package datalog

  1. Overview
  2. Docs

Source file Datalog_top_down.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

(* this file is part of datalog. See README for the license *)

(** {1 Top-Down Computation} *)

(** This module implements top-down computation of Datalog queries
    with non-stratified negation.

    See "efficient top-down computation of queries under the well-founded
    semantics"
*)

module AST = AST
module Lexer = Lexer
module Parser = Parser

(** {2 Signature for symbols} *)

module type CONST = sig
  type t

  val equal : t -> t -> bool
  val hash : t -> int
  val to_string : t -> string
  val of_string : string -> t

  val query : t
    (** Special symbol, that will never occur in any user-defined
        clause or term. For strings, this may be the empty string "". *)
end

module type S = sig
  module Const : CONST

  type const = Const.t

  val set_debug : bool -> unit

  (** {2 Terms} *)

  module T : sig
    type t = private
    | Var of int
    | Apply of const * t array

    val mk_var : int -> t
    val mk_const : const -> t
    val mk_apply : const -> t array -> t
    val mk_apply_l : const -> t list -> t

    val is_var : t -> bool
    val is_apply : t -> bool
    val is_const : t -> bool

    val eq : t -> t -> bool
    val hash : t -> int

    val ground : t -> bool
    val vars : t -> int list
    val max_var : t -> int    (* max var, or 0 if ground *)
    val head_symbol : t -> const

    val to_string : t -> string
    val pp : out_channel -> t -> unit
    val fmt : Format.formatter -> t -> unit

    val pp_tuple : out_channel -> t list -> unit

    module Tbl : Hashtbl.S with type key = t
  end

  (** {2 Literals} *)

  module Lit : sig
    type aggregate = {
      left : T.t;
      constructor : const;
      var : T.t;
      guard : T.t;
    } (* aggregate: ag_left = ag_constructor set
        where set is the set of bindings to ag_var
        that satisfy ag_guard *)

    type t =
    | LitPos of T.t
    | LitNeg of T.t
    | LitAggr of aggregate

    val mk_pos : T.t -> t
    val mk_neg : T.t -> t
    val mk : bool -> T.t -> t

    val mk_aggr : left:T.t -> constructor:const -> var:T.t -> guard:T.t -> t

    val eq : t -> t -> bool
    val hash : t -> int

    val to_term : t -> T.t
    val fmap : (T.t -> T.t) -> t -> t

    val to_string : t -> string
    val pp : out_channel -> t -> unit
    val fmt : Format.formatter -> t -> unit
  end

  (** {2 Clauses} *)

  module C : sig
    type t = private {
      head : T.t;
      body : Lit.t list;
    }

    exception Unsafe

    val mk_clause : T.t -> Lit.t list -> t
    val mk_fact : T.t -> t

    val eq : t -> t -> bool
    val hash : t -> int

    val head_symbol : t -> const
    val max_var : t -> int
    val fmap : (T.t -> T.t) -> t -> t

    val to_string : t -> string
    val pp : out_channel -> t -> unit
    val fmt : Format.formatter -> t -> unit

    module Tbl : Hashtbl.S with type key = t
  end

  (** {2 Substs} *)

  (** This module is used for variable bindings. *)

  module Subst : sig
    type t
    type scope = int
    type renaming

    val empty : t
      (** Empty subst *)

    val bind : t -> T.t -> scope -> T.t -> scope -> t
      (** Bind a variable,scope to a term,scope *)

    val deref : t -> T.t -> scope -> T.t * scope
      (** While the term is a variable bound in subst, follow its binding.
          Returns the final term and scope *)

    val create_renaming : unit -> renaming

    val reset_renaming : renaming -> unit

    val rename : renaming:renaming -> T.t -> scope -> T.t
      (** Rename the given variable into a variable that is unique
          within variables known to the given [renaming] *)

    val eval : t -> renaming:renaming -> T.t -> scope -> T.t
      (** Apply the substitution to the term. Free variables are renamed
          using [renaming] *)

    val eval_lit : t -> renaming:renaming -> Lit.t -> scope -> Lit.t

    val eval_lits : t -> renaming:renaming -> Lit.t list -> scope -> Lit.t list

    val eval_clause : t -> renaming:renaming -> C.t -> scope -> C.t

    val fmt : Format.formatter -> t -> unit
  end

  (** {2 Unification, matching...} *)

  type scope = Subst.scope

  exception UnifFail

  (** For {!unify} and {!match_}, the optional parameter [oc] is used to
      enable or disable occur-check. It is disabled by default. *)

  val unify : ?oc:bool -> ?subst:Subst.t -> T.t -> scope -> T.t -> scope -> Subst.t
    (** Unify the two terms.
        @raise UnifFail if it fails *)

  val match_ : ?oc:bool -> ?subst:Subst.t -> T.t -> scope -> T.t -> scope -> Subst.t
    (** [match_ a sa b sb] matches the pattern [a] in scope [sa] with term
        [b] in scope [sb].
        @raise UnifFail if it fails *)

  val alpha_equiv : ?subst:Subst.t -> T.t -> scope -> T.t -> scope -> Subst.t
    (** Test for alpha equivalence.
        @raise UnifFail if it fails *)

  val are_alpha_equiv : T.t -> T.t -> bool
    (** Special version of [alpha_equiv], using distinct scopes for the two
        terms to test, and discarding the result *)

  val clause_are_alpha_equiv : C.t -> C.t -> bool
    (** Alpha equivalence of clauses. *)

  (** {2 Special built-in functions}
  The built-in functions are symbols that have a special {b meaning}. The
  meaning is given by a set of OCaml functions that can evaluate applications
  of the function symbol to arguments.

  For instance, [sum] is a special built-in function that tries to add its
  arguments if those are constants.

  {b Note} that a constant will never be interpreted.
  *)

  module BuiltinFun : sig
    type t = T.t -> T.t option

    type map
      (** Map symbols to builtin functions. Every symbol can only have at
          most one built-in function. *)

    val create : unit -> map

    val add : map -> Const.t -> t -> unit
      (** Interpret the given constant by the given function. The function
          can assume that any term is it given as a parameter has the
          constant as head. *)

    val add_list : map -> (Const.t * t) list -> unit

    val interpreted : map -> Const.t -> bool
      (** Is the constant interpreted by a built-in function? *)

    val eval : map -> T.t -> T.t
      (** Evaluate the term at root *)
  end

  (** The following hashtables use alpha-equivalence checking instead of
      regular, syntactic equality *)

  module TVariantTbl : Hashtbl.S with type key = T.t
  module CVariantTbl : Hashtbl.S with type key = C.t

  (** {2 Index}
  An index is a specialized data structured that is used to efficiently
  store and retrieve data by a key, where the key is a term. Retrieval
  involves finding all data associated with terms that match,
  or unify with, a given term. *)

  module Index(Data : Hashtbl.HashedType) : sig
    type t
      (** A set of term->data bindings, for efficient retrieval by unification *)

    val empty : unit -> t
      (** new, empty index *)

    val copy : t -> t
      (** Recursive copy of the index *)

    val clear : t -> unit

    val add : t -> T.t -> Data.t -> t
      (** Add the term->data binding. This modifies the index! *)

    val remove : t -> T.t -> Data.t -> t
      (** Remove the term->data binding. This modifies the index! *)

    val generalizations : ?oc:bool -> t -> scope -> T.t -> scope ->
                          (Data.t -> Subst.t -> unit) -> unit
      (** Retrieve data associated with terms that are a generalization
          of the given query term *)

    val unify : ?oc:bool -> t -> scope -> T.t -> scope ->
                (Data.t -> Subst.t -> unit) -> unit
      (** Retrieve data associated with terms that unify with the given
          query term *)

    val iter : t -> (T.t -> Data.t -> unit) -> unit
      (** Iterate on bindings *)

    val size : t -> int
      (** Number of bindings *)
  end

  (** {2 Rewriting}
  Rewriting consists in having a set of {b rules}, oriented from left to right,
  that we will write [l -> r] (say "l rewrites to r"). Any term t that l matches
  is {b rewritten} into r by replacing it by sigma(r), where sigma(l) = t.
  *)

  module Rewriting : sig
    type rule = T.t * T.t

    type t
      (** A rewriting system. It is basically a mutable set of rewrite rules. *)

    val create : unit -> t
      (** New rewriting system *)

    val copy : t -> t
      (** Copy the rewriting system *)

    val add : t -> rule -> unit
      (** Add a rule to the system *)

    val add_list : t -> rule list -> unit

    val to_list : t -> rule list
      (** List of rules *)

    val rewrite_root : t -> T.t -> T.t
      (** rewrite the term, but only its root. Subterms are not rewritten
          at all. *)

    val rewrite : t -> T.t -> T.t
      (** Normalize the term recursively. The returned type cannot be rewritten
          any further, assuming the rewriting system is {b terminating} *)
  end

  (** {2 DB} *)

  (** A DB stores facts and clauses, that constitute a logic program.
      Facts and clauses can only be added.

