package data-encoding

  1. Overview
  2. Docs
Library of JSON and binary encoding combinators

Install

Dune Dependency

Authors

Maintainers

Sources

data-encoding-v0.4.tar.gz
md5=7b687e25619637d40d2bbcd2c21b00c2
sha512=65e33b1a56e9058a2e9c7f3dc18cb72c21270e0e5b9584fe856285d16e4cb8e98adac826373d4109a5e080486ec31cdd9870b402249ac5d55c7b0de6ffb68b0a

doc/src/data-encoding/binary_slicer.ml.html

Source file binary_slicer.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
(*****************************************************************************)
(*                                                                           *)
(* Open Source License                                                       *)
(* Copyright (c) 2021 Nomadic Labs. <contact@nomadic-labs.com>               *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

open Binary_error_types

let raise e = raise (Read_error e)

type slice = {name: string; value: string; pretty_printed: string}

(* state management *)

type slicer_state = {
  buffer: string;
  mutable offset: int;
  mutable remaining_bytes: int;
  mutable allowed_bytes: int option;
  mutable slices: slice list;
}

let make_slicer_state buffer ~offset ~length =
  if length < 0 || length > String.length buffer - offset then None
  else
    Some
      {
        buffer;
        offset;
        remaining_bytes = length;
        allowed_bytes = None;
        slices = [];
      }

let check_allowed_bytes state size =
  match state.allowed_bytes with
  | Some len when len < size -> raise Size_limit_exceeded
  | Some len -> Some (len - size)
  | None -> None

let check_remaining_bytes state size =
  if state.remaining_bytes < size then raise Not_enough_data;
  state.remaining_bytes - size

let read_atom ?(pp = fun _ -> "") size conv name state =
  let offset = state.offset in
  state.remaining_bytes <- check_remaining_bytes state size;
  state.allowed_bytes <- check_allowed_bytes state size;
  state.offset <- state.offset + size;
  let value = String.sub state.buffer offset size in
  let result = conv state.buffer offset in
  state.slices <- {name; value; pretty_printed = pp result} :: state.slices;
  result

(** Reader for all the atomic types. *)
module Atom = struct
  let read_byte state =
    let size = Binary_size.int8 in
    let offset = state.offset in
    state.remaining_bytes <- check_remaining_bytes state size;
    state.allowed_bytes <- check_allowed_bytes state size;
    state.offset <- state.offset + size;
    TzEndian.get_int8_string state.buffer offset

  let uint8 =
    read_atom ~pp:string_of_int Binary_size.uint8 TzEndian.get_uint8_string

  let uint16 =
    read_atom ~pp:string_of_int Binary_size.int16 TzEndian.get_uint16_string

  let int8 =
    read_atom ~pp:string_of_int Binary_size.int8 TzEndian.get_int8_string

  let int16 =
    read_atom ~pp:string_of_int Binary_size.int16 TzEndian.get_int16_string

  let int32 =
    read_atom ~pp:Int32.to_string Binary_size.int32 TzEndian.get_int32_string

  let int64 =
    read_atom ~pp:Int64.to_string Binary_size.int64 TzEndian.get_int64_string

  let float =
    read_atom ~pp:string_of_float Binary_size.float TzEndian.get_double_string

  let bool state name =
    read_atom
      ~pp:(fun x -> string_of_bool (x <> 0))
      Binary_size.int8
      TzEndian.get_int8_string
      state
      name
    <> 0

  let uint30 =
    read_atom ~pp:string_of_int Binary_size.uint30 @@ fun buffer ofs ->
    let v = Int32.to_int (TzEndian.get_int32_string buffer ofs) in
    if v < 0 then raise (Invalid_int {min = 0; v; max = (1 lsl 30) - 1});
    v

  let int31 =
    read_atom ~pp:string_of_int Binary_size.int31 @@ fun buffer ofs ->
    Int32.to_int (TzEndian.get_int32_string buffer ofs)

  let int = function
    | `Int31 -> int31
    | `Int16 -> int16
    | `Int8 -> int8
    | `Uint30 -> uint30
    | `Uint16 -> uint16
    | `Uint8 -> uint8

  let ranged_int ~minimum ~maximum name state =
    let read_int =
      match Binary_size.range_to_size ~minimum ~maximum with
      | `Int8 -> int8
      | `Int16 -> int16
      | `Int31 -> int31
      | `Uint8 -> uint8
      | `Uint16 -> uint16
      | `Uint30 -> uint30
    in
    let ranged = read_int name state in
    let ranged = if minimum > 0 then ranged + minimum else ranged in
    if not (minimum <= ranged && ranged <= maximum) then
      raise (Invalid_int {min = minimum; v = ranged; max = maximum});
    ranged

