package dose3
Dose library (part of Mancoosi tools)
Install
Dune Dependency
Authors
Maintainers
Sources
dose3-7.0.0.tar.gz
md5=bc99cbcea8fca29dca3ebbee54be45e1
sha512=98dc4bd28e9f4aa8384be71b31783ae1afac577ea587118b8457b554ffe302c98e83d0098971e6b81803ee5c4f2befe3a98ef196d6b0da8feb4121e982ad5c2f
doc/src/dose3.algo/defaultgraphs.ml.html
Source file defaultgraphs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
(**************************************************************************************) (* Copyright (C) 2009 Pietro Abate <pietro.abate@pps.jussieu.fr> *) (* Copyright (C) 2009 Mancoosi Project *) (* *) (* This library is free software: you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License as *) (* published by the Free Software Foundation, either version 3 of the *) (* License, or (at your option) any later version. A special linking *) (* exception to the GNU Lesser General Public License applies to this *) (* library, see the COPYING file for more information. *) (**************************************************************************************) (** Specialized Ocamlgraph modules *) module OCAMLHashtbl = Hashtbl open ExtLib open Graph open Dose_common include Util.Logging (struct let label = "dose_algo.defaultgraphs" end) let tr_timer = Util.Timer.create "Defaultgraph.GraphOper.transitive_reduction" let trbar = Util.Progress.create "Defaultgraph.GraphOper.transitive_reduction" (** generic operation over imperative graphs *) module GraphOper (G : Sig.I) = struct (* this is a VERY expensive operation on Labelled graphs ... *) (** transitive reduction. Uses the transitive reduction algorithm from The Transitive Reduction of a Directed Graph, Aho, Garey and Ullman, 1972 - with the proviso that we know that our graph already is a transitive closure *) let transitive_reduction graph = Util.Progress.set_total trbar (G.nb_vertex graph) ; Util.Timer.start tr_timer ; G.iter_vertex (fun v -> Util.Progress.progress trbar ; G.iter_succ (fun w -> if not (G.V.equal v w) then G.iter_succ (fun z -> if not (G.V.equal w z) then G.remove_edge graph v z) graph w) graph v) graph ; Util.Timer.stop tr_timer () ; Util.Progress.reset trbar module O = Oper.I (G) module S = Set.Make (G.V) (** extract the subgraph induced by the list l *) let subgraph g l = let to_set l = List.fold_left (fun s v -> S.add v s) S.empty l in let s = to_set l in let sg = G.create () in S.iter (fun v1 -> G.add_vertex sg v1 ; List.iter (fun e -> let v2 = G.E.dst e in if S.mem v2 s then G.add_edge_e sg e) (G.succ_e g v1)) s ; sg end (** Syntactic dependency graph. Vertices are cudf packages, OR nodes representing a disjunctive dependency, or Missing nodes representing a missing package. The latter is used to display explanation graphs. Vertices are indexed considering only the pair name,version . Edges are labelled with - [OrDepends] : disjuctive dependency - [DirDepends] : direct dependecy - [Conflict] : conflict *) module SyntacticDependencyGraph = struct type pkg = { value : Cudf.package; root : bool } module PkgV = struct type t = | Pkg of pkg | Set of CudfAdd.Cudf_set.t | Or of int | Missing of Cudf_types.vpkglist let compare x y = match (x, y) with | (Or i1, Or i2) -> i1 - i2 | (Pkg { value = p1; _ }, Pkg { value = p2; _ }) -> CudfAdd.compare p1 p2 | (Set s1, Set s2) -> CudfAdd.Cudf_set.compare s1 s2 | (_, _) -> Stdlib.compare x y (* XXX *) let