      Non-stratified programs will be rejected with NonStratifiedProgram.
  *)

  exception NonStratifiedProgram

  module DB : sig
    type t
      (** A database is a repository for Datalog clauses. *)

    type interpreter = T.t -> C.t list
      (** Interpreted predicate. It takes terms which have a given
          symbol as head, and return a list of (safe) clauses that
          have the same symbol as head, and should unify with the
          query term. *)

    val create : ?parent:t -> unit -> t

    val copy : t -> t
    val clear : t -> unit

    val add_fact : t -> T.t -> unit
    val add_facts : t -> T.t list -> unit

    val add_clause : t -> C.t -> unit
    val add_clauses : t -> C.t list -> unit

    val interpret : ?help:string -> t -> const -> interpreter -> unit
      (** Add an interpreter for the given constant. Goals that start with
          this constant will be given to all registered interpreters, all
          of which can add new clauses. The returned clauses must
          have the constant as head symbol. *)

    val interpret_list : t -> (const * string * interpreter) list -> unit
      (** Add several interpreters, with their documentation *)

    val is_interpreted : t -> const -> bool
      (** Is the constant interpreted by some OCaml code? *)

    val add_builtin : t -> Const.t -> BuiltinFun.t -> unit
      (** Add a builtin fun *)

    val builtin_funs : t -> BuiltinFun.map

    val eval : t -> T.t -> T.t
      (** Evaluate the given term at root *)

    val help : t -> string list
      (** Help messages for interpreted predicates *)

    val num_facts : t -> int
    val num_clauses : t -> int
    val size : t -> int

    val find_facts : ?oc:bool -> t -> scope -> T.t -> scope ->
                     (T.t -> Subst.t -> unit) -> unit
      (** find facts unifying with the given term, and give them
          along with the unifier, to the callback *)

    val find_clauses_head : ?oc:bool -> t -> scope -> T.t -> scope ->
                            (C.t -> Subst.t -> unit) -> unit
      (** find clauses whose head unifies with the given term,
          and give them along with the unifier, to the callback *)

    val find_interpretation : ?oc:bool -> t -> scope -> T.t -> scope ->
                              (C.t -> Subst.t -> unit) -> unit
      (** Given an interpreted goal, try all interpreters on it,
          and match the query against their heads. Returns clauses
          whose head unifies with the goal, along with the substitution. *)
  end

  (** {2 Query} *)

  val ask : ?oc:bool -> ?with_rules:C.t list -> ?with_facts:T.t list ->
            DB.t -> T.t -> T.t list
    (** Returns the answers to a query in a given DB. Additional facts and rules can be
        added in a local scope.
        @param oc enable occur-check in unification (default [false]) *)

  val ask_lits : ?oc:bool -> ?with_rules:C.t list -> ?with_facts:T.t list ->
                 DB.t -> T.t list -> Lit.t list -> T.t list
    (** Extension of {! ask}, where the query ranges over the list of
        variables (the term list), all of which must be bound in
        the list of literals that form a constraint.

        [ask_lits db vars lits] queries over variables [vars] with
        the constraints given by [lits].

        Conceptually, the query adds a clause (v1, ..., vn) :- lits, which
        should respect the same safety constraint as other clauses.

        @return a list of answers, each of which is a list of terms that
          map to the given list of variables.
        *)
end

(** {2 Generic implementation} *)

let combine_hash hash i =
  abs (hash * 65599 + i)

(** Hash a list. Each element is hashed using [f]. *)
let rec hash_list f h l = match l with
  | [] -> h
  | x::l' -> hash_list f (combine_hash h (f x)) l'

let _array_forall2 p a1 a2 =
  if Array.length a1 = Array.length a2
    then try
      for i = 0 to Array.length a1 - 1 do
        if not (p a1.(i) a2.(i)) then raise Exit
      done;
      true
    with Exit -> false
    else false

let _array_exists p a =
  try
    for i = 0 to Array.length a - 1 do
      if p a.(i) then raise Exit
    done;
    false
  with Exit -> true

let _array_fold2 f acc a1 a2 =
  if Array.length a1 <> Array.length a2
    then failwith "_array_fold2: arrays must have same length";
  let acc = ref acc in
  for i = 0 to Array.length a1 - 1 do
    acc := f !acc a1.(i) a2.(i)
  done;
  !acc

module Make(Const : CONST) = struct
  module Const = Const

  type const = Const.t

  let _debug_enabled = ref false

  let _debug_real k =
    k (fun fmt ->
        Format.fprintf Format.err_formatter "@[";
        Format.kfprintf
          (fun fmt -> Format.fprintf fmt "@]@.")
          Format.err_formatter fmt)

  let _debug k =
    if !_debug_enabled then (
      _debug_real k
    )

  let set_debug b = _debug_enabled := b

  module ConstTbl = Hashtbl.Make(Const)
  module ConstWeak = Weak.Make(Const)

  module T = struct
    type t =
    | Var of int
    | Apply of const * t array
    type term = t

    let __const_table = ConstWeak.create 255

    let mk_var i = assert (i>=0); Var i
    let mk_apply const args =
      let const = ConstWeak.merge __const_table const in
      Apply (const, args)
    let mk_apply_l const args = mk_apply const (Array.of_list args)
    let mk_const const = mk_apply const [| |]

    let is_var = function | Var _ -> true | Apply _ -> false
    let is_apply = function | Var _ -> false | Apply _ -> true
    let is_const = function Apply (_, [||]) -> true | _ -> false

    (* equality *)
    let rec eq t1 t2 = match t1, t2 with
    | Var i, Var j -> i = j
    | Apply (c1, l1), Apply (c2, l2) ->
      Array.length l1 = Array.length l2 &&
      Const.equal c1 c2 &&
      _array_forall2 eq l1 l2
    | Var _, Apply _
    | Apply _, Var _ -> false

    (* hash *)
    let rec hash t = match t with
    | Var i -> i
    | Apply (c, [| |]) -> Const.hash c
    | Apply (c, args) ->
      let h = ref (Const.hash c) in
      for i = 0 to Array.length args -1 do
        h := combine_hash !h (hash args.(i))
      done;
      !h

    (* hash invariant by var renaming *)
    let rec hash_novar t = match t with
    | Var _ -> 42
    | Apply(c, args) ->
      let h = ref (Const.hash c) in
      for i = 0 to Array.length args -1 do
        h := combine_hash !h (hash_novar args.(i))
      done;
      !h

    let rec ground t = match t with
    | Var _ -> false
    | Apply (_, [| |]) -> true
    | Apply (_, args) ->
      _ground_arr args 0
    and _ground_arr a i =
      if i = Array.length a
        then true
        else ground a.(i) && _ground_arr a (i+1)

    let vars t =
      let rec _gather acc t = match t with
      | Var i when _var_present acc i -> acc
      | Var i -> i :: acc
      | Apply (_, [| |]) -> acc
      | Apply (_, args) -> Array.fold_left _gather acc args
      and _var_present l i = match l with
      | [] -> false
      | j::l' -> i = j || _var_present l' i
      in
      _gather [] t

    let rec max_var t = match t with
    | Var i -> i
    | Apply (_, args) ->
      Array.fold_left (fun m t' -> max m (max_var t')) 0 args

    let head_symbol t = match t with
    | Var _ -> failwith "variable has no head symbol"
    | Apply(c,_) -> c

    let to_string t =
      let rec pp buf t = match t with
      | Var i -> Printf.bprintf buf "X%d" i
      | Apply (c, [| |]) -> Buffer.add_string buf (Const.to_string c)
      | Apply (c, args) ->
        Printf.bprintf buf "%s(" (Const.to_string c);
        Array.iteri
          (fun i t' ->
            if i > 0 then Buffer.add_string buf ", ";
            pp buf t')
          args;
        Buffer.add_char buf ')'
      in
      let buf = Buffer.create 10 in
      pp buf t;
      Buffer.contents buf

    let pp oc t = output_string oc (to_string t)

    let fmt fmt t = Format.pp_print_string fmt (to_string t)

    let pp_tuple oc l = match l with
      | [] -> output_string oc "()"
      | [t] -> Printf.fprintf oc "(%a)" pp t
      | l ->
        output_string oc "(";
        List.iteri
          (fun i t ->
            if i > 0 then output_string oc ", ";
            pp oc t)
          l;
        output_string oc ")"

    module Tbl = Hashtbl.Make(struct
      type t = term
      let equal = eq
      let hash = hash
    end)
  end

  module Lit = struct
    type aggregate = {
      left : T.t;
      constructor : const;
      var : T.t;
      guard : T.t;
    } (* aggregate: ag_left = ag_constructor set
        where set is the set of bindings to ag_var
        that satisfy ag_guard *)

    type t =
    | LitPos of T.t
    | LitNeg of T.t
    | LitAggr of aggregate

    let mk_pos t = LitPos t
    let mk_neg t = LitNeg t
    let mk sign t =
      if sign then LitPos t else LitNeg t

    let mk_aggr ~left ~constructor ~var ~guard =
      LitAggr {
        left;
        constructor;
        var;
        guard;
      }

    let eq lit1 lit2 = match lit1, lit2 with
    | LitPos t1, LitPos t2
    | LitNeg t1, LitNeg t2 -> T.eq t1 t2
    | LitAggr a1, LitAggr a2 ->
      T.eq a1.left a2.left &&
      T.eq a1.var a2.var &&
      T.eq a1.guard a2.guard &&
      Const.equal a1.constructor a2.constructor
    | _ -> false

    let hash lit = match lit with
    | LitPos t -> T.hash t
    | LitNeg t -> T.hash t + 65599 * 13
    | LitAggr a ->
      combine_hash
        (combine_hash (T.hash a.left) (T.hash a.var))
        (combine_hash (Const.hash a.constructor) (T.hash a.guard))

    let hash_novar lit = match lit with
    | LitPos t -> T.hash_novar t
    | LitNeg t -> T.hash_novar t + 65599 * 13
    | LitAggr a ->
      combine_hash
        (combine_hash (T.hash_novar a.left) (T.hash_novar a.var))
        (combine_hash (Const.hash a.constructor) (T.hash_novar a.guard))

    let to_term = function
    | LitPos t
    | LitNeg t -> t
    | LitAggr a ->
      let head = Const.of_string "aggr" in
      T.mk_apply head [| a.left; T.mk_const a.constructor; a.var; a.guard |]

    let fmap f lit = match lit with
    | LitPos t -> LitPos (f t)
    | LitNeg t -> LitNeg (f t)
    | LitAggr a -> LitAggr {
      a with
      left = f a.left;
      var = f a.var;
      guard = f a.guard;
    }

    let to_string lit = match lit with
    | LitPos t -> T.to_string t
    | LitNeg t -> Printf.sprintf "~%s" (T.to_string t)
    | LitAggr a ->
      Printf.sprintf "%s := %s %s : %s"
        (T.to_string a.left)
        (Const.to_string a.constructor)
        (T.to_string a.var)
        (T.to_string a.guard)

    let pp oc lit = output_string oc (to_string lit)

    let fmt fmt lit = Format.pp_print_string fmt (to_string lit)
  end

  module C = struct
    type t = {
      head : T.t;
      body : Lit.t list;
    }
    type clause = t

    exception Unsafe

    let _safe_clause _head _body =
      true  (* TODO *)

    let mk_clause head body =
      if _safe_clause head body
        then {head; body;}
        else raise Unsafe

    let mk_fact head = mk_clause head []

    let eq c1 c2 =
      T.eq c1.head c2.head &&
      List.length c1.body = List.length c2.body &&
      List.for_all2 Lit.eq c1.body c2.body

    let hash c = match c.body with
      | [] -> T.hash c.head
      | _ -> hash_list Lit.hash (T.hash c.head) c.body

    let hash_novar c = match c.body with
      | [] -> T.hash_novar c.head
      | _ -> hash_list Lit.hash_novar (T.hash_novar c.head) c.body

    let head_symbol c = T.head_symbol c.head

    let max_var c =
      List.fold_left
        (fun m lit -> max m (T.max_var (Lit.to_term lit)))
        (T.max_var c.head) c.body

    let fmap f c =
      let head = f c.head in
      let body = List.map (Lit.fmap f) c.body in
      mk_clause head body

    let to_string c = match c.body with
    | [] -> Printf.sprintf "%s." (T.to_string c.head)
    | _ ->
      let buf = Buffer.create 16 in
      Printf.bprintf buf "%s :- " (T.to_string c.head);
      List.iteri
        (fun i lit ->
          if i > 0 then Buffer.add_string buf ", ";
          Buffer.add_string buf (Lit.to_string lit))
        c.body;
      Buffer.add_char buf '.';
      Buffer.contents buf

    let pp oc c =
      output_string oc (to_string c)

    let fmt fmt c = Format.pp_print_string fmt (to_string c)

    module Tbl = Hashtbl.Make(struct
      type t = clause
      let equal = eq
      let hash = hash
    end)
  end

  (** {2 Substitutions} *)

  module Subst = struct
    type scope = int
    type t =
      | Nil
      | Bind of int * scope * T.t * scope * t

    type renaming = ((int*int), T.t) Hashtbl.t

    let empty = Nil

    let bind subst v s_v t s_t = match v with
    | T.Var i -> Bind (i, s_v, t, s_t, subst)
    | _ -> failwith "Subst.bind: expected variable"

    let deref subst t scope =
      let rec search subst v i scope = match subst with
      | Nil -> v, scope
      | Bind (i', s_i', t, s_t, _) when i = i' && scope = s_i' ->
        begin match t with
        | T.Var j -> search subst t j s_t
        | _ -> t, s_t
        end
      | Bind (_, _, _, _, subst') -> search subst' v i scope
      in
      match t with
      | T.Var i -> search subst t i scope
      | _ -> t, scope

    let create_renaming () =
      Hashtbl.create 7

    (* special renaming *)
    let __dummy_renaming = create_renaming ()

    let reset_renaming r = Hashtbl.clear r

    let rename ~renaming v scope = match v with
    | T.Var i ->
      begin try
        let v' = Hashtbl.find renaming (i, scope) in
        v'
      with Not_found ->
        let n = Hashtbl.length renaming in
        let v' = T.mk_var n in
        Hashtbl.add renaming (i, scope) v';
        v'
      end
    | _ -> failwith "Subst.rename: expected variable"

    let rec eval subst ~renaming t scope =
      let t, scope = deref subst t scope in
      match t with
      | T.Var _ when renaming == __dummy_renaming -> t (* keep *)
      | T.Var _ -> rename ~renaming t scope  (* free var *)
      | T.Apply (_c, [| |]) -> t
      | T.Apply (c, args) ->
        let args' = Array.map
          (fun t' -> eval subst ~renaming t' scope)
          args
        in
        T.mk_apply c args'

    let eval_lit subst ~renaming lit scope =
      match lit with
      | Lit.LitPos t -> Lit.LitPos (eval subst ~renaming t scope)
      | Lit.LitNeg t -> Lit.LitNeg (eval subst ~renaming t scope)
      | Lit.LitAggr a ->
        Lit.LitAggr {
          a with
          Lit.left = eval subst ~renaming a.Lit.left scope;
          Lit.var = eval subst ~renaming a.Lit.var scope;
          Lit.guard = eval subst ~renaming a.Lit.guard scope;
        }

    let eval_lits subst ~renaming lits scope =
      List.map
        (fun lit -> match lit with
        | Lit.LitPos t -> Lit.LitPos (eval subst ~renaming t scope)
        | Lit.LitNeg t -> Lit.LitNeg (eval subst ~renaming t scope)
        | Lit.LitAggr _ -> eval_lit subst ~renaming lit scope)
        lits

    let eval_clause subst ~renaming c scope =
      C.fmap (fun t -> eval subst ~renaming t scope) c

    let fmt out (s:t) =
      let rec aux out = function
        | Nil -> ()
        | Bind (x1,sc1,t2,sc2,tl) ->
          Format.fprintf out "@[X%d[%d] ->@ %a[%d]@],@ %a"
            x1 sc1 T.fmt t2 sc2 aux tl
      in
      Format.fprintf out "{@[<hv>%a@]}" aux s
  end

  (** {2 Unification, matching...} *)

  type scope = Subst.scope

  exception UnifFail

  let rec _occur_check subst v sc_v t sc_t = match t with
  | T.Var _ when T.eq v t && sc_v = sc_t -> true
  | T.Var _ -> false
  | T.Apply (_, [| |]) -> false
  | T.Apply (_, args) ->
    _array_exists (fun t' -> _occur_check subst v sc_v t' sc_t) args

  let rec unify ?(oc=false) ?(subst=Subst.empty) t1 sc1 t2 sc2 =
    let t1, sc1 = Subst.deref subst t1 sc1 in
    let t2, sc2 = Subst.deref subst t2 sc2 in
    match t1, t2 with
    | T.Var i, T.Var j when i = j && sc1 = sc2 -> subst
    | T.Var _, _ when not oc || not (_occur_check subst t1 sc1 t2 sc2) ->
      Subst.bind subst t1 sc1 t2 sc2
    | _, T.Var _ when not oc || not (_occur_check subst t2 sc2 t1 sc1) ->
      Subst.bind subst t2 sc2 t1 sc1
    | T.Apply (c1, [| |]), T.Apply (c2, [| |]) when Const.equal c1 c2 -> subst
    | T.Apply (c1, l1), T.Apply (c2, l2)
      when Const.equal c1 c2 && Array.length l1 = Array.length l2 ->
      _array_fold2
        (fun subst t1' t2' -> unify ~oc ~subst t1' sc1 t2' sc2)
        subst l1 l2
    | _, _ -> raise UnifFail

  let rec match_ ?(oc=false) ?(subst=Subst.empty) t1 sc1 t2 sc2 =
    let t1, sc1 = Subst.deref subst t1 sc1 in
    let t2, sc2 = Subst.deref subst t2 sc2 in
    match t1, t2 with
    | T.Var i, T.Var j when i = j && sc1 = sc2 -> subst
    | T.Var _, _ when not oc || not (_occur_check subst t1 sc1 t2 sc2) ->
      Subst.bind subst t1 sc1 t2 sc2
    | T.Apply (c1, [| |]), T.Apply (c2, [| |]) when Const.equal c1 c2 -> subst
    | T.Apply (c1, l1), T.Apply (c2, l2)
      when Const.equal c1 c2 && Array.length l1 = Array.length l2 ->
      _array_fold2
        (fun subst t1' t2' -> match_ ~oc ~subst t1' sc1 t2' sc2)
        subst l1 l2
    | _, _ -> raise UnifFail

  let rec alpha_equiv ?(subst=Subst.empty) t1 sc1 t2 sc2 =
    let t1, sc1 = Subst.deref subst t1 sc1 in
    let t2, sc2 = Subst.deref subst t2 sc2 in
    match t1, t2 with
    | T.Var i, T.Var j when i = j && sc1 = sc2 -> subst
    | T.Var _, T.Var _ when sc1 = sc2 -> raise UnifFail  (* would be matching *)
    | T.Var _, T.Var _ -> Subst.bind subst t1 sc1 t2 sc2  (* can bind *)
    | T.Apply (c1, [| |]), T.Apply (c2, [| |]) when Const.equal c1 c2 -> subst
    | T.Apply (c1, l1), T.Apply (c2, l2)
      when Const.equal c1 c2 && Array.length l1 = Array.length l2 ->
      _array_fold2
        (fun subst t1' t2' -> alpha_equiv ~subst t1' sc1 t2' sc2)
        subst l1 l2
    | _, _ -> raise UnifFail

  let are_alpha_equiv t1 t2 =
    try
      let _ = alpha_equiv t1 0 t2 1 in
      true
    with UnifFail ->
      false

  let _lit_alpha_equiv ~subst lit1 sc1 lit2 sc2 = match lit1, lit2 with
  | Lit.LitPos t1, Lit.LitPos t2
  | Lit.LitNeg t1, Lit.LitNeg t2 ->
    alpha_equiv ~subst t1 sc1 t2 sc2
  | _ -> raise UnifFail

  let clause_are_alpha_equiv c1 c2 =
    List.length c1.C.body = List.length c2.C.body &&
    try
      let subst = alpha_equiv c1.C.head 0 c2.C.head 1 in
      let _ = List.fold_left2
        (fun subst lit1 lit2 -> _lit_alpha_equiv ~subst lit1 0 lit2 1)
        subst c1.C.body c2.C.body
      in
      true
    with UnifFail ->
      false

  module BuiltinFun = struct
    type t = T.t -> T.t option

    type map = t ConstTbl.t

    let create () = ConstTbl.create 17
    let clear t = ConstTbl.clear t

    let add map c f =
      ConstTbl.replace map c f

    let add_list map l =
      List.iter (fun (c,f) -> add map c f) l

    let interpreted map c = ConstTbl.mem map c

    let rec eval map t = match t with
      | T.Var _ -> t
      | T.Apply (_, [| |]) -> t   (* non interpreted *)
      | T.Apply (c, _) ->
        let t' =
          try
            let f = ConstTbl.find map c in
            begin match f t with
              | None -> t
              | Some t' -> t'
            end
          with Not_found -> t
        in
        if t == t' then t else eval map t'
  end

  (* hashtable on terms that use alpha-equiv-checking as equality *)
  module TVariantTbl = Hashtbl.Make(struct
    type t = T.t
    let equal = are_alpha_equiv
    let hash = T.hash_novar
  end)

  module CVariantTbl = Hashtbl.Make(struct
    type t = C.t
    let equal = clause_are_alpha_equiv
    let hash = C.hash_novar
  end)

  (** {2 Indexing} *)

  (** Functor that allows fast retrieval of sets of values
      for the given {! Data} type, by unification or matching
      with a term.
      This is a kind of fingerprint indexing, but only at the very
      first level of subterms. *)
  module Index(Data : Hashtbl.HashedType) = struct
    (* what is the head of the term we can find at the given position? *)
    type fingerprint =
      | Var
      | Const of Const.t

    (* A hashset of (term * data) *)
    module TermDataTbl = Hashtbl.Make(struct
      type t = T.t * Data.t
      let equal (t1,d1) (t2,d2) =
        are_alpha_equiv t1 t2 && Data.equal d1 d2
      let hash (t,d) =
        combine_hash (T.hash_novar t) (Data.hash d)
    end)

    type t = {
      mutable sub : t ConstTbl.t;
      mutable var : t option; (* follow var *)
      mutable data : unit TermDataTbl.t option;
    }

    let create size = {
      sub=ConstTbl.create size;
      var=None;
      data=None;
    }

    let empty () = create 23

    (* is the tree empty? *)
    let is_empty tree =
      ConstTbl.length tree.sub = 0 &&
      (match tree.data with | None -> true | Some _ -> false) &&
      (match tree.var with | None -> true | Some _ -> false)

    (* fingerprint of a term *)
    let term_to_fingerprint t =
      match t with
      | T.Var _ -> [| Var |]
      | T.Apply (s, [||]) -> [| Const s |]
      | T.Apply (s, arr) ->
        let n = Array.length arr in
        let a = Array.make (n+1) Var in
        a.(0) <- Const s;
        for i = 0 to n-1 do
          a.(i+1) <- match arr.(i) with
          | T.Var _ -> Var
          | T.Apply (s, _) -> Const s
        done;
        a

    (* recursive copy of an index *)
    let rec copy t =
      let var = match t.var with
        | None -> None
        | Some t' -> Some (copy t')
      in
      let sub = ConstTbl.create 5 in
      ConstTbl.iter (fun s t' -> ConstTbl.add sub s (copy t')) t.sub;
      let data = match t.data with
        | None -> None
        | Some set -> Some (TermDataTbl.copy set)
      in
      { var; sub; data; }

    let clear t =
      ConstTbl.clear t.sub;
      t.var <- None;
      t.data <- None;
      ()

    let add idx t data =
      let arr = term_to_fingerprint t in
      (* traverse the trie *)
      let rec add tree i =
        if i = Array.length arr
        then
          (* add to data *)
          let set = match tree.data with
            | None ->
              let set = TermDataTbl.create 5 in
              tree.data <- Some set;
              set
            | Some set -> set
          in
          TermDataTbl.replace set (t,data) ();
          tree
        else
          match arr.(i) with
          | Var ->
            let tree' = match tree.var with
            | None -> create 5
            | Some tree' -> tree'
            in
            let tree' = add tree' (i+1) in
            tree.var <- Some tree';
            tree
          | Const s ->
            let tree' =
              try ConstTbl.find tree.sub s
              with Not_found -> create 5
            in
            let tree' = add tree' (i+1) in
            ConstTbl.replace tree.sub s tree';
            tree
      in
      add idx 0

    let remove idx t data =
      let arr = term_to_fingerprint t in
      (* traverse the trie *)
      let rec remove tree i =
        if i = Array.length arr
        then match tree.data with
          | None -> tree (* not present *)
          | Some set ->
            TermDataTbl.remove set (t, data);
            if TermDataTbl.length set = 0
              then tree.data <- None; (* remove data set *)
            tree
        else match arr.(i) with
        | Var ->
          begin match tree.var with
          | None -> tree
          | Some tree' ->
            let tree' = remove tree' (i+1) in
            (if is_empty tree'
              then tree.var <- None  (* remove subtree *)
              else tree.var <- Some tree');
            tree
          end
        | Const s ->
          begin try
            let tree' = ConstTbl.find tree.sub s in
            let tree' = remove tree' (i+1) in
            (if is_empty tree'
              then ConstTbl.remove tree.sub s
              else ConstTbl.replace tree.sub s tree');
            tree
          with Not_found -> tree
          end
      in
      remove idx 0

    (* unify [t] with terms indexed in [tree]. Successful unifiers
        are passed to [k] along with the data *)
    let unify ?(oc=false) tree s_tree t s_t k =
      let arr = term_to_fingerprint t in
      (* iterate on tree *)
      let rec iter tree i =
        if i = Array.length arr
          then match tree with
            | {data=Some set;_} ->
              (* unify against the indexed terms now *)
              TermDataTbl.iter
                (fun (t',data) () ->
                  try
                    let subst = unify ~oc t' s_tree t s_t in
                    k data subst
                  with UnifFail -> ())
                set
            | _ -> ()
          else begin
            (* recurse into subterms which have a variable *)
            begin match tree.var with
            | None -> ()
            | Some tree' -> iter tree' (i+1)
            end;
            match arr.(i) with
            | Var ->
              (* iterate on all subtrees *)
              ConstTbl.iter
                (fun _ tree' -> iter tree' (i+1))
                tree.sub
            | Const s ->
              (* iterate on the subtree with same symbol, if present *)
              try
                let tree' = ConstTbl.find tree.sub s in
                iter tree' (i+1)
              with Not_found -> ()
            end
      in
      iter tree 0

    (* same as {!unify} but for matching *)
    let generalizations ?(oc=false) tree s_tree t s_t k =
      let arr = term_to_fingerprint t in
      (* iterate on tree *)
      let rec iter tree i =
        if i = Array.length arr
          then match tree with
            | {data=Some set;_} ->
              (* unify against the indexed terms now *)
              TermDataTbl.iter
                (fun (t',data) () ->
                  try
                    let subst = match_ ~oc t' s_tree t s_t in
                    k data subst
                  with UnifFail -> ())
                set
            | _ -> ()
          else begin
            (* recurse into subterms which have a variable *)
            begin match tree.var with
            | None -> ()
            | Some tree' -> iter tree' (i+1)
            end;
            match arr.(i) with
            | Var -> ()  (* only variable does it *)
            | Const s ->
              (* iterate on the subtree with same symbol, if present *)
              try
                let tree' = ConstTbl.find tree.sub s in
                iter tree' (i+1)
              with Not_found -> ()
            end
      in
      iter tree 0

    let rec iter t f =
      (match t.var with | None -> () | Some t' -> iter t' f);
      (match t.data with | None -> () | Some set ->
        TermDataTbl.iter (fun (t,data) () -> f t data) set);
      ConstTbl.iter
        (fun _ t' -> iter t' f)
        t.sub

    let rec size t =
      let s = match t.var with | None -> 0 | Some t' -> size t' in
      let s = match t.data with
        | None -> s
        | Some set -> TermDataTbl.length set + s
      in
      ConstTbl.fold
        (fun _ t' s -> size t' + s)
        t.sub s
  end

  (** {Rewriting} *)

  module TermIndex = Index(struct
    type t = T.t
    let equal = are_alpha_equiv
    let hash = T.hash_novar
  end)

  module Rewriting = struct
    type rule = T.t * T.t

    type t = {
      mutable idx : TermIndex.t;
    }

    let create () = {
      idx = TermIndex.empty ();
    }

    let copy trs = { idx = TermIndex.copy trs.idx; }

    let add trs (l,r) =
      trs.idx <- TermIndex.add trs.idx l r

    let rec add_list trs l = match l with
      | [] -> ()
      | hd::l' ->
        add trs hd;
        add_list trs l'

    let to_list trs =
      let acc = ref [] in
      TermIndex.iter trs.idx
        (fun l r -> acc := (l,r) :: !acc);
      !acc

    exception RewriteInto of T.t * Subst.t * scope

    let rec rewrite_root trs t =
      match t with
      | T.Var _ -> t
      | T.Apply _ ->
        try
          TermIndex.generalizations trs.idx 1 t 0
            (fun r subst -> raise (RewriteInto (r, subst, 1)));
          t  (* didn't fire *)
        with RewriteInto (r, subst, scope) ->
          let t' = Subst.eval subst ~renaming:Subst.__dummy_renaming r scope in
          (* rewrite again *)
          rewrite_root trs t'

    (* TODO: more efficient rewriting *)
    let rec rewrite trs t = match t with
      | T.Var _ -> t
      | T.Apply (_, [| |]) -> rewrite_root trs t
      | T.Apply (s, arr) ->
        let arr' = Array.map (rewrite trs) arr in
        rewrite_root trs (T.mk_apply s arr')
  end

  (** {2 DB} *)

  (* TODO: aggregate {b functions} that collapse all their arguments
            into a constant (e.g., sum, average, max, min).
            Plug this into [slg_complete_aggregate]. *)

  (* TODO: dependency graph to check whether program is stratified *)

  (* TODO: reification of DB, with open(db) predicate that evaluates the rest
          of the clause in the scope of the given DB (parent: current context)*)

  (* TODO: on-disk DB, for instance append-only set of Bencode records?
          see the dict format google uses for bigtable *)

  exception NonStratifiedProgram

  module DB = struct
    type interpreter = T.t -> C.t list
      (** Interpreted predicate *)

    module ClauseIndex = Index(struct
      type t = C.t
      let equal = clause_are_alpha_equiv
      let hash = C.hash_novar
    end)

    type t = {
      mutable rules : ClauseIndex.t;  (* clauses with non null body *)
      mutable facts : TermIndex.t;  (* set of facts *)
      interpreters : interpreter list ConstTbl.t;  (* constants -> interpreters *)
      builtin : BuiltinFun.map;
      mutable help : string list;
      parent : t option;  (* for further query *)
    }

    let create ?parent () =
      let db = {
        rules = ClauseIndex.empty ();
        facts = TermIndex.empty ();
        interpreters = ConstTbl.create 7;
        builtin = BuiltinFun.create ();
        help = [];
        parent;
      } in
      db

    let rec copy db =
      let rules = ClauseIndex.copy db.rules in
      let facts = TermIndex.copy db.facts in
      let interpreters = ConstTbl.copy db.interpreters in
      let parent = match db.parent with
        | None -> None
        | Some db' -> Some (copy db')
      in
      { db with rules; facts; parent; interpreters; }

    let clear db =
      ClauseIndex.clear db.rules;
      TermIndex.clear db.facts;
      ConstTbl.clear db.interpreters;
      BuiltinFun.clear db.builtin;
      db.help <- [];
      ()

    let add_fact db t =
      db.facts <- TermIndex.add db.facts t t

    let add_facts db l = List.iter (fun f -> add_fact db f) l

    let add_clause db c =
      match c.C.body with
      | [] -> add_fact db c.C.head
      | _::_ -> db.rules <- ClauseIndex.add db.rules c.C.head c

    let add_clauses db l = List.iter (fun c -> add_clause db c) l

    let builtin_funs db = db.builtin

    let add_builtin db c f = BuiltinFun.add db.builtin c f

    let rec eval db t =
      let t' = BuiltinFun.eval db.builtin t in
      if t == t'
        (* try with parent DB, may have more success *)
        then match db.parent with
          | None -> t'
          | Some db' -> eval db' t'
        else eval db t'

    let interpret ?help db c inter =
      let help = match help with
      | None -> Printf.sprintf "<symbol %s>" (Const.to_string c)
      | Some h -> h
      in
      db.help <- help :: db.help;
      try
        let l = ConstTbl.find db.interpreters c in
        ConstTbl.replace db.interpreters c (inter :: l)
      with Not_found ->
        ConstTbl.add db.interpreters c [inter]

    let interpret_list db l =
      List.iter (fun (c, help, i) -> interpret ~help db c i) l

    let is_interpreted db c =
      ConstTbl.mem db.interpreters c

    let help db =
      let rec help acc db =
        let acc = List.rev_append db.help acc in
        match db.parent with
        | None -> acc
        | Some db' -> help acc db'
      in help [] db

    let num_facts db = TermIndex.size db.facts

    let num_clauses db = ClauseIndex.size db.rules

    let size db = num_facts db + num_clauses db

    let rec find_facts ?(oc=false) db s_db t s_t k =
      TermIndex.unify ~oc db.facts s_db t s_t k;
      match db.parent with
      | None -> ()
      | Some db' -> find_facts ~oc db' s_db t s_t k

    let rec find_clauses_head ?(oc=false) db s_db t s_t k =
      ClauseIndex.unify ~oc db.rules s_db t s_t k;
      match db.parent with
      | None -> ()
      | Some db' -> find_clauses_head ~oc db' s_db t s_t k

    let rec find_interpretation ?(oc=false) db s_db t s_t k =
      assert (not (T.is_var t));
      let c = T.head_symbol t in
      begin try
        let interpreters = ConstTbl.find db.interpreters c in
        List.iter
          (fun inter ->
            (* call interpreter to get clauses of its extension *)
            let clauses = inter t in
            List.iter
              (fun clause ->
                try
                  let subst = unify ~oc t s_t clause.C.head s_db in
                  k clause subst   (* clause unifies! *)
                with UnifFail -> ())
              clauses)
          interpreters
      with Not_found -> ()
      end;
      match db.parent with
      | None -> ()
      | Some db' -> find_interpretation ~oc db' s_db t s_t k
  end

  (** {2 Query} *)

  module Query = struct
    type t = {
      db : DB.t;
      oc : bool;                              (* perform occur-check? *)
      forest : goal_entry TVariantTbl.t;      (* forest of goals *)
      renaming : Subst.renaming;              (* renaming *)
      mutable stack : action;                 (* stack of actions to do *)
    } (** A global state for querying *)

    and action =
      | Done
      | Enter of goal_entry * action
      | NewClause of goal_entry * C.t * action
      | Aggregate of goal_entry * C.t * T.t * action
      | Exit of goal_entry * action

    and goal_entry = {
      goal : T.t;
      mutable answers : unit T.Tbl.t;         (* set of answers *)
      mutable poss : (goal_entry * C.t) list; (* positive waiters *)
      mutable negs : (goal_entry * C.t) list; (* negative waiters *)
      mutable complete : bool;                (* goal evaluation completed? *)
    } (** Root of the proof forest *)

    (** In a goal entry, [poss] and [negs] are other goals that depend
        on this given goal. IT's the reverse dependency graph.
        When an answer is added to this goal, it's also propagated
        to waiters. *)

    let create ~oc ~db =
      let query = {
        db;
        oc;
        forest = TVariantTbl.create 127;
        stack = Done;
        renaming = Subst.create_renaming ();
      } in
      query

    (* reset and return the renaming *)
    let _get_renaming ~query =
      Subst.reset_renaming query.renaming;
      query.renaming

    (* try to resolve fact with clause's first body literal *)
    let resolve ~query fact clause =
      match clause.C.body with
      | (Lit.LitPos lit) :: body' ->
        begin try
          let subst = unify ~oc:query.oc fact 0 lit 1 in
          let renaming = _get_renaming ~query in
          Some {
            C.head=Subst.eval subst ~renaming clause.C.head 1;
            C.body=Subst.eval_lits subst ~renaming body' 1;
          }
        with UnifFail -> None
        end
      | _ -> None

    let _iter_answers k node =
      T.Tbl.iter (fun t () -> k t) node.answers

    let _get_aggr c = match c.C.body with
      | Lit.LitAggr a :: _ -> a
      | _ -> assert false

    (* main loop for the DFS traversal of SLG resolution *)
    let rec slg_main ~query =
      match query.stack with
      | Done -> ()  (* done *)
      | Enter (goal_entry, stack') ->
        query.stack <- stack';
        (* expand goal entry *)
        slg_subgoal ~query goal_entry;
        slg_main ~query
      | Exit (goal_entry, stack') ->
        query.stack <- stack';
        (* close goal entry *)
        if not goal_entry.complete
          then slg_complete ~query goal_entry;
        slg_main ~query
      | NewClause (goal_entry, clause, stack') ->
        query.stack <- stack';
        (* process new clause in the forest of [goal_entry] *)
        slg_newclause ~query goal_entry clause;
        slg_main ~query
      | Aggregate (goal_entry, clause, subgoal, stack') ->
        query.stack <- stack';
        (* compute the answer of the aggregate *)
        let subgoal_entry = TVariantTbl.find query.forest subgoal in
        slg_complete_aggregate ~query goal_entry clause subgoal_entry.answers;
        slg_main ~query

    (* solve the [goal] by all possible means. Returns the goal_entry
       for this goal. *)
    and slg_solve ~query goal =
      _debug (fun k->k "slg_solve with %a" T.fmt goal);
      try
        TVariantTbl.find query.forest goal
      with Not_found ->
        (* new goal! insert it in the forest, and start solving it *)
        let goal_entry = {
          goal;
          answers = T.Tbl.create 7;
          poss = [];
          negs = [];
          complete = false;
        } in
        TVariantTbl.add query.forest goal goal_entry;
        (* push the goal on stack so that it is solved *)
        query.stack <- Enter (goal_entry, Exit (goal_entry, query.stack));
        goal_entry

    (* [goal_entry] is a fresh goal, resolve it with facts and clauses to
       obtain its answers *)
    and slg_subgoal ~query goal_entry =
      _debug (fun k->k "slg_subgoal with %a" T.fmt goal_entry.goal);
      DB.find_facts ~oc:query.oc query.db 1 goal_entry.goal 0
        (fun _fact subst ->
          let renaming = _get_renaming ~query in
          let answer = Subst.eval subst ~renaming goal_entry.goal 0 in
          (* process the new answer to the goal *)
          slg_answer ~query goal_entry answer);
      (* resolve with rules *)
      DB.find_clauses_head ~oc:query.oc query.db 1 goal_entry.goal 0
        (fun clause subst ->
          let renaming = _get_renaming ~query in
          let clause' = Subst.eval_clause subst ~renaming clause 1 in
          (* add a new clause to the forest of [goal] *)
          query.stack <- NewClause (goal_entry, clause', query.stack));
      (* resolve with interpreters *)
      DB.find_interpretation ~oc:query.oc query.db 1 goal_entry.goal 0
        (fun clause subst ->
          let renaming = _get_renaming ~query in
          let clause' = Subst.eval_clause subst ~renaming clause 1 in
          (* add a new clause to the forest of [goal] *)
          query.stack <- NewClause (goal_entry, clause', query.stack));
      ()

    (* called when a new clause appears in the forest of [goal] *)
    and slg_newclause ~query goal_entry clause =
      _debug (fun k->k "slg_newclause with %a and clause %a" T.fmt goal_entry.goal C.fmt clause);
      match clause.C.body with
      | [] ->
        (* new fact (or clause with only delayed lits) *)
        slg_answer ~query goal_entry clause.C.head
      | (Lit.LitPos subgoal)::_ ->
        (* positive subgoal  *)
        slg_positive ~query goal_entry clause subgoal
      | (Lit.LitNeg neg_subgoal)::body' when T.ground neg_subgoal ->
        (* negative subgoal: if neg_subgoal is solved, continue with clause' *)
        let clause' = {clause with C.body=body'; } in
        slg_negative ~query goal_entry clause' neg_subgoal
      | (Lit.LitAggr a)::_ ->
        (* aggregate: subgoal is a.guard *)
        slg_aggregate ~query goal_entry clause a.Lit.guard
      | _ -> failwith "slg_newclause with non-ground negative goal"

    (* add an answer [ans] to the given [goal]. If [ans] is new,
      insert it into the list of answers of [goal], and update
      positive and negative dependencies *)
    and slg_answer ~query goal_entry ans =
      _debug (fun k->k "slg_answer: %a" T.fmt ans);
      assert (T.ground ans);
      if not goal_entry.complete
      && not (T.Tbl.mem goal_entry.answers ans) then begin
        (* new answer! *)
        T.Tbl.add goal_entry.answers ans ();
        (* it's a fact, negative dependencies must fail *)
        goal_entry.negs <- [];
        (* resolve ans.head with positive dependencies *)
        List.iter
          (fun (goal', clause') ->
            match resolve ~query ans clause' with
            | None -> ()
            | Some clause'' ->
              (* resolution succeeded, add clause to the forest of [goal'] *)
              query.stack <- NewClause (goal', clause'', query.stack))
          goal_entry.poss;
      end

    (* positive subgoal. *)
    and slg_positive ~query goal_entry clause subgoal =
      _debug (fun k->k "slg_positive %a with clause %a, subgoal %a"
        T.fmt goal_entry.goal C.fmt clause T.fmt subgoal);
      let subgoal_entry = slg_solve ~query subgoal in
      (* register for future answers *)
      subgoal_entry.poss <- (goal_entry, clause) :: subgoal_entry.poss;
      (* use current answers *)
      T.Tbl.iter
        (fun ans () -> match resolve ~query ans clause with
          | None -> ()
          | Some clause' ->
            query.stack <- NewClause(goal_entry, clause', query.stack))
        subgoal_entry.answers;
      ()

    (* negative subgoal *)
    and slg_negative ~query goal_entry clause neg_subgoal =
      _debug (fun k->k "slg_negative %a with clause %a, neg_subgoal %a"
        T.fmt goal_entry.goal C.fmt clause T.fmt neg_subgoal);
      let subgoal_entry = slg_solve ~query neg_subgoal in
      if T.Tbl.length subgoal_entry.answers = 0
        then if subgoal_entry.complete
          then
            (* success, the negative goal has been solved *)
            slg_newclause ~query goal_entry clause
          else
            (* negative subgoal can still succeed, wait for completion *)
            subgoal_entry.negs <- (goal_entry, clause) :: subgoal_entry.negs
        else
          () (* failure, there are already positive answers; do nothing *)

    (* subgoal is the guard of the agregate in [clause] *)
    and slg_aggregate ~query goal_entry clause subgoal =
      _debug (fun k->k "slg_aggregate %a with clause %a, subgoal %a"
        T.fmt goal_entry.goal C.fmt clause T.fmt subgoal);
      (* before querying subgoal, prepare to gather its results *)
      query.stack <- Aggregate(goal_entry, clause, subgoal, query.stack);
      (* start subquery, and wait for it to complete *)
      let _ = slg_solve ~query subgoal in
      ()

    (* called exactly once, when the subgoal has completed *)
    and slg_complete_aggregate ~query goal_entry clause answers =
      _debug (fun k->k "slg_complete_aggregate %a with %a (%d ans)"
        T.fmt goal_entry.goal C.fmt clause (T.Tbl.length answers));
      let a = _get_aggr clause in
      (* the group by subst on all vars by [a.var], mapping each
         term (ground except for [a.var] to the set of values for [a.var] *)
      let groups: T.t list T.Tbl.t = T.Tbl.create 24 in
      (* gather all answers, grouped by substitution on variables
         excluding [a.var] *)
      let renaming = _get_renaming ~query in
      (* consistent renaming of [a.var] *)
      let new_var =
        let subst = Subst.bind Subst.empty a.Lit.var 0 a.Lit.var 2 in
        Subst.eval subst ~renaming a.Lit.var 0
      in
      T.Tbl.iter
        (fun t () ->
           (* unify a.guard with the answer, and extract the binding of a.var *)
           let subst =
             try unify a.Lit.guard 0 t 1
             with UnifFail -> failwith "could not unify with var?!"
           in
           (* the value to aggregate *)
           let res = Subst.eval subst ~renaming a.Lit.var 0 in
           assert (T.ground res);
           (* remap [a.var] to [new_var] in [t'] *)
           let subst = Subst.bind subst a.Lit.var 0 a.Lit.var 2 in
           let t' = Subst.eval subst ~renaming a.Lit.guard 0 in
           let l = try T.Tbl.find groups t' with Not_found -> [] in
           T.Tbl.replace groups t' (res::l))
        answers;
      (* now build [subst(goal)] where [a.var] maps to [f(res1…resn)] for
         this particular subst *)
      T.Tbl.iter
        (fun t res_l ->
           assert (res_l <> []);
           let aggr_t_raw = T.mk_apply_l a.Lit.constructor res_l in
           (* eval aggregate *)
           let aggr_t = DB.eval query.db aggr_t_raw in
           _debug (fun k->k "@[slg_aggr.group: t: %a,@ aggr_t: %a,@ eval-into: %a@]"
                      T.fmt t T.fmt aggr_t_raw T.fmt aggr_t);
           try
             let subst = unify ~oc:query.oc a.Lit.guard 0 t 1 in
             (* add [a.left = aggr_t] *)
             let subst = unify ~subst ~oc:query.oc a.Lit.left 0 aggr_t 1 in
             let answer = Subst.eval subst ~renaming goal_entry.goal 0 in
             _debug (fun k->k "@[<2>slg_aggr.answer: %a@ subst: %a@]" T.fmt answer Subst.fmt subst);
             (* add answer *)
             _debug (fun k->k "slg_aggr.yield-answer: %a" T.fmt answer);
             slg_answer ~query goal_entry answer
           with UnifFail ->
             (* answer aggregate does not match left *)
             ()
        )
        groups;
      ()

    (* goal is completely evaluated, no more answers will arrive. *)
    and slg_complete ~query goal_entry =
      _debug (fun k->k "slg_complete %a" T.fmt goal_entry.goal);
      assert (not goal_entry.complete);
      goal_entry.complete <- true;
      if T.Tbl.length goal_entry.answers = 0
        then begin
          (* all negative goals succeed *)
          List.iter
            (fun (goal, clause) -> slg_newclause ~query goal clause)
            goal_entry.negs
        end;
      (* reclaim memory *)
      goal_entry.negs <- [];
      goal_entry.poss <- [];
      ()
  end

  let ask ?(oc=false) ?(with_rules=[]) ?(with_facts=[]) db lit =
    (* create a DB on top of the given one? *)
    let db = match with_rules, with_facts with
    | [], [] -> db
    | _ ->
      let db' = DB.create ~parent:db () in
      DB.add_facts db' with_facts;
      DB.add_clauses db' with_rules;
      db'
    in
    let query = Query.create ~oc ~db in
    (* recursive search for answers *)
    let goal_node = Query.slg_solve ~query lit in
    Query.slg_main ~query;
    (* get fact answers *)
    let l = ref [] in
    Query._iter_answers (fun ans -> l := ans :: !l) goal_node;
    !l

  let ask_lits ?(oc=false) ?(with_rules=[]) ?(with_facts=[]) db vars lits =
    (* special clause that defines the query *)
    let head = T.mk_apply Const.query (Array.of_list vars) in
    let clause = C.mk_clause head lits in
    let with_rules = clause :: with_rules in
    let l = ask ~oc ~with_rules ~with_facts db head in
    l
end

(** {2 Parsing} *)

module type PARSABLE_CONST = sig
  type t

  val of_string : string -> t
  val of_int : int -> t
end

module type PARSE = sig
  type term
  type lit
  type clause

  type name_ctx = (string, term) Hashtbl.t

  val create_ctx : unit -> name_ctx

  val term_of_ast : ctx:name_ctx -> AST.term -> term
  val lit_of_ast : ctx:name_ctx -> AST.literal -> lit
  val clause_of_ast : ?ctx:name_ctx -> AST.clause -> clause
  val clauses_of_ast : ?ctx:name_ctx -> AST.clause list -> clause list

  val parse_chan : in_channel -> [`Ok of clause list | `Error of string]
  val parse_file : string -> [`Ok of clause list | `Error of string]
  val parse_string : string -> [`Ok of clause list | `Error of string]

  val clause_of_string : string -> clause
  val term_of_string : string -> term
end

module MakeParse(C : PARSABLE_CONST)(TD : S with type Const.t = C.t) = struct
  type term = TD.T.t
  type lit = TD.Lit.t
  type clause = TD.C.t

  module A = AST

  type name_ctx = (string, TD.T.t) Hashtbl.t

  let create_ctx () = Hashtbl.create 5

  let _mk_var ~ctx name =
    try
      Hashtbl.find ctx name
    with Not_found ->
      let n = Hashtbl.length ctx in
      let v = TD.T.mk_var n in
      Hashtbl.add ctx name v;
      v

  let rec term_of_ast ~ctx t = match t with
  | A.Apply (s, args) ->
    let args = List.map (term_of_ast ~ctx) args in
    TD.T.mk_apply_l (C.of_string s) args
  | A.Int i ->
    TD.T.mk_const (C.of_int i)
  | A.Var s -> _mk_var ~ctx s
  and lit_of_ast ~ctx lit =
    match lit with
    | A.LitPos t -> TD.Lit.mk_pos (term_of_ast ~ctx t)
    | A.LitNeg t -> TD.Lit.mk_neg (term_of_ast ~ctx t)
    | A.LitAggr a ->
      TD.Lit.mk_aggr
        ~constructor:(C.of_string a.A.ag_constructor)
        ~left:(term_of_ast ~ctx a.A.ag_left)
        ~guard:(term_of_ast ~ctx a.A.ag_guard)
        ~var:(_mk_var ~ctx a.A.ag_var)

  let clause_of_ast ?(ctx=Hashtbl.create 3) c = match c with
    | (head, body) ->
      let head = term_of_ast ~ctx head in
      let body = List.map (lit_of_ast ~ctx) body in
      TD.C.mk_clause head body

  let clauses_of_ast ?ctx l = List.map (clause_of_ast ?ctx) l

  let _parse ~msg lexbuf =
    try
      let decls = Parser.parse_file Lexer.token lexbuf in
      `Ok (clauses_of_ast decls)
    with
    | Parsing.Parse_error ->
      let msg = A.error_to_string msg lexbuf in
      `Error msg
    | Failure msg -> `Error msg

  let parse_chan ic = _parse ~msg:"error while parsing <channel>" (Lexing.from_channel ic)

  let parse_file f =
    let ic = open_in f in
    try
      let res = _parse ~msg:("error while parsing " ^ f) (Lexing.from_channel ic) in
      close_in ic;
      res
    with e ->
      close_in ic;
      `Error (Printexc.to_string e)

  let parse_string s = _parse ~msg:"error while parsing string" (Lexing.from_string s)

  let clause_of_string s =
    try
      let lexbuf = Lexing.from_string s in
      let ast = Parser.parse_clause Lexer.token lexbuf in
      clause_of_ast ast
    with Parsing.Parse_error -> failwith "clause_of_string: parse error"

  let term_of_string s =
    try
      let lexbuf = Lexing.from_string s in
      let ast = Parser.parse_term Lexer.token lexbuf in
      let ctx = create_ctx () in
      term_of_ast ~ctx ast
    with Parsing.Parse_error -> failwith "term_of_string: parse error"
end

(** {2 Default Implementation with Strings} *)

type const =
  | Int of int
  | String of string

module Default = struct
  module TD = Make(struct
    type t = const
    let equal a b = a = b
    let hash a = Hashtbl.hash a
    let to_string a = match a with
      | String s -> s
      | Int i -> string_of_int i
    let of_string s = String s
    let query = String ""
  end)

  include TD

  include MakeParse(struct
    type t = const
    let of_string s = String s
    let of_int i = Int i
  end)(TD)

  let default_interpreters =
    let _less goal =
      _debug (fun k->k "call less with %a" T.fmt goal);
      match goal with
      | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |])
        when a < b -> [ C.mk_fact goal ]
      | _ -> []
    and _lesseq goal = match goal with
      | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |])
        when a <= b -> [ C.mk_fact goal ]
      | _ -> []
    and _greater goal = match goal with
      | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |])
        when a > b -> [ C.mk_fact goal ]
      | _ -> []
    and _greatereq goal = match goal with
      | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |])
        when a >= b -> [ C.mk_fact goal ]
      | _ -> []
    and _eq goal = match goal with
      | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |])
        when a = b -> [ C.mk_fact goal ]
      | _ -> []
    and _neq goal = match goal with
      | T.Apply (_, [| T.Apply (a, [||]); T.Apply (b, [||]) |])
        when a <> b -> [ C.mk_fact goal ]
      | _ -> []
    and _print goal =
      begin match goal with
      | T.Apply (_, [| a |]) when T.ground a ->
        Printf.printf "> %a\n" T.pp a;
      | _ -> ()
      end;
      [ C.mk_fact goal ]
    (* given a list of arguments, "replace" the goal by any of its arguments.
       this allow arguments (variables...) to get to the proposition level *)
    and _eval goal = match goal with
      | T.Apply (String "eval", subgoals) ->
        (* for each goal \in subgoals, add a clause  goal :- subgoal *)
        Array.fold_left
          (fun acc sub -> C.mk_clause goal [Lit.mk_pos sub] :: acc)
          [] subgoals
      | _ -> []
    in
    [ String "lt", "lt(a,b): true if a < b", _less
    ; String "<", "a < b", _less
    ; String "le", "leq(a,b): true if a <= b", _lesseq
    ; String "<=", "a <= b", _lesseq
    ; String "gt", "gt(a,b): true if a > b", _greater
    ; String ">", "a > b", _greater
    ; String "ge", "geq(a, b): true if a >= b", _greatereq
    ; String ">=", "a >= b", _greatereq
    ; String "eq", "eq(a,b): true if a = b", _eq
    ; String "=", "=", _eq
    ; String "neq", "neq(a, b): true if a != b", _neq
    ; String "!=", "!=", _neq
    ; String "print", "print(a): print a term on stdout", _print
    ; String "eval", "eval(*goals): add eval(goals) :- g for each g in goals", _eval
    ]

  let _sum t =
    match t with
    | T.Apply (_, arr) ->
      begin try
        let x = Array.fold_left
          (fun x t' -> match t' with
            | T.Apply (Int i, [| |]) -> i+x
            | _ -> raise Exit)
          0 arr
        in
        Some (T.mk_const (Int x))
      with Exit -> None
      end
    | _ -> None

  let builtin =
    [ String "sum", _sum
    ]

  let setup_default db =
    DB.interpret_list db default_interpreters;
    BuiltinFun.add_list (DB.builtin_funs db) builtin;
    ()
end
OCaml

Innovation. Community. Security.