _ -> false) request.Cudf.upgrade in let ulnc = List.map (fun (name, _) -> upgrade_constr universe name) request.Cudf.upgrade in let l = il @ ulc @ ulnc in debug "request consistency (install %d) (upgrade %d) (remove %d) (# %d)" (List.length request.Cudf.install) (List.length request.Cudf.upgrade) (List.length request.Cudf.remove) (Cudf.universe_size universe) ; List.map (fun j -> [j]) l in let dummy = { dummy with Cudf.depends = deps @ dummy.Cudf.depends; conflicts = request.Cudf.remove @ dummy.Cudf.conflicts } in (* XXX it should be possible to add a package to a cudf document ! *) let pkglist = Cudf.get_packages universe in let universe = Cudf.load_universe (dummy :: pkglist) in (universe, dummy) let remove_dummy ~explain pre (dummy, d) = if Diagnostic.is_solution d then let is = List.remove_if (Cudf.( =% ) dummy) (Diagnostic.get_installationset d) in Sat (Some pre, Cudf.load_universe is) else if explain then Unsat (Some d) else Unsat None let check_request_using ?call_solver ?dummy ?(explain = false) (pre, universe, request) = match (call_solver, dummy) with | (None, None) -> let (u, r) = add_dummy universe request dummy_request in remove_dummy ~explain pre (r, edos_install u r) | (None, Some dummy) -> let (u, r) = add_dummy universe request dummy in remove_dummy ~explain pre (r, edos_install u r) | (Some call_solver, None) -> ( try let (presol, sol) = call_solver (pre, universe, request) in Sat (presol, sol) with | CudfSolver.Unsat when not explain -> Unsat None | CudfSolver.Unsat when explain -> let (u, r) = add_dummy universe request dummy_request in remove_dummy ~explain pre (r, edos_install u r)) | (Some call_solver, Some dummy) -> ( let (u, dr) = add_dummy universe request dummy in let dr_constr = (dr.Cudf.package, Some (`Eq, dr.Cudf.version)) in let r = { request with Cudf.install = dr_constr :: request.Cudf.install } in try let (presol, sol) = call_solver (pre, u, r) in let is = List.remove_if (Cudf.( =% ) dr) (Cudf.get_packages sol) in Sat (presol, Cudf.load_universe is) with | CudfSolver.Unsat when not explain -> Unsat None | CudfSolver.Unsat when explain -> ( let (u, r) = add_dummy universe request dummy in match remove_dummy ~explain pre (r, edos_install u r) with | Sat _ as sol -> warning "External and Internal Solver do not agree." ; sol | sol -> sol) | CudfSolver.Error s -> Error s) (** check if a cudf request is satisfiable. we do not care about universe consistency . We try to install a dummy package *) let check_request ?cmd ?criteria ?dummy ?explain cudf = let call_solver = match cmd with | Some cmd -> let criteria = Option.default "-removed,-new" criteria in Some (CudfSolver.execsolver cmd criteria) | None -> None in check_request_using ?call_solver ?dummy ?explain cudf type depclean_result = Cudf.package * (Cudf_types.vpkglist * Cudf_types.vpkg * Cudf.package list) list * (Cudf_types.vpkg * Cudf.package list) list (** Depclean. Detect useless dependencies and/or conflicts to missing or broken packages *) let depclean ?(global_constraints = []) ?(callback = fun _ -> ()) universe pkglist = let global_constraints = List.map (fun (vpkg, l) -> (vpkg, List.map (CudfAdd.pkgtoint universe) l)) global_constraints in let cudfpool = Depsolver_int.init_pool_univ ~global_constraints universe in let is_broken = let cache = Hashtbl.create (Cudf.universe_size universe) in fun pkg -> try Hashtbl.find cache pkg with Not_found -> let r = edos_install_cache universe cudfpool [pkg] in let res = not (Diagnostic.is_solution r) in Hashtbl.add cache pkg res ; res in let enum_conf univ pkg = List.map (fun vpkg -> match CudfAdd.who_provides univ vpkg with | [] -> (vpkg, []) | l -> (vpkg, l)) pkg.Cudf.conflicts in (* for each vpkglist in the depends field create a new vpkgformula where for each vpkg, only one one possible alternative is considered. We will use this revised vpkgformula to check if the selected alternative is a valid dependency *) let enum_deps univ pkg = let rec aux before acc = function | vpkglist :: after -> let l = List.map (fun vpkg -> match CudfAdd.who_provides univ vpkg with | [] -> (vpkglist, vpkg, [], []) | l -> (vpkglist, vpkg, before @ [[vpkg]] @ after, l)) vpkglist in aux (before @ [vpkglist]) (l :: acc) after | [] -> List.flatten acc in aux [] [] pkg.Cudf.depends in (* if a package is in conflict with another package that is broken or missing, then the conflict can be removed *) let test_conflict l = List.fold_left (fun acc -> function | (vpkg, []) -> (vpkg, []) :: acc | (_, _) -> acc (* if the conflict is with a broken package, it is still a valid conflict *)) [] l in (* if a package p depends on a package that make p uninstallable, then it can be removed. If p depends on a missing package, the dependency can be equally removed *) let test_depends univ (`CudfPool (_, pool)) pkg l = List.fold_left (fun acc -> function | (vpkglist, vpkg, _, []) -> (vpkglist, vpkg, []) :: acc | (vpkglist, vpkg, depends, l) -> let pkgid = Cudf.uid_by_package univ pkg in let (pkgdeps, pkgconf) = pool.(pkgid) in let dll = List.map (fun vpkgs -> (vpkgs, CudfAdd.resolve_vpkgs_int univ vpkgs)) depends in let _ = pool.(pkgid) <- (dll, pkgconf) in let res = edos_install_cache univ cudfpool [pkg] in let _ = pool.(pkgid) <- (pkgdeps, pkgconf) in if not (Diagnostic.is_solution res) then (vpkglist, vpkg, l) :: acc else acc) [] l in List.filter_map (fun pkg -> if not (is_broken pkg) then ( let resdep = test_depends universe cudfpool pkg (enum_deps universe pkg) in let resconf = test_conflict (enum_conf universe pkg) in match (resdep, resconf) with | ([], []) -> None | (_, _) -> callback (pkg, resdep, resconf) ; Some (pkg, resdep, resconf)) else None) pkglist (* Build a graph of install/remove actions (optionally including dependent packages *) (* code freely adapted from opam/src/solver/opamCudf.ml *) (* module AG = Defaultgraphs.ActionGraph *) let installation_graph ~solution:soluniv (install, remove) = let module PG = Defaultgraphs.PackageGraph in let module PO = Defaultgraphs.GraphOper (PG.G) in let module Topo = Graph.Topological.Make (PG.G) in let module S = CudfAdd.Cudf_set in let packageset = S.union install remove in let packagelist = S.elements packageset in (* transitively add recompilations *) let (remove, install) = let g = let filter p = p.Cudf.installed || S.mem p packageset in let l = Cudf.get_packages ~filter soluniv in PO.O.mirror (PG.dependency_graph_list soluniv l) in Topo.fold (fun p (rm, inst) -> let actionned p = S.mem p rm || S.mem p inst in if (not (actionned p)) && List.exists actionned (PG.G.pred g p) then (S.add p rm, S.add p inst) else (rm, inst)) g (remove, install) in let g = Defaultgraphs.ActionGraph.G.create () in S.iter (fun p -> Defaultgraphs.ActionGraph.G.add_vertex g (Defaultgraphs.ActionGraph.PkgV.Remove p)) remove ; S.iter (fun p -> Defaultgraphs.ActionGraph.G.add_vertex g (Defaultgraphs.ActionGraph.PkgV.Install p)) install ; (* reinstalls and upgrades: remove first *) S.iter (fun p1 -> try let same_name_as_p1 p2 = p1.Cudf.package = p2.Cudf.package in let p2 = S.choose (S.filter same_name_as_p1 install) in Defaultgraphs.ActionGraph.G.add_edge g (Defaultgraphs.ActionGraph.PkgV.Remove p1) (Defaultgraphs.ActionGraph.PkgV.Install p2) with Not_found -> ()) remove ; (* uninstall order *) PG.G.iter_edges (fun p1 p2 -> Defaultgraphs.ActionGraph.G.add_edge g (Defaultgraphs.ActionGraph.PkgV.Remove p1) (Defaultgraphs.ActionGraph.PkgV.Remove p2)) (PG.dependency_graph_list soluniv (S.elements remove)) ; (* install order *) PG.G.iter_edges (fun p1 p2 -> if S.mem p1 install && S.mem p2 install then Defaultgraphs.ActionGraph.G.add_edge g (Defaultgraphs.ActionGraph.PkgV.Install p2) (Defaultgraphs.ActionGraph.PkgV.Install p1) else if S.mem p1 install && S.mem p2 remove then Defaultgraphs.ActionGraph.G.add_edge g (Defaultgraphs.ActionGraph.PkgV.Remove p2) (Defaultgraphs.ActionGraph.PkgV.Install p1)) (PG.dependency_graph_list soluniv packagelist) ; (* conflicts *) PG.UG.iter_edges (fun p1 p2 -> if S.mem p1 remove && S.mem p2 install then Defaultgraphs.ActionGraph.G.add_edge g (Defaultgraphs.ActionGraph.PkgV.Remove p1) (Defaultgraphs.ActionGraph.PkgV.Install p2) else if S.mem p2 remove && S.mem p1 install then Defaultgraphs.ActionGraph.G.add_edge g (Defaultgraphs.ActionGraph.PkgV.Remove p2) (Defaultgraphs.ActionGraph.PkgV.Install p1)) (PG.conflict_graph_list soluniv packagelist) ; g
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>