hash = function | Pkg { value; _ } -> CudfAdd.hash value | Set s -> Hashtbl.hash s (* XXX Can fail ! *) | Or i -> Hashtbl.hash i | Missing i -> Hashtbl.hash i (* XXX *) let equal x y = match (x, y) with | (Or i1, Or i2) -> i1 = i2 | (Pkg { value = p1; _ }, Pkg { value = p2; _ }) -> CudfAdd.equal p1 p2 | (Set s1, Set s2) -> CudfAdd.Cudf_set.equal s1 s2 | (Missing i, Missing j) -> i = j (* XXX *) | _ -> false end module PkgE = struct type s = | OrDepends of Cudf_types.vpkglist | DirDepends of Cudf_types.vpkglist | MissingDepends of Cudf_types.vpkglist | Conflict of Cudf_types.vpkg | Condensed type t = s ref let compare x y = Stdlib.compare !x !y let hash x = Hashtbl.hash !x let equal x y = compare x y = 0 let default = ref (Conflict ("", None)) end let default_pp = ref CudfAdd.default_pp module G = Imperative.Digraph.ConcreteLabeled (PkgV) (PkgE) module DotPrinter = struct module Display = struct include G let vertex_name v = string_of_int (G.V.hash v) let graph_attributes _ = [`Rankdir `LeftToRight (* ; `Concentrate true *)] let get_subgraph _ = None (* let open Graphviz.DotAttributes in match G.V.label v with |PkgV.Pkg {value = p} -> Some { sg_name = string_of_int (Hashtbl.hash p.Cudf.package); sg_attributes = [`Style `Invis]; sg_parent = None } |_ -> None *) let default_edge_attributes _ = [] let default_vertex_attributes _ = [`Shape `Box] let vertex_attributes v = match G.V.label v with | PkgV.Or _ -> [`Label "Or"; `Shape `Diamond] | PkgV.Pkg { value; root } -> let al = ref [`Label (CudfAdd.string_of_package value)] in if value.Cudf.installed then al := `Color 0x00FF00 :: !al ; if root then al := `Shape `Record :: !al ; !al | PkgV.Set s when CudfAdd.Cudf_set.cardinal s > 0 -> let l = CudfAdd.Cudf_set.elements s in let p = CudfAdd.Cudf_set.choose s in let str = Printf.sprintf "%s (=%s)" (CudfAdd.decode p.Cudf.package) (Util.string_of_list ~delim:("[", "]") CudfAdd.string_of_version l) in [`Label str; `Shape `Record] | PkgV.Set _ -> [`Label "empty??"; `Shape `Record] | PkgV.Missing _ -> [`Label "Missing"; `Color 0x00FF00; `Shape `Ellipse] let edge_attributes e = match !(G.E.label e) with | PkgE.DirDepends _ -> [`Style `Solid] | PkgE.OrDepends _ -> [`Style `Dashed] | PkgE.MissingDepends vpkgs -> let style = match G.E.src e with | PkgV.Or _ -> `Style `Dashed | _ -> `Style `Solid in [ style; `Label (CudfAdd.string_of (CudfAdd.pp_vpkglist !default_pp) (List.unique vpkgs)) ] | PkgE.Conflict _ -> [`Color 0xFF0000; `Style `Solid; `Dir `None; `Label "#"] | PkgE.Condensed -> [`Style `Solid] end include Graph.Graphviz.Dot (Display) let print fmt g = fprint_graph fmt g ; Format.fprintf fmt "@." end module S = Set.Make (PkgV) module GmlPrinter = Gml.Print (G) (struct let node (_ : G.V.label) = [] let edge (_ : G.E.label) = [] end) module GraphmlPrinter = Graphml.Print (G) (struct let vertex_properties = [ ("package", "string", None); ("version", "string", None); ("architecture", "string", None); ("type", "string", None); ("source", "string", None); ("sourcenumber", "string", None); ("multiarch", "string", None); ("realpackage", "string", None); ("realversion", "string", None) ] let edge_properties = [("vpkglist", "string", None); ("binaries", "string", None)] let map_edge _ = [] let map_vertex = function | PkgV.Pkg { value; _ } -> let name = ("realpackage", CudfAdd.decode value.Cudf.package) in let version = ("realversion", CudfAdd.string_of_version value) in let props = List.filter_map (fun (key, _, _) -> try Some (key, Cudf.lookup_package_property value key) with Not_found -> None) vertex_properties in name :: version :: props | PkgV.Set _ -> [] (* XXX *) | PkgV.Or _ -> [] | PkgV.Missing _ -> [] let edge_uid e = Hashtbl.hash e let vertex_uid v = Hashtbl.hash v end) let depgraphbar = Util.Progress.create "SyntacticDependencyGraph.dependency_graph" let add_edge gr s label d = try let e = G.find_edge gr s d in let labelold = G.E.label e in match (!labelold, label) with | (PkgE.MissingDepends vpkgs1, PkgE.MissingDepends vpkgs2) -> labelold := PkgE.MissingDepends (vpkgs1 @ vpkgs2) | (PkgE.DirDepends vpkgs1, PkgE.DirDepends vpkgs2) -> labelold := PkgE.DirDepends (vpkgs1 @ vpkgs2) | (PkgE.OrDepends vpkgs1, PkgE.OrDepends vpkgs2) -> labelold := PkgE.OrDepends (vpkgs1 @ vpkgs2) | (_, _) -> G.add_edge_e gr (G.E.create s (ref label) d) with Not_found -> G.add_edge_e gr (G.E.create s (ref label) d) (** Build the syntactic dependency graph from the give cudf universe *) let dependency_graph ?root univ = let add_node value = let root = match root with None -> false | Some pkg -> CudfAdd.equal value pkg in G.V.create (PkgV.Pkg { value; root }) in let timer = Util.Timer.create "SyntacticDependencyGraph.dependency_graph" in Util.Timer.start timer ; let conflicts = CudfAdd.init_conflicts univ in Util.Progress.set_total depgraphbar (Cudf.universe_size univ) ; let gr = G.create () in let c = ref 0 in Cudf.iter_packages (fun pkg -> Util.Progress.progress depgraphbar ; let vpid = add_node pkg in G.add_vertex gr vpid ; List.iter (fun vpkgs -> match CudfAdd.resolve_deps univ vpkgs with | [] -> let vp = G.V.create (PkgV.Missing vpkgs) in add_edge gr vpid (PkgE.MissingDepends vpkgs) vp | [p] -> let vp = add_node p in add_edge gr vpid (PkgE.DirDepends vpkgs) vp | l -> let vor = G.V.create (PkgV.Or !c) in incr c ; add_edge gr vpid (PkgE.OrDepends vpkgs) vor ; List.iter (fun p -> let vp = add_node p in add_edge gr vor (PkgE.OrDepends vpkgs) vp) l) pkg.Cudf.depends ; List.iter (fun p -> if not (CudfAdd.equal p pkg) then let vp = add_node p in let edge = if G.V.compare vpid vp > 0 then G.E.create vpid (ref (PkgE.Conflict ("", None))) vp else G.E.create vp (ref (PkgE.Conflict ("", None))) vpid in G.add_edge_e gr edge) (CudfAdd.who_conflicts conflicts univ pkg)) univ ; Util.Timer.stop timer gr end (******************************************************) module ActionGraph = struct module PkgV = struct type t = Install of Cudf.package | Remove of Cudf.package let compare x y = match (x, y) with | (Install p1, Install p2) -> CudfAdd.compare p1 p2 | (Remove p1, Remove p2) -> CudfAdd.compare p1 p2 | (x, y) -> Stdlib.compare x y let hash = function | Install p -> Hashtbl.hash (1, p.Cudf.package, p.Cudf.version) | Remove p -> Hashtbl.hash (0, p.Cudf.package, p.Cudf.version) let equal x y = compare x y = 0 end module G = Imperative.Digraph.ConcreteBidirectional (PkgV) let get_partial_order g = let module Dfs = Graph.Traverse.Dfs (G) in if Dfs.has_cycle g then failwith "need a DAG without cycles as input for partial order" ; let module Hashtbl = OCAMLHashtbl.Make (G.V) in (* find all vertices with no successors (those that have all dependencies * fulfilled) *) let init = G.fold_vertex (fun v acc -> match G.succ g v with [] -> v :: acc | _ -> acc) g [] in let result = ref [init] in let processed = Hashtbl.create (G.nb_vertex g) in let tocheck = Hashtbl.create (G.nb_vertex g) in (* fill the two hashtables, starting from the initial result *) List.iter (fun v -> Hashtbl.replace processed v () ; G.iter_pred (fun pred -> Hashtbl.replace tocheck pred ()) g v) init ; while Hashtbl.length tocheck > 0 do let localprocessed = Hashtbl.create (G.nb_vertex g) in (* iterate over the to-be-checked vertices and check if all of their * dependencies are already in the result *) Hashtbl.iter (fun v _ -> let satisfied = G.fold_succ (fun succ acc -> if acc then Hashtbl.mem processed succ else acc) g v true in (* if yes, remove this vertex from tocheck, add it to the result and * add its predecessors to tocheck*) if satisfied then ( Hashtbl.remove tocheck v ; Hashtbl.replace localprocessed v () ; G.iter_pred (fun pred -> Hashtbl.replace tocheck pred ()) g v)) tocheck ; (* add results of this round to global variables *) let l = Hashtbl.fold (fun v _ acc -> Hashtbl.replace processed v () ; v :: acc) localprocessed [] in result := l :: !result done ; List.rev !result module DotPrinter = struct module Display = struct include G let vertex_name = function | PkgV.Install v -> Printf.sprintf "\"I %s\"" (CudfAdd.string_of_package v) | PkgV.Remove v -> Printf.sprintf "\"R %s\"" (CudfAdd.string_of_package v) let graph_attributes _ = [] let get_subgraph _ = None let default_edge_attributes _ = [] let default_vertex_attributes _ = [] let vertex_attributes = function | PkgV.Install _ -> [`Color 0x00FF00] | PkgV.Remove _ -> [`Color 0xFF0000] let edge_attributes _ = [] end include Graph.Graphviz.Dot (Display) let print fmt g = fprint_graph fmt g end module GmlPrinter = Gml.Print (G) (struct let node (_ : G.V.label) = [] let edge (_ : G.E.label) = [] end) end (* Note: ConcreteBidirectionalLabelled graphs are slower and we do not use them here *) (** Imperative bidirectional graph for dependecies. Imperative unidirectional graph for conflicts. *) module PackageGraph = struct module PkgV = struct type t = Cudf.package let compare = CudfAdd.compare let hash = CudfAdd.hash let equal = CudfAdd.equal end module G = Imperative.Digraph.ConcreteBidirectional (PkgV) module UG = Imperative.Graph.Concrete (PkgV) module O = GraphOper (G) module S = Set.Make (PkgV) module DotPrinter = struct module Display = struct include G let vertex_name v = Printf.sprintf "\"%s\"" (CudfAdd.string_of_package v) let graph_attributes _ = [] let get_subgraph _ = None let default_edge_attributes _ = [] let default_vertex_attributes _ = [] let vertex_attributes p = if p.Cudf.installed then [`Color 0x00FF00] else [] let edge_attributes _ = [] end include Graph.Graphviz.Dot (Display) let print fmt g = fprint_graph fmt g end module GmlPrinter = Gml.Print (G) (struct let node (_ : G.V.label) = [] let edge (_ : G.E.label) = [] end) module GraphmlPrinter = Graphml.Print (G) (struct let vertex_properties = [ ("package", "string", None); ("version", "string", None); ("architecture", "string", None); ("type", "string", None); ("source", "string", None); ("sourcenumber", "string", None); ("multiarch", "string", None); ("realpackage", "string", None); ("realversion", "string", None) ] let edge_properties = [("vpkglist", "string", None); ("binaries", "string", None)] let map_edge _ = [] let map_vertex pkg = let name = ("realpackage", CudfAdd.decode pkg.Cudf.package) in let version = ("realversion", CudfAdd.string_of_version pkg) in let props = List.filter_map (fun (key, _, _) -> try let value = Cudf.lookup_package_property pkg key in Some (key, value) with Not_found -> None) vertex_properties in name :: version :: props let edge_uid e = Hashtbl.hash e let vertex_uid v = Hashtbl.hash v end) (* Maintenance Of Transitive Closures And Transitive Reductions Of Graphs *) (* J.A. La Poutre and J. van Leeuwen *) let add_edge ?transitive graph i j = let rec adapt g k red = let new_red = S.fold (fun l acc -> if not (G.V.equal k l) then G.add_edge g k l ; G.fold_succ (fun m acc' -> if not (G.mem_edge g k m) then S.add m acc' else acc') g l acc) red S.empty in if S.is_empty new_red then () else adapt g k new_red in let insert g i j = adapt g i (S.singleton j) ; G.iter_pred (fun k -> if not (G.mem_edge g k j) then adapt g k (S.singleton j)) g i in match transitive with | None -> G.add_edge graph i j | Some true -> (* add an edge and maintain the transitive clousure of the graph *) insert graph i j | Some false -> (* TODO : add an edge and maintain the transitive reduction of the graph *) G.add_edge graph i j (** add to the graph all conjunctive dependencies of package id *) let conjdepgraph_int ?(transitive = false) graph univ p = G.add_vertex graph p ; List.iter (fun vpkgs -> match CudfAdd.resolve_deps univ vpkgs with | [q] when not (CudfAdd.equal q p) -> add_edge ~transitive graph p q | _ -> ()) p.Cudf.depends (** for all id \in idlist add to the graph all conjunctive dependencies *) let conjdepgraph univ idlist = let graph = G.create ~size:(List.length idlist) () in List.iter (conjdepgraph_int graph univ) idlist ; graph (** given a graph return the conjunctive dependency closure of the package id *) let conjdeps graph = let h = Hashtbl.create (G.nb_vertex graph) in fun id -> try Hashtbl.find h id with Not_found -> let module Dfs = Traverse.Dfs (G) in let l = ref [] in let collect id = l := id :: !l in Dfs.prefix_component collect graph id ; Hashtbl.add h id !l ; !l let dependency_graph_aux conjunctive gr universe pkg = G.add_vertex gr pkg ; List.iter (fun vpkgs -> match CudfAdd.resolve_deps universe vpkgs with | [p] -> G.add_edge gr pkg p | l when not conjunctive -> List.iter (G.add_edge gr pkg) l | _ -> ()) pkg.Cudf.depends (** Build the dependency graph from the given cudf universe *) let dependency_graph ?(conjunctive = false) universe = let gr = G.create () in Cudf.iter_packages (dependency_graph_aux conjunctive gr universe) universe ; gr (** Build the dependency graph from the given list of packages *) let dependency_graph_list ?(conjunctive = false) universe pkglist = let gr = G.create () in List.iter (dependency_graph_aux conjunctive gr universe) pkglist ; gr let conflict_graph_aux gr universe pkg = List.iter (fun (pkgname, constr) -> List.iter (UG.add_edge gr pkg) (CudfAdd.who_provides universe (pkgname, constr))) pkg.Cudf.conflicts (** Build the conflict graph from the given list of packages *) let conflict_graph_list universe pkglist = let gr = UG.create () in List.iter (conflict_graph_aux gr universe) pkglist ; gr (** Build the conflict graph from the given cudf universe *) let conflict_graph universe = let gr = UG.create () in Cudf.iter_packages (conflict_graph_aux gr universe) universe ; gr let undirect graph = let gr = UG.create () in G.iter_edges (UG.add_edge gr) graph ; G.iter_vertex (UG.add_vertex gr) graph ; gr (** Return the list of connected component of an undirected graph *) let connected_components graph = let module C = Graph.Components.Make (UG) in C.scc_list graph let pred_list graph q = G.fold_pred (fun p acc -> p :: acc) graph q [] let succ_list graph q = G.fold_succ (fun p acc -> p :: acc) graph q [] let pred_set graph q = if G.mem_vertex graph q then G.fold_pred (fun p acc -> S.add p acc) graph q S.empty else S.empty let succ_set graph q = if G.mem_vertex graph q then G.fold_succ (fun p acc -> S.add p acc) graph q S.empty else S.empty let cycle_reduction g = let module Hashtbl = CudfAdd.Cudf_hashtbl in let module Set = CudfAdd.Cudf_set in let visited = Hashtbl.create (G.nb_vertex g) in let rec get_cycle res path v = match path with | [] -> fatal "No cycle in path!" | h :: t when G.V.equal h v -> (t, res) | h :: t -> get_cycle (h :: res) t v in let reduce_cycle path v = (* Somewhere, v should be in path. This is the cycle. *) let (other, c) = get_cycle [] path v in let nv = let name = String.concat "/" (List.sort ~cmp:compare (List.map (fun p -> p.Cudf.package) (v :: c))) in { Cudf.default_package with Cudf.package = CudfAdd.encode name; Cudf.version = 1 } in G.add_vertex g nv ; let s = CudfAdd.to_set c in List.iter (fun p -> if G.mem_vertex g p then ( G.iter_pred (fun q -> if not (Set.mem q s) then G.add_edge g q nv) g p ; G.iter_succ (fun q -> if not (Set.mem q s) then G.add_edge g nv q) g p ; G.remove_vertex g p) ; Hashtbl.remove visited p) (v :: c) ; (other, nv) in let rec visit path v = if G.mem_vertex g v then ( Hashtbl.add visited v true ; G.iter_succ (fun w -> try if Hashtbl.find visited w then let (other, nv) = reduce_cycle (v :: path) w in visit other nv with Not_found -> visit (v :: path) w) g v ; Hashtbl.replace visited v false) in G.iter_vertex (fun v -> if not (Hashtbl.mem visited v) then visit [] v) g let out ?(dump = None) ?(dot = None) ?(detrans = false) pkggraph = info "Dumping Graph : nodes %d , edges %d" (G.nb_vertex pkggraph) (G.nb_edges pkggraph) ; if detrans then ( O.transitive_reduction pkggraph ; debug "After transitive reduction : nodes %d , edges %d" (G.nb_vertex pkggraph) (G.nb_edges pkggraph)) ; if dump <> None then ( let f = Option.get dump in debug "Saving marshal graph in %s\n" f ; let oc = open_out f in Marshal.to_channel oc ((detrans, pkggraph) :> bool * G.t) [] ; close_out oc) ; if dot <> None then ( let f = Option.get dot in debug "Saving dot graph in %s\n" f ; let oc = open_out f in DotPrinter.output_graph oc pkggraph ; close_out oc) let load _pkglist filename = let timer = Util.Timer.create "Defaultgraph.PackageGraph.load" in Util.Timer.start timer ; let ic = open_in filename in let (detrans, graph) = (Marshal.from_channel ic :> bool * G.t) in close_in ic ; info "Loading Dependencies graph" ; (* we assume the graph is detransitivitized *) let sg = if detrans then ( info "Computing transitive closure" ; (* O.add_transitive_closure graph *) graph) else graph in Util.Timer.stop timer sg end (******************************************************) (** Integer Imperative Bidirectional Graph. Mainly used in Strong Conflicts *) module IntPkgGraph = struct module PkgV = struct type t = int let compare = Stdlib.compare let hash i = i let equal = ( = ) end module G = Imperative.Digraph.Concrete (PkgV) module S = Set.Make (PkgV) module O = GraphOper (G) module DotPrinter = struct module Display = struct include G let vertex_name uid = Printf.sprintf "\"%d\"" uid let graph_attributes _ = [] let get_subgraph _ = None let default_edge_attributes _ = [] let default_vertex_attributes _ = [] let vertex_attributes _ = [] let edge_attributes _ = [] end include Graph.Graphviz.Dot (Display) let print fmt g = fprint_graph fmt g end module DIn = Dot.Parse (Builder.I (G)) (struct let node (id, _) _ = match id with | Graph.Dot_ast.String s -> int_of_string s | _ -> assert false let edge _ = () end) module GmlPrinter = Gml.Print (G) (struct let node (_ : G.V.label) = [] let edge (_ : G.E.label) = [] end) let add_edge graph i j = debug "Adding edge from %d to %d" i j ; G.add_edge graph i j (** add to the graph all conjunctive dependencies of package id *) let conjdepgraph_int graph univ id = G.add_vertex graph id ; let p = CudfAdd.inttopkg univ id in List.iter (fun vpkgs -> match CudfAdd.resolve_vpkgs_int univ vpkgs with | [q] when q <> id -> add_edge graph id q | _ -> ()) p.Cudf.depends (** for all id \in idlist add to the graph all conjunctive dependencies *) let conjdepgraph univ idlist = let graph = G.create ~size:(List.length idlist) () in List.iter (conjdepgraph_int graph univ) idlist ; graph (** given a graph return the conjunctive dependency closure of the package id *) let conjdeps graph = let h = Hashtbl.create (G.nb_vertex graph) in fun id -> try Hashtbl.find h id with Not_found -> let module Dfs = Traverse.Dfs (G) in let l = ref [] in let collect id = l := id :: !l in Dfs.prefix_component collect graph id ; Hashtbl.add h id !l ; !l (** Build the dependency graph from the given index. conjunctive and disjunctive dependencies are considered as equal *) let dependency_graph ?(conjunctive = false) universe = let size = Cudf.universe_size universe in let graph = G.create ~size () in Cudf.iteri_packages (fun id pkg -> G.add_vertex graph id ; List.iter (fun vpkgs -> match CudfAdd.resolve_vpkgs_int universe vpkgs with | [p] -> G.add_edge graph id p | l when not conjunctive -> List.iter (G.add_edge graph id) l | _ -> ()) pkg.Cudf.depends) universe ; graph let dependency_graph_list ?(conjunctive = false) universe idlist = let queue = Queue.create () in let graph = G.create () in let visited = Hashtbl.create (2 * List.length idlist) in List.iter (fun e -> Queue.add e queue) idlist ; while Queue.length queue > 0 do let id = Queue.take queue in let pkg = Cudf.package_by_uid universe id in if not (Hashtbl.mem visited id) then ( G.add_vertex graph id ; Hashtbl.add visited id () ; List.iter (fun vpkgs -> match CudfAdd.resolve_vpkgs_int universe vpkgs with | [i] when not (Hashtbl.mem visited i) -> Queue.add i queue ; G.add_edge graph id i | dsj when not conjunctive -> List.iter (fun i -> if not (Hashtbl.mem visited i) then ( Queue.add i queue ; G.add_edge graph id i)) dsj | _ -> ()) pkg.Cudf.depends) done ; graph let load _pkglist filename = let timer = Util.Timer.create "Defaultgraph.StrongDepGraph.load" in Util.Timer.start timer ; let ic = open_in filename in let (detrans, graph) = (Marshal.from_channel ic :> bool * G.t) in close_in ic ; info "Loading Strong Dependencies graph" ; (* we assume the graph is detransitivitized *) let sg = if detrans then ( info "Computing transitive closure" ; (* O.add_transitive_closure graph *) graph) else graph in Util.Timer.stop timer sg end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>