package depyt
Yet-an-other type combinator library
Install
Dune Dependency
Authors
Maintainers
Sources
depyt-0.3.0.tbz
sha256=61dab6ed22949133f3f7763e66d357cf8bdc97fa4b4efc2642fd3bd8d7c0d478
sha512=4c420471d658f9fbe7157e65784e7528a496561facdab618a8d8c89e98e1e91999348fc65592e6b3fe8bd11ecb93f5c719fa1a747b6ab71dbda13176585eb629
doc/src/depyt/depyt.ml.html
Source file depyt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
(*--------------------------------------------------------------------------- Copyright (c) 2016 Thomas Gazagnaire. All rights reserved. Distributed under the ISC license, see terms at the end of the file. depyt 0.3.0 ---------------------------------------------------------------------------*) type (_, _) eq = Refl: ('a, 'a) eq module Witness : sig type 'a t val make : unit -> 'a t val eq : 'a t -> 'b t -> ('a, 'b) eq option end = struct type _ equality = .. module type Inst = sig type t type _ equality += Eq : t equality end type 'a t = (module Inst with type t = 'a) let make: type a. unit -> a t = fun () -> let module Inst = struct type t = a type _ equality += Eq : t equality end in (module Inst) let eq: type a b. a t -> b t -> (a, b) eq option = fun (module A) (module B) -> match A.Eq with | B.Eq -> Some Refl | _ -> None end type _ t = | Self : 'a self -> 'a t | Like : ('a, 'b) like -> 'b t | Prim : 'a prim -> 'a t | List : 'a t -> 'a list t | Array : 'a t -> 'a array t | Tuple : 'a tuple -> 'a t | Option : 'a t -> 'a option t | Record : 'a record -> 'a t | Variant: 'a variant -> 'a t and ('a, 'b) like = { x: 'a t; f: ('a -> 'b); g: ('b -> 'a); lwit: 'b Witness.t; } and 'a self = { mutable self: 'a t; } and 'a prim = | Unit : unit prim | Bool : bool prim | Char : char prim | Int : int prim | Int32 : int32 prim | Int64 : int64 prim | Float : float prim | String : string prim and 'a tuple = | Pair : 'a t * 'b t -> ('a * 'b) tuple | Triple : 'a t * 'b t * 'c t -> ('a * 'b * 'c) tuple and 'a record = { rwit : 'a Witness.t; rname : string; rfields: 'a fields_and_constr; } and 'a fields_and_constr = | Fields: ('a, 'b) fields * 'b -> 'a fields_and_constr and ('a, 'b) fields = | F0: ('a, 'a) fields | F1: ('a, 'b) field * ('a, 'c) fields -> ('a, 'b -> 'c) fields and ('a, 'b) field = { fname: string; ftype: 'b t; fget : 'a -> 'b; } and 'a variant = { vwit : 'a Witness.t; vname : string; vcases: 'a a_case array; vget : 'a -> 'a case_v; } and 'a a_case = | C0: 'a case0 -> 'a a_case | C1: ('a, 'b) case1 -> 'a a_case and 'a case_v = | CV0: 'a case0 -> 'a case_v | CV1: ('a, 'b) case1 * 'b -> 'a case_v and 'a case0 = { ctag0 : int; cname0: string; c0 : 'a; } and ('a, 'b) case1 = { ctag1 : int; cname1: string; ctype1: 'b t; c1 : 'b -> 'a; } type _ a_field = Field: ('a, 'b) field -> 'a a_field module Refl = struct let prim: type a b. a prim -> b prim -> (a, b) eq option = fun a b -> match a, b with | Unit , Unit -> Some Refl | Int , Int -> Some Refl | String, String -> Some Refl | _ -> None let rec eq: type a b. a t -> b t -> (a, b) eq option = fun a b -> match a, b with | Self a, b -> eq a.self b | a, Self b -> eq a b.self | Like a, Like b -> Witness.eq a.lwit b.lwit | Prim a, Prim b -> prim a b | List a, List b -> (match eq a b with Some Refl -> Some Refl | None -> None) | Tuple a, Tuple b -> tuple a b | Option a, Option b -> (match eq a b with Some Refl -> Some Refl | None -> None) | Record a, Record b -> Witness.eq a.rwit b.rwit | Variant a, Variant b -> Witness.eq a.vwit b.vwit | _ -> None and tuple: type a b. a tuple -> b tuple -> (a, b) eq option = fun a b -> match a, b with | Pair (a0, a1), Pair (b0, b1) -> (match eq a0 b0, eq a1 b1 with | Some Refl, Some Refl -> Some Refl | _ -> None) | Triple (a0, a1, a2), Triple (b0, b1, b2) -> (match eq a0 b0, eq a1 b1, eq a2 b2 with | Some Refl, Some Refl, Some Refl -> Some Refl | _ -> None) | _ -> None end let unit = Prim Unit let bool = Prim Bool let char = Prim Char let int = Prim Int let int32 = Prim Int32 let int64 = Prim Int64 let float = Prim Float let string = Prim String let list l = List l let array a = Array a let pair a b = Tuple (Pair (a, b)) let triple a b c = Tuple (Triple (a, b, c)) let option a = Option a let like (type a b) (x: a t) (f: a -> b) (g: b -> a) = Like { x; f; g; lwit = Witness.make () } (* fix points *) let mu: type a. (a t -> a t) -> a t = fun f -> let rec fake_x = { self = Self fake_x } in let real_x = f (Self fake_x) in fake_x.self <- real_x; real_x let mu2: type a b. (a t -> b t -> a t * b t) -> a t * b t = fun f -> let rec fake_x = { self = Self fake_x } in let rec fake_y = { self =Self fake_y } in let real_x, real_y = f (Self fake_x) (Self fake_y) in fake_x.self <- real_x; fake_y.self <- real_y; real_x, real_y (* records *) type ('a, 'b, 'c) open_record = ('a, 'c) fields -> string * 'b * ('a, 'b) fields let field fname ftype fget = { fname; ftype; fget } let record: string -> 'b -> ('a, 'b, 'b) open_record = fun n c fs -> n, c, fs let app: type a b c d. (a, b, c -> d) open_record -> (a, c) field -> (a, b, d) open_record = fun r f fs -> let n, c, fs = r (F1 (f, fs)) in n, c, fs let sealr: type a b. (a, b, a) open_record -> a t = fun r -> let rname, c, fs = r F0 in let rwit = Witness.make () in Record { rwit; rname; rfields = Fields (fs, c) } let (|+) = app (* variants *) type 'a case_p = 'a case_v type ('a, 'b) case = int -> ('a a_case * 'b) let case0 cname0 c0 ctag0 = let c = { ctag0; cname0; c0 } in C0 c, CV0 c let case1 cname1 ctype1 c1 ctag1 = let c = { ctag1; cname1; ctype1; c1 } in C1 c, fun v -> CV1 (c, v) type ('a, 'b, 'c) open_variant = 'a a_case list -> string * 'c * 'a a_case list let variant n c vs = n, c, vs let app v c cs = let n, fc, cs = v cs in let c, f = c (List.length cs) in n, fc f, (c :: cs) let sealv v = let vname, vget, vcases = v [] in let vwit = Witness.make () in let vcases = Array.of_list (List.rev vcases) in Variant { vwit; vname; vcases ; vget } let (|~) = app let enum vname l = let vwit = Witness.make () in let _, vcases, mk = List.fold_left (fun (ctag0, cases, mk) (n, v) -> let c = { ctag0; cname0 = n; c0 = v } in ctag0+1, (C0 c :: cases), (v, CV0 c) :: mk ) (0, [], []) l in let vcases = Array.of_list (List.rev vcases) in Variant { vwit; vname; vcases; vget = fun x -> List.assq x mk } let rec fields_aux: type a b. (a, b) fields -> a a_field list = function | F0 -> [] | F1 (h, t) -> Field h :: fields_aux t let fields r = match r.rfields with | Fields (f, _) -> fields_aux f module Dump = struct let unit ppf () = Fmt.string ppf "()" let bool = Fmt.bool