  let ranged_float ~minimum ~maximum name state =
    let ranged = float name state in
    if not (minimum <= ranged && ranged <= maximum) then
      raise (Invalid_float {min = minimum; v = ranged; max = maximum});
    ranged

  let rec read_z res value bit_in_value name state initial_offset =
    let byte = read_byte state in
    let value = value lor ((byte land 0x7F) lsl bit_in_value) in
    let bit_in_value = bit_in_value + 7 in
    let (bit_in_value, value) =
      if bit_in_value < 8 then (bit_in_value, value)
      else (
        Buffer.add_char res (Char.unsafe_chr (value land 0xFF));
        (bit_in_value - 8, value lsr 8) )
    in
    if byte land 0x80 = 0x80 then
      read_z res value bit_in_value name state initial_offset
    else (
      if bit_in_value > 0 then Buffer.add_char res (Char.unsafe_chr value);
      if byte = 0x00 then raise Trailing_zero;
      let result = Z.of_bits (Buffer.contents res) in
      let pretty_printed = Z.to_string result in
      let value =
        String.sub state.buffer initial_offset (state.offset - initial_offset)
      in
      state.slices <- {name; value; pretty_printed} :: state.slices;
      result )

  let n name state =
    let initial_offset = state.offset in
    let first = read_byte state in

    let first_value = first land 0x7F in
    if first land 0x80 = 0x80 then
      read_z (Buffer.create 100) first_value 7 name state initial_offset
    else
      let result = Z.of_int first_value in
      let pretty_printed = Z.to_string result in
      let value =
        String.sub state.buffer initial_offset (state.offset - initial_offset)
      in
      state.slices <- {name; value; pretty_printed} :: state.slices;
      result

  let z name state =
    let initial_offset = state.offset in
    let first = read_byte state in

    let first_value = first land 0x3F in
    let sign = first land 0x40 <> 0 in
    if first land 0x80 = 0x80 then
      let n =
        read_z (Buffer.create 100) first_value 6 name state initial_offset
      in
      if sign then Z.neg n else n
    else
      let n = Z.of_int first_value in
      if sign then Z.neg n else n

  let string_enum arr name state =
    let read_index =
      match Binary_size.enum_size arr with
      | `Uint8 -> uint8
      | `Uint16 -> uint16
      | `Uint30 -> uint30
    in
    let index = read_index name state in
    if index >= Array.length arr then raise No_case_matched;
    arr.(index)

  let fixed_length_bytes length =
    read_atom length @@ fun buf ofs ->
    Bytes.unsafe_of_string @@ String.sub buf ofs length

  let fixed_length_string length =
    read_atom ~pp:(Format.sprintf "%S") length @@ fun buf ofs ->
    String.sub buf ofs length

  let tag = function `Uint8 -> uint8 | `Uint16 -> uint16
end

(** Main recursive reading function, in continuation passing style. *)
let rec read_rec :
    type ret. ret Encoding.t -> ?name:string -> slicer_state -> ret =
 fun e ?name state ->
  let ( !! ) x =
    match name with None -> x | Some name -> Format.sprintf "%S (%s)" name x
  in
  let open Encoding in
  match e.encoding with
  | Null -> ()
  | Empty -> ()
  | Constant _ -> ()
  | Ignore -> ()
  | Bool -> Atom.bool !!"bool" state
  | Int8 -> Atom.int8 !!"int8" state
  | Uint8 -> Atom.uint8 !!"uint8" state
  | Int16 -> Atom.int16 !!"int16" state
  | Uint16 -> Atom.uint16 !!"uint16" state
  | Int31 -> Atom.int31 !!"int31" state
  | Int32 -> Atom.int32 !!"int32" state
  | Int64 -> Atom.int64 !!"int64" state
  | N -> Atom.n !!"N" state
  | Z -> Atom.z !!"Z" state
  | Float -> Atom.float !!"float" state
  | Bytes (`Fixed n) -> Atom.fixed_length_bytes n !!"bytes" state
  | Bytes `Variable ->
      Atom.fixed_length_bytes state.remaining_bytes !!"bytes" state
  | String (`Fixed n) -> Atom.fixed_length_string n !!"string" state
  | String `Variable ->
      Atom.fixed_length_string state.remaining_bytes !!"string" state
  | Padded (e, n) ->
      let v = read_rec e ?name state in
      ignore (Atom.fixed_length_string n "padding" state : string);
      v
  | RangedInt {minimum; maximum} