package dose3
Dose library (part of Mancoosi tools)
Install
Dune Dependency
Authors
Maintainers
Sources
dose3-7.0.0.tar.gz
md5=bc99cbcea8fca29dca3ebbee54be45e1
sha512=98dc4bd28e9f4aa8384be71b31783ae1afac577ea587118b8457b554ffe302c98e83d0098971e6b81803ee5c4f2befe3a98ef196d6b0da8feb4121e982ad5c2f
doc/src/dose3.common/edosSolver.ml.html
Source file edosSolver.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
(***************************************************************************************) (* Copyright (C) 2005-2009 Jerome Vouillon *) (* Minor modifications : *) (* Pietro Abate <pietro.abate@pps.jussieu.fr> *) (* Jaap Boender <boender@pps.jussieu.fr> *) (* *) (* This library is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as *) (* published by the Free Software Foundation, either version 3 of the *) (* License, or (at your option) any later version. A special linking *) (* exception to the GNU Lesser General Public License applies to this *) (* library, see the COPYING file for more information. *) (***************************************************************************************) module type S = sig type reason end module type T = sig module X : S type state type var = int type lit val lit_of_var : var -> bool -> lit val initialize_problem : ?print_var:(Format.formatter -> int -> unit) -> ?buffer:bool -> int -> state val copy : state -> state val propagate : state -> unit val protect : state -> unit val reset : state -> unit type value = True | False | Unknown val assignment : state -> value array val assignment_true : state -> var list val add_rule : state -> lit array -> X.reason list -> unit val associate_vars : state -> lit -> var list -> unit val solve_all : (state -> unit) -> state -> var -> bool val solve : state -> var -> bool val solve_lst : state -> var list -> bool val collect_reasons : state -> var -> X.reason list val collect_reasons_lst : state -> var list -> X.reason list val dump : state -> (int * bool) list list val debug : bool -> unit val stats : state -> unit end include Util.Logging (struct let label = "dose_common.edosSolver" end) module IntHash = Hashtbl.Make (struct type t = int let equal = ( = ) let hash i = i end) open ExtLib let ( @ ) l1 l2 = let rec geq = function | ([], []) -> true | (_ :: _, []) -> true | ([], _ :: _) -> false | (_ :: r1, _ :: r2) -> geq (r1, r2) in if geq (l1, l2) then List.append l2 l1 else List.append l1 l2 module M (X : S) = struct module X = X let debug = ref false let buffer = ref false (* Variables *) type var = int (* Literals *) type lit = int (* A clause is an array of literals *) type clause = { lits : lit array; all_lits : lit array; reasons : X.reason list } type value = True | False | Unknown module LitMap = Map.Make (struct type t = int let compare (x : int) y = compare x y end) type state = { (* Indexed by var *) st_assign : value array; st_assign_true : unit IntHash.t; st_reason : clause option array; st_level : int array; st_seen_var : int array; st_refs : int array; st_pinned : bool array; (* Indexed by lit *) st_simpl_prop : clause LitMap.t array; st_watched : clause list array; st_associated_vars : var list array; (* Queues *) mutable st_trail : lit list; mutable st_trail_lim : lit list list; st_prop_queue : lit Queue.t; (* Misc *) mutable st_cur_level : int; mutable st_min_level : int; mutable st_seen : int; mutable st_var_queue_head : var list; st_var_queue : var Queue.t; mutable st_cost : int; (* Total computational cost so far *) st_print_var : Format.formatter -> int -> unit; mutable st_coherent : bool; mutable st_buffer : (int * bool) list list } let copy_clause p = let n = Array.length p in let a = Array.make n None in Array.iteri (fun i c -> let copy = function | None -> None | Some cl -> Some { cl with lits = Array.copy cl.lits } in a.(i) <- copy c) p ; a let copy_simpl_prop p = let n = Array.length p in let a = Array.make n LitMap.empty in Array.iteri (fun i l -> let copy cl = { cl with lits = Array.copy cl.lits } in let l' = LitMap.map (fun clause -> copy clause) l in a.(i) <- l') p ; a let copy_watched p = let n = Array.length p in let a = Array.make n [] in Array.iteri (fun i l -> let copy cl = { cl with lits = Array.copy cl.lits } in let l' = List.map (fun clause -> copy clause) l in a.(i) <- l') p ; a let copy st = { st_assign = Array.copy st.st_assign; st_assign_true = IntHash.copy st.st_assign_true; st_reason = copy_clause st.st_reason; st_level = Array.copy st.st_level; st_seen_var = Array.copy st.st_seen_var; st_refs = Array.copy st.st_refs; st_pinned = Array.copy st.st_pinned; st_simpl_prop = copy_simpl_prop st.st_simpl_prop; st_watched = copy_watched st.st_watched; st_associated_vars = Array.copy st.st_associated_vars; st_trail = st.st_trail; st_trail_lim = st.st_trail_lim; st_prop_queue = Queue.copy st.st_prop_queue; st_cur_level = st.st_cur_level; st_min_level = st.st_min_level; st_seen = st.st_seen; st_var_queue_head = st.st_var_queue_head; st_var_queue = Queue.copy st.st_var_queue; st_cost = st.st_cost; st_print_var = st.st_print_var; st_coherent = st.st_coherent; st_buffer = st.st_buffer } (****) let charge st x = st.st_cost <- st.st_cost + x (* let get_bill st = st.st_cost *) (****) let pin_var st x = st.st_pinned.(x) <- true let unpin_var st x = st.st_pinned.(x) <- false let enqueue_var st x = charge st 1 ; pin_var st x ; Queue.push x st.st_var_queue (* let requeue_var st x = pin_var st x; st.st_var_queue_head <- x :: st.st_var_queue_head *) (* Returns -1 if no variable remains *) let rec dequeue_var st = let x = match st.st_var_queue_head with | x :: r -> st.st_var_queue_head <- r ; x | [] -> ( try Queue.take st.st_var_queue with Queue.Empty -> -1) in if x = -1 then x else ( unpin_var st x ; if st.st_refs.(x) = 0 || st.st_assign.(x) <> Unknown then dequeue_var st else x) (****) let var_of_lit p = p lsr 1 let pol_of_lit p = p land 1 = 0 let lit_of_var v s = if s then v + v else v + v + 1 let lit_neg p = p lxor 1 let val_neg v = match v with True -> False | False -> True | Unknown -> Unknown let val_of_bool b = if b then True else False let val_of_lit st p = let v = st.st_assign.(var_of_lit p) in if pol_of_lit p then v else val_neg v (****) let print_val ch v = Format.fprintf ch "%s" (match v with True -> "True" | False -> "False" | Unknown -> "Unknown") let print_lits st ch lits = Format.fprintf ch "{" ; Array.iter (fun p -> if pol_of_lit p then Format.fprintf ch " +%a" st.st_print_var (var_of_lit p) else Format.fprintf ch " -%a" st.st_print_var (var_of_lit p)) lits ; Format.fprintf ch " }" let print_rule st ch r = print_lits st ch r.lits (****) let store st r = let clause = Array.fold_left (fun acc p -> if pol_of_lit p then (var_of_lit p, true) :: acc else (var_of_lit p, false) :: acc) [] r.lits in st.st_buffer <- clause :: st.st_buffer (* we reverse the list because we store literals in reverse order *) let dump st = List.rev_map (fun x -> List.rev x) st.st_buffer (****) exception Conflict of clause option let enqueue st p reason = charge st 1 ; (if !debug then match reason with | Some r -> Format.eprintf "Applying rule %a@." (print_rule st) r | _ -> ()) ; match val_of_lit st p with | False -> if !debug then if pol_of_lit p then Format.eprintf "Cannot install %a@." st.st_print_var (var_of_lit p) else Format.eprintf "Already installed %a@." st.st_print_var (var_of_lit p) ; raise (Conflict reason) | True -> () | Unknown -> if !debug then if pol_of_lit p then Format.eprintf "Installing %a@." st.st_print_var (var_of_lit p) else Format.eprintf "Should not install %a@." st.st_print_var (var_of_lit p) ; let x = var_of_lit p in st.st_assign.