let char = Fmt.char let int = Fmt.int let int32 = Fmt.int32 let int64 = Fmt.int64 let float = Fmt.float let string ppf x = Fmt.pf ppf "%S" x let list = Fmt.Dump.list let array = Fmt.Dump.array let pair = Fmt.Dump.pair let triple a b c ppf (x, y, z) = Fmt.pf ppf "(%a, %a, %a)" a x b y c z let option = Fmt.Dump.option let rec t: type a. a t -> a Fmt.t = function | Self s -> t s.self | Like b -> like b | Prim t -> prim t | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a Fmt.t = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b Fmt.t = fun {x; g; _ } ppf b -> t x ppf (g b) and prim: type a. a prim -> a Fmt.t = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a Fmt.t = fun r ppf x -> let fields = fields r in Fmt.pf ppf "@[{@ "; List.iter (fun (Field t) -> Fmt.pf ppf "%s = %a;@ " t.fname (field t) x ) fields; Fmt.pf ppf "}@]" and field: type a b. (a, b) field -> a Fmt.t = fun f ppf x -> t f.ftype ppf (f.fget x) and variant: type a. a variant -> a Fmt.t = fun v ppf x -> case_v ppf (v.vget x) and case_v: type a. a case_v Fmt.t = fun ppf -> function | CV0 x -> Fmt.string ppf x.cname0 | CV1 (x, vx) -> Fmt.pf ppf "@[<2>%s %a@]" x.cname1 (t x.ctype1) vx end let dump = Dump.t type 'a equal = 'a -> 'a -> bool module Equal = struct let unit _ _ = true let bool (x:bool) (y:bool) = x = y let char (x:char) (y:char) = x = y let int (x:int) (y:int) = x = y let int32 (x:int32) (y:int32) = x = y let int64 (x:int64) (y:int64) = x = y let string x y = x == y || String.compare x y = 0 (* NOTE: equality is ill-defined on float *) let float (x:float) (y:float) = x = y let list e x y = x == y || (List.length x = List.length y && List.for_all2 e x y) let array e x y = x == y || (Array.length x = Array.length y && let rec aux = function | -1 -> true | i -> e x.(i) y.(i) && aux (i-1) in aux (Array.length x - 1)) let pair ex ey (x1, y1 as a) (x2, y2 as b) = a == b || (ex x1 x2 && ey y1 y2) let triple ex ey ez (x1, y1, z1 as a) (x2, y2, z2 as b) = a == b || (ex x1 x2 && ey y1 y2 && ez z1 z2) let option e x y = x == y || match x, y with | None , None -> true | Some x, Some y -> e x y | _ -> false let rec t: type a. a t -> a equal = function | Self s -> t s.self | Like b -> like b | Prim p -> prim p | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a equal = function | Pair (a, b) -> pair (t a) (t b) | Triple (a, b, c) -> triple (t a) (t b) (t c) and like: type a b. (a, b) like -> b equal = fun { x; g; _ } u v -> t x (g u) (g v) and prim: type a. a prim -> a equal = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a equal = fun r x y -> List.for_all (function Field f -> field f x y) (fields r) and field: type a b. (a, b) field -> a equal = fun f x y -> t f.ftype (f.fget x) (f.fget y) and variant: type a. a variant -> a equal = fun v x y -> case_v (v.vget x) (v.vget y) and case_v: type a. a case_v equal = fun x y -> match x, y with | CV0 x , CV0 y -> int x.ctag0 y.ctag0 | CV1 (x, vx), CV1 (y, vy) -> int x.ctag1 y.ctag1 && eq (x.ctype1, vx) (y.ctype1, vy) | _ -> false and eq: type a b. (a t * a) -> (b t * b) -> bool = fun (tx, x) (ty, y) -> match Refl.eq tx ty with | Some Refl -> t tx x y | None -> assert false (* this should never happen *) end let equal = Equal.t type 'a compare = 'a -> 'a -> int module Compare = struct let unit (_:unit) (_:unit) = 0 let bool (x:bool) (y:bool) = Stdlib.compare x y let char = Char.compare let int (x:int) (y:int) = Stdlib.compare x y let int32 = Int32.compare let int64 = Int64.compare let float (x:float) (y:float) = Stdlib.compare x y let string x y = if x == y then 0 else String.compare x y let list c x y = if x == y then 0 else let rec aux x y = match x, y with | [], [] -> 0 | [], _ -> -1 | _ , [] -> 1 | xx::x,yy::y -> match c xx yy with | 0 -> aux x y | i -> i in aux x y let array c x y = if x == y then 0 else let lenx = Array.length x in let leny = Array.length y in if lenx > leny then 1 else if lenx < leny then -1 else let rec aux i = match c x.(i) y.(i) with | 0 when i+1 = lenx -> 0 | 0 -> aux (i+1) | i -> i in aux 0 let pair cx cy (x1, y1 as a) (x2, y2 as b) = if a == b then 0 else match cx x1 x2 with | 0 -> cy y1 y2 | i -> i let triple cx cy cz (x1, y1, z1 as a) (x2, y2, z2 as b) = if a == b then 0 else match cx x1 x2 with | 0 -> pair cy cz (y1, z1) (y2, z2) | i -> i let option c x y = if x == y then 0 else match x, y with | None , None -> 0 | Some _, None -> 1 | None , Some _ -> -1 | Some x, Some y -> c x y let rec t: type a. a t -> a compare = function | Self s -> t s.self | Like b -> like b | Prim p -> prim p | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a compare = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b compare = fun { x; g; _ } u v -> t x (g u) (g v) and prim: type a. a prim -> a compare = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a compare = fun r x y -> let rec aux = function | [] -> 0 | Field f :: t -> match field f x y with 0 -> aux t | i -> i in aux (fields r) and field: type a b. (a, b) field -> a compare = fun f x y -> t f.ftype (f.fget x) (f.fget y) and variant: type a. a variant -> a compare = fun v x y -> case_v (v.vget x) (v.vget y) and case_v: type a. a case_v compare = fun x y -> match x, y with | CV0 x , CV0 y -> int x.ctag0 y.ctag0 | CV0 x , CV1 (y, _) -> int x.ctag0 y.ctag1 | CV1 (x, _) , CV0 y -> int x.ctag1 y.ctag0 | CV1 (x, vx), CV1 (y, vy) -> match int x.ctag1 y.ctag1 with | 0 -> compare (x.ctype1, vx) (y.ctype1, vy) | i -> i and compare: type a b. (a t * a) -> (b t * b) -> int = fun (tx, x) (ty, y) -> match Refl.eq tx ty with | Some Refl -> t tx x y | None -> assert false (* this should never happen *) end let compare = Compare.t type buffer = | C of Cstruct.t | B of bytes type 'a size_of = 'a -> int type 'a write = buffer -> pos:int -> 'a -> int type 'a read = buffer -> pos:int -> int * 'a module Size_of = struct let unit () = 0 let int8 (_:int) = 1 let char (_:char) = 1 let int (_:int) = 8 (* NOTE: to be portable, we consider int=int64 *) let int32 (_:int32) = 4 let int64 (_:int64) = 8 let bool (_:bool) = 1 let float (_:float) = 8 (* NOTE: we consider 'double' here *) let string s = (int 0) + String.length s let list l x = List.fold_left (fun acc x -> acc + l x) (int 0) x let array l x = Array.fold_left (fun acc x -> acc + l x) (int 0) x let pair a b (x, y) = a x + b y let triple a b c (x, y, z) = a x + b y + c z let option o = function | None -> int8 0 | Some x -> (int8 0) + o x let rec t: type a. a t -> a size_of = function | Self s -> t s.self | Like b -> like b | Prim t -> prim t | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a size_of = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b size_of = fun { x; g; _ } u -> t x (g u) and prim: type a. a prim -> a size_of = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a size_of = fun r x -> let fields = fields r in List.fold_left (fun acc (Field f) -> acc + field f x) 0 fields and field: type a b. (a, b) field -> a size_of = fun f x -> t f.ftype (f.fget x) and variant: type a. a variant -> a size_of = fun v x -> match v.vget x with | CV0 _ -> (int8 0) | CV1 (x, vx) -> (int8 0) + t x.ctype1 vx end module B = EndianBytes.BigEndian module Write = struct let (>>=) = (|>) let unit _ ~pos () = pos let int8 buf ~pos i = match buf with | C buf -> Cstruct.set_uint8 buf pos i; pos+1 | B buf -> B.set_int8 buf pos i; pos+1 let char buf ~pos c = match buf with | C buf -> Cstruct.set_char buf pos c; pos+1 | B buf -> B.set_char buf pos c; pos+1 let int32 buf ~pos i = match buf with | C buf -> Cstruct.BE.set_uint32 buf pos i; pos+4 | B buf -> B.set_int32 buf pos i; pos+4 let int64 buf ~pos i = match buf with | C buf -> Cstruct.BE.set_uint64 buf pos i; pos+8 | B buf -> B.set_int64 buf pos i; pos+8 let int buf ~pos i = int64 buf ~pos (Int64.of_int i) let float buf ~pos f = int64 buf ~pos (Int64.bits_of_float f) let string buf ~pos str = let len = String.length str in let pos = int buf ~pos len in let () = match buf with | C buf -> Cstruct.blit_from_string str 0 buf pos len | B buf -> Bytes.blit_string str 0 buf pos len in pos+len let list l buf ~pos x = let pos = int buf ~pos (List.length x) in List.fold_left (fun pos i -> l buf ~pos i) pos x let array l buf ~pos x = let pos = int buf ~pos (Array.length x) in Array.fold_left (fun pos i -> l buf ~pos i) pos x let pair a b buf ~pos (x, y) = a buf ~pos x >>= fun pos -> b buf ~pos y let triple a b c buf ~pos (x, y, z) = a buf ~pos x >>= fun pos -> pair b c buf ~pos (y, z) let bool buf ~pos = function | false -> int8 buf ~pos 0 | true -> int8 buf ~pos 1 let option o buf ~pos = function | None -> bool buf ~pos false | Some x -> bool buf ~pos true >>= fun pos -> o buf ~pos x let rec t: type a. a t -> a write = function | Self s -> t s.self | Like b -> like b | Prim t -> prim t | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a write = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b write = fun { x; g; _ } buf ~pos u -> t x buf ~pos (g u) and prim: type a. a prim -> a write = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a write = fun r buf ~pos x -> let fields = fields r in List.fold_left (fun pos (Field f) -> field f buf ~pos x) pos fields and field: type a b. (a, b) field -> a write = fun f buf ~pos x -> t f.ftype buf ~pos (f.fget x) and variant: type a. a variant -> a write = fun v buf ~pos x -> case_v buf ~pos (v.vget x) and case_v: type a. a case_v write = fun buf ~pos c -> match c with | CV0 c -> int8 buf ~pos c.ctag0 | CV1 (c,v) -> int8 buf ~pos c.ctag1 >>= fun pos -> t c.ctype1 buf ~pos v end module Read = struct let (>|=) (pos, x) f = pos, f x let (>>=) (pos, x) f = f (pos, x) let ok pos x = (pos, x) type 'a res = int * 'a let unit _ ~pos = ok pos () let int8 buf ~pos = match buf with | C buf -> ok (pos+1) (Cstruct.get_uint8 buf pos) | B buf -> ok (pos+1) (B.get_int8 buf pos) let char buf ~pos = match buf with | C buf -> ok (pos+1) (Cstruct.get_char buf pos) | B buf -> ok (pos+1) (B.get_char buf pos) let int32 buf ~pos = match buf with | C buf -> ok (pos+4) (Cstruct.BE.get_uint32 buf pos) | B buf -> ok (pos+4) (B.get_int32 buf pos) let int64 buf ~pos = match buf with | C buf -> ok (pos+8) (Cstruct.BE.get_uint64 buf pos) | B buf -> ok (pos+8) (B.get_int64 buf pos) let bool buf ~pos = int8 buf ~pos >|= function 0 -> false | _ -> true let int buf ~pos = int64 buf ~pos >|= Int64.to_int let float buf ~pos = int64 buf ~pos >|= Int64.float_of_bits let string buf ~pos = int buf ~pos >>= fun (pos, len) -> let str = Bytes.create len in let () = match buf with | C buf -> Cstruct.blit_to_bytes buf pos str 0 len | B buf -> Bytes.blit buf pos str 0 len in ok (pos+len) (Bytes.unsafe_to_string str) let list l buf ~pos = int buf ~pos >>= fun (pos, len) -> let rec aux acc ~pos = function | 0 -> ok pos (List.rev acc) | n -> l buf ~pos >>= fun (pos, x) -> aux (x :: acc) ~pos (n - 1) in aux [] ~pos len let array l buf ~pos = list l buf ~pos >|= Array.of_list let pair a b buf ~pos = a buf ~pos >>= fun (pos, a) -> b buf ~pos >|= fun b -> (a, b) let triple a b c buf ~pos = a buf ~pos >>= fun (pos, a) -> b buf ~pos >>= fun (pos, b) -> c buf ~pos >|= fun c -> (a, b, c) let option: type a. a read -> a option read = fun o buf ~pos -> int8 buf ~pos >>= function | pos, 0 -> ok pos None | pos, _ -> o buf ~pos >|= fun x -> Some x let rec t: type a. a t -> a read = function | Self s -> t s.self | Like b -> like b | Prim t -> prim t | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a read = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b read = fun { x; f; _ } buf ~pos -> t x buf ~pos >|= f and prim: type a. a prim -> a read = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a read = fun r buf ~pos -> match r.rfields with | Fields (fs, c) -> let rec aux: type b. pos:int -> b -> (a, b) fields -> a res = fun ~pos f -> function | F0 -> ok pos f | F1 (h, t) -> field h buf ~pos >>= fun (pos, x) -> aux ~pos (f x) t in aux ~pos c fs and field: type a b. (a, b) field -> b read = fun f -> t f.ftype and variant: type a. a variant -> a read = fun v buf ~pos -> (* FIXME: we support 'only' 256 variants *) int8 buf ~pos >>= fun (pos, i) -> case v.vcases.(i) buf ~pos and case: type a. a a_case -> a read = fun c buf ~pos -> match c with | C0 c -> ok pos c.c0 | C1 c -> t c.ctype1 buf ~pos >|= c.c1 end let size_of = Size_of.t let read = Read.t let write = Write.t type 'a encode_json = Jsonm.encoder -> 'a -> unit module Encode_json = struct let lexeme e l = ignore (Jsonm.encode e (`Lexeme l)) let unit e () = lexeme e `Null let string e s = lexeme e (`String s) let char e c = string e (String.make 1 c) let float e f = lexeme e (`Float f) let int32 e i = float e (Int32.to_float i) let int64 e i = float e (Int64.to_float i) let int e i = float e (float_of_int i) let bool e = function false -> float e 0. | _ -> float e 1. let list l e x = lexeme e `As; List.iter (l e) x; lexeme e `Ae let array l e x = lexeme e `As; Array.iter (l e) x; lexeme e `Ae let pair a b e (x, y) = lexeme e `As; a e x; b e y; lexeme e `Ae let triple a b c e (x, y, z) = lexeme e `As; a e x; b e y; c e z; lexeme e `Ae let option o e = function | None -> lexeme e `Null | Some x -> o e x let rec t: type a. a t -> a encode_json = function | Self s -> t s.self | Like b -> like b | Prim t -> prim t | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a encode_json = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b encode_json = fun { x; g; _ } e u -> t x e (g u) and prim: type a. a prim -> a encode_json = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a encode_json = fun r e x -> let fields = fields r in lexeme e `Os; List.iter (fun (Field f) -> match f.ftype, f.fget x with | Option _, None -> () | Option o, Some x -> lexeme e (`Name f.fname); t o e x | tx , x -> lexeme e (`Name f.fname); t tx e x ) fields; lexeme e `Oe and variant: type a. a variant -> a encode_json = fun v e x -> case_v e (v.vget x) and case_v: type a. a case_v encode_json = fun e c -> match c with | CV0 c -> string e c.cname0 | CV1 (c,v) -> lexeme e `Os; lexeme e (`Name c.cname1); t c.ctype1 e v; lexeme e `Oe end let encode_json = Encode_json.t let pp_json ?minify t ppf x = let buf = Buffer.create 42 in let e = Jsonm.encoder ?minify (`Buffer buf) in let wrap_and_encode () = encode_json (list t) e [x] in let encode () = encode_json t e x in let () = match t with | Prim _ -> wrap_and_encode () | Variant v -> (match v.vget x with | CV0 _ -> wrap_and_encode () | _ -> encode ()) | _ -> encode () in ignore (Jsonm.encode e `End); Fmt.string ppf (Buffer.contents buf) module Decode_json = struct type decoder = { mutable lexemes: Jsonm.lexeme list; d: Jsonm.decoder; } type 'a decode = decoder -> ('a, string) result let decoder d = { lexemes = []; d } let of_lexemes lexemes = { lexemes; d = Jsonm.decoder (`String "") } let rewind e l = e.lexemes <- l :: e.lexemes let lexeme e = match e.lexemes with | h::t -> e.lexemes <- t; Ok h | [] -> match Jsonm.decode e.d with | `Lexeme e -> Ok e | `Error e -> Error (Fmt.to_to_string Jsonm.pp_error e) | `End | `Await -> assert false let (>>=) l f = match l with | Error _ as e -> e | Ok l -> f l let (>|=) l f = match l with | Ok l -> Ok (f l) | Error _ as e -> e let error e got expected = let _, (l, c) = Jsonm.decoded_range e.d in Error (Fmt.str "line %d, character %d:\nFound lexeme %a, but \ lexeme %s was expected" l c Jsonm.pp_lexeme got expected) let expect_lexeme e expected = lexeme e >>= fun got -> if expected = got then Ok () else error e got (Fmt.to_to_string Jsonm.pp_lexeme expected) (* read all lexemes until the end of the next well-formed value *) let value e = let lexemes = ref [] in let objs = ref 0 in let arrs = ref 0 in let rec aux () = lexeme e >>= fun l -> lexemes := l :: !lexemes; let () = match l with | `Os -> incr objs | `As -> incr arrs | `Oe -> decr objs | `Ae -> decr arrs | `Name _ | `Null | `Bool _ | `String _ | `Float _ -> () in if !objs > 0 || !arrs > 0 then aux () else Ok () in aux () >|= fun () -> List.rev !lexemes let unit e = expect_lexeme e `Null let string e = lexeme e >>= function | `String s -> Ok s | l -> error e l "`String" let float e = lexeme e >>= function | `Float f -> Ok f | l -> error e l "`Float" let char e = lexeme e >>= function | `String s when String.length s = 1 -> Ok (String.get s 1) | l -> error e l "`String[1]" let int32 e = float e >|= Int32.of_float let int64 e = float e >|= Int64.of_float let int e = float e >|= int_of_float let bool e = int e >|= function 0 -> false | _ -> true let list l e = expect_lexeme e `As >>= fun () -> let rec aux acc = lexeme e >>= function | `Ae -> Ok (List.rev acc) | lex -> rewind e lex; l e >>= fun v -> aux (v :: acc) in aux [] let array l e = list l e >|= Array.of_list let pair a b e = expect_lexeme e `As >>= fun () -> a e >>= fun x -> b e >>= fun y -> expect_lexeme e `Ae >|= fun () -> x, y let triple a b c e = expect_lexeme e `As >>= fun () -> a e >>= fun x -> b e >>= fun y -> c e >>= fun z -> expect_lexeme e `Ae >|= fun () -> x, y, z let option o e = lexeme e >>= function | `Null -> Ok None | lex -> rewind e lex; o e >|= fun v -> Some v let rec t: type a. a t -> a decode = function | Self s -> t s.self | Like b -> like b | Prim t -> prim t | List l -> list (t l) | Array a -> array (t a) | Tuple t -> tuple t | Option x -> option (t x) | Record r -> record r | Variant v -> variant v and tuple: type a. a tuple -> a decode = function | Pair (x,y) -> pair (t x) (t y) | Triple (x,y,z) -> triple (t x) (t y) (t z) and like: type a b. (a, b) like -> b decode = fun { x; f; _ } e -> t x e >|= f and prim: type a. a prim -> a decode = function | Unit -> unit | Bool -> bool | Char -> char | Int -> int | Int32 -> int32 | Int64 -> int64 | Float -> float | String -> string and record: type a. a record -> a decode = fun r e -> expect_lexeme e `Os >>= fun () -> let rec soup acc = lexeme e >>= function | `Name n -> value e >>= fun s -> soup ((n, s) :: acc) | `Oe -> Ok acc | l -> error e l "`Record-contents" in soup [] >>= fun soup -> let rec aux: type a b. (a, b) fields -> b -> (a, string) result = fun f c -> match f with | F0 -> Ok c | F1 (h, f) -> let v = try let s = List.assoc h.fname soup in let e = of_lexemes s in t h.ftype e with Not_found -> match h.ftype with | Option _ -> Ok None | _ -> Error (Fmt.str "missing value for %s.%s" r.rname h.fname) in match v with | Ok v -> aux f (c v) | Error _ as e -> e in let Fields (f, c) = r.rfields in aux f c and variant: type a. a variant -> a decode = fun v e -> lexeme e >>= function | `String s -> case0 s v e | `Os -> case1 v e | l -> error e l "(`String | `Os)" and case0: type a. string -> a variant -> a decode = fun s v _e -> let rec aux i = match v.vcases.(i) with | C0 c when String.compare c.cname0 s = 0 -> Ok c.c0 | _ -> if i < Array.length v.vcases then aux (i+1) else Error "variant" in aux 0 and case1: type a. a variant -> a decode = fun v e -> lexeme e >>= function | `Name s -> let rec aux i = match v.vcases.(i) with | C1 c when String.compare c.cname1 s = 0 -> t c.ctype1 e >|= c.c1 | _ -> if i < Array.length v.vcases then aux (i+1) else Error "variant" in aux 0 >>= fun c -> expect_lexeme e `Oe >|= fun () -> c | l -> error e l "`Name" end let decode_json x d = Decode_json.(t x @@ decoder d) let decode_json_lexemes x ls = Decode_json.(t x @@ of_lexemes ls) (*--------------------------------------------------------------------------- Copyright (c) 2016 Thomas Gazagnaire Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. ---------------------------------------------------------------------------*)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>