(x) <- val_of_bool (pol_of_lit p) ; if st.st_assign.(x) = True then IntHash.add st.st_assign_true x () ; st.st_reason.(x) <- reason ; st.st_level.(x) <- st.st_cur_level ; st.st_trail <- p :: st.st_trail ; List.iter (fun x -> charge st 1 ; let refs = st.st_refs.(x) in if refs = 0 then enqueue_var st x ; st.st_refs.(x) <- st.st_refs.(x) + 1) st.st_associated_vars.(p) ; Queue.push p st.st_prop_queue let rec find_not_false st lits i l = if i = l then -1 else if val_of_lit st lits.(i) <> False then i else find_not_false st lits (i + 1) l let propagate_in_clause st r p = charge st 1 ; let p' = lit_neg p in if r.lits.(0) = p' then ( r.lits.(0) <- r.lits.(1) ; r.lits.(1) <- p') ; if val_of_lit st r.lits.(0) = True then st.st_watched.(p) <- r :: st.st_watched.(p) else let i = find_not_false st r.lits 2 (Array.length r.lits) in if i = -1 then ( st.st_watched.(p) <- r :: st.st_watched.(p) ; enqueue st r.lits.(0) (Some r)) else ( r.lits.(1) <- r.lits.(i) ; r.lits.(i) <- p' ; let p = lit_neg r.lits.(1) in st.st_watched.(p) <- r :: st.st_watched.(p)) let propagate st = try while not (Queue.is_empty st.st_prop_queue) do charge st 1 ; let p = Queue.take st.st_prop_queue in LitMap.iter (fun p r -> enqueue st p (Some r)) st.st_simpl_prop.(p) ; let l = ref st.st_watched.(p) in st.st_watched.(p) <- [] ; try while match !l with | r :: rem -> l := rem ; propagate_in_clause st r p ; true | [] -> false do () done with Conflict _ as e -> st.st_watched.(p) <- !l @ st.st_watched.(p) ; raise e done with Conflict _ as e -> Queue.clear st.st_prop_queue ; raise e (****) let raise_level st = st.st_cur_level <- st.st_cur_level + 1 ; st.st_trail_lim <- st.st_trail :: st.st_trail_lim ; st.st_trail <- [] let assume st p = raise_level st ; enqueue st p None let protect st = propagate st ; raise_level st ; st.st_min_level <- st.st_cur_level let undo_one st p = let x = var_of_lit p in if !debug then Format.eprintf "Cancelling %a@." st.st_print_var x ; if st.st_assign.(x) = True then IntHash.remove st.st_assign_true x ; st.st_assign.(x) <- Unknown ; st.st_reason.(x) <- None ; st.st_level.(x) <- -1 ; List.iter (fun x -> charge st 1 ; st.st_refs.(x) <- st.st_refs.(x) - 1) st.st_associated_vars.(p) ; if st.st_refs.(x) > 0 && not st.st_pinned.(x) then enqueue_var st x let cancel st = st.st_cur_level <- st.st_cur_level - 1 ; List.iter (fun p -> undo_one st p) st.st_trail ; match st.st_trail_lim with | [] -> assert false | l :: r -> st.st_trail <- l ; st.st_trail_lim <- r let reset st = if !debug then Format.eprintf "Reset@." ; while st.st_trail_lim <> [] do cancel st done ; for i = 0 to Array.length st.st_refs - 1 do st.st_refs.(i) <- 0 ; st.st_pinned.(i) <- false done ; st.st_var_queue_head <- [] ; st.st_min_level <- 0 ; Queue.clear st.st_var_queue ; st.st_coherent <- true (****) let rec find_next_lit st = match st.st_trail with | [] -> assert false | p :: rem -> st.st_trail <- rem ; if st.st_seen_var.(var_of_lit p) = st.st_seen then ( let reason = st.st_reason.(var_of_lit p) in undo_one st p ; (p, reason)) else ( undo_one st p ; find_next_lit st) let analyze st conflict = st.st_seen <- st.st_seen + 1 ; let counter = ref 0 in let learnt = ref [] in let bt_level = ref 0 in let reasons = ref [] in let r = ref conflict in while if !debug then ( Array.iter (fun p -> Format.eprintf "%d:%a (%b/%d) " p print_val (val_of_lit st p) (st.st_reason.(var_of_lit p) <> None) st.st_level.(var_of_lit p)) !r.lits ; Format.eprintf "@.") ; reasons := !r.reasons @ !reasons ; for i = 0 to Array.length !r.all_lits - 1 do let p = !r.all_lits.(i) in let x = var_of_lit p in if st.st_seen_var.(x) <> st.st_seen then ( assert (val_of_lit st p = False) ; st.st_seen_var.(x) <- st.st_seen ; let level = st.st_level.(x) in if level = st.st_cur_level then incr counter else ( (* if level > 0 then *) learnt := p :: !learnt ; bt_level := max level !bt_level)) done ; let (p, reason) = find_next_lit st in decr counter ; (if !counter = 0 then learnt := lit_neg p :: !learnt else match reason with Some r' -> r := r' | None -> assert false) ; !counter > 0 do () done ; if !debug then ( List.iter (fun p -> Format.eprintf "%d:%a/%d " p print_val (val_of_lit st p) st.st_level.(var_of_lit p)) !learnt ; Format.eprintf "@.") ; (Array.of_list !learnt, !reasons, !bt_level) let find_highest_level st lits = let level = ref (-1) in let i = ref 0 in Array.iteri (fun j p -> if st.st_level.(var_of_lit p) > !level then ( level := st.st_level.(var_of_lit p) ; i := j)) lits ; !i let backjump f st r = let (learnt, reasons, level) = analyze st r in let level = max st.st_min_level level in while st.st_cur_level > level do cancel st done ; assert (val_of_lit st learnt.(0) = Unknown) ; let rule = { lits = learnt; all_lits = learnt; reasons } in if !debug then Format.eprintf "Learning %a@." (print_rule st) rule ; if Array.length learnt > 1 then ( let i = find_highest_level st learnt in assert (i > 0) ; let p' = learnt.(i) in learnt.(i) <- learnt.(1) ; learnt.(1) <- p' ; let p = lit_neg learnt.(0) in let p' = lit_neg p' in st.st_watched.(p) <- rule :: st.st_watched.(p) ; st.st_watched.(p') <- rule :: st.st_watched.(p')) ; enqueue st learnt.(0) (Some rule) ; st.st_cur_level > st.st_min_level && f st (* let val_of = function |True -> true |False -> false |Unknown -> assert false *) (* find all solutions *) let rec solve_all_rec callback st = match try propagate st ; None with Conflict r -> Some r with | None -> let x = dequeue_var st in if x < 0 then ( (* we do something with the solution that we just found *) callback st ; if st.st_cur_level = 0 then ( (* we exhausted the search space *) if !debug then Format.eprintf "Search Completed.@." ; true) else ( if !debug then Format.eprintf "Solution found.@." ; (* we remove this solution from the search space and backjump *) let assignment = (* XXX : I should keep trace of this list incrementally *) let acc = ref [] in for v = 0 to Array.length st.st_assign - 1 do match st.st_assign.(v) with | True -> acc := lit_of_var v true :: !acc | False -> acc := lit_of_var v false :: !acc | Unknown -> () done ; !acc in let m = Array.of_list (List.map lit_neg assignment) in let r = { lits = m; all_lits = m; reasons = [] } in backjump (solve_all_rec callback) st r)) else ( (* we didn't find any solution yet *) assume st (lit_of_var x false) ; solve_all_rec callback st) | Some r -> let r = match r with None -> assert false | Some r -> r in (* we found a conflict *) backjump (solve_all_rec callback) st r (* find one solution *) let rec solve_rec st = match try propagate st ; None with Conflict r -> Some r with | None -> let x = dequeue_var st in x < 0 || (assume st (lit_of_var x false) ; solve_rec st) | Some r -> let r = match r with None -> assert false | Some r -> r in backjump solve_rec st r let rec solve_aux ?callback st x = let s = if Option.is_none callback then solve_rec else solve_all_rec (Option.get callback) in assert (st.st_cur_level = st.st_min_level) ; propagate st ; try let p = lit_of_var x true in assume st p ; assert (st.st_cur_level = st.st_min_level + 1) ; if s st then ( protect st ; true) else solve_aux st ?callback x with Conflict _ -> st.st_coherent <- false ; false let solve st x = solve_aux st x let solve_all callback st x = solve_aux ~callback st x let rec solve_lst_rec st l0 l = match l with | [] -> true | x :: r -> protect st ; List.iter (fun x -> enqueue st (lit_of_var x true) None) l0 ; propagate st ; if solve st x then ( if r <> [] then reset st ; solve_lst_rec st (x :: l0) r) else false let solve_lst st l = solve_lst_rec st [] l let debug b = debug := b let set_buffer b = buffer := b let initialize_problem ?(print_var = fun fmt -> Format.fprintf fmt "%d") ?(buffer = false) n = if buffer then set_buffer true ; (* Remove Gc settings for the moment as they are not adapted to small opam repositories Gc.set { (Gc.get()) with Gc.minor_heap_size = 4 * 1024 * 1024; (*4M*) Gc.major_heap_increment = 32 * 1024 * 1024; (*32M*) Gc.max_overhead = 150; } ; *) { st_assign = Array.make n Unknown; st_assign_true = IntHash.create n; st_reason = Array.make n None; st_level = Array.make n (-1); st_seen_var = Array.make n (-1); st_refs = Array.make n 0; st_pinned = Array.make n false; (* to each literal, positive or negative, * we associate the list of rules where it appears *) st_simpl_prop = Array.make (2 * n) LitMap.empty; st_watched = Array.make (2 * n) []; (* to each literal we associate the list of assiciated variables *) st_associated_vars = Array.make (2 * n) []; st_trail = []; st_trail_lim = []; st_prop_queue = Queue.create (); st_cur_level = 0; st_min_level = 0; st_seen = 0; st_var_queue_head = []; st_var_queue = Queue.create (); st_cost = 0; st_print_var = print_var; st_coherent = true; st_buffer = [] } let insert_simpl_prop st r p p' = let p = lit_neg p in if not (LitMap.mem p' st.st_simpl_prop.(p)) then st.st_simpl_prop.(p) <- LitMap.add p' r st.st_simpl_prop.(p) let add_bin_rule st lits p p' reasons = let r = { lits = [| p; p' |]; all_lits = lits; reasons } in if !buffer then store st r ; insert_simpl_prop st r p p' ; insert_simpl_prop st r p' p let add_un_rule st lits p reasons = let r = { lits = [| p |]; all_lits = lits; reasons } in if !buffer then store st r ; enqueue st p (Some r) let add_rule st lits reasons = let is_true = ref false in let all_lits = Array.copy lits in let j = ref 0 in for i = 0 to Array.length lits - 1 do match val_of_lit st lits.(i) with | True -> is_true := true | False -> () | Unknown -> lits.(!j) <- lits.(i) ; incr j done ; let lits = Array.sub lits 0 !j in if not !is_true then match Array.length lits with | 0 -> assert false | 1 -> add_un_rule st all_lits lits.(0) reasons | 2 -> add_bin_rule st all_lits lits.(0) lits.(1) reasons | _ -> let rule = { lits; all_lits; reasons } in let p = lit_neg rule.lits.(0) in let p' = lit_neg rule.lits.(1) in if !buffer then store st rule ; assert (val_of_lit st p <> False) ; assert (val_of_lit st p' <> False) ; st.st_watched.(p) <- rule :: st.st_watched.(p) ; st.st_watched.(p') <- rule :: st.st_watched.(p') let associate_vars st lit l = st.st_associated_vars.(lit) <- l @ st.st_associated_vars.(lit) let rec collect_rec st x l = if st.st_seen_var.(x) = st.st_seen then l else ( st.st_seen_var.(x) <- st.st_seen ; match st.st_reason.(x) with | None -> l | Some r -> r.reasons @ Array.fold_left (fun l p -> collect_rec st (var_of_lit p) l) l r.all_lits) let collect_reasons st x = st.st_seen <- st.st_seen + 1 ; collect_rec st x [] let collect_reasons_lst st l = st.st_seen <- st.st_seen + 1 ; let x = List.find (fun x -> st.st_assign.(x) = False) l in collect_rec st x [] let assignment st = st.st_assign let assignment_true st = IntHash.fold (fun k _ acc -> k :: acc) st.st_assign_true [] let stats st = let (t, f, u) = Array.fold_left (fun (t, f, u) -> function | True -> (t + 1, f, u) | False -> (t, f + 1, u) | Unknown -> (t, f, u + 1)) (0, 0, 0) st.st_assign in Format.eprintf "Variables %d@." (Array.length st.st_assign) ; Format.eprintf "st_assign: True: %d False: %d Unknown: %d@." t f u ; Format.eprintf "st_associated_vars %d@." (Array.length st.st_associated_vars) ; Format.eprintf "st_cost %d@." st.st_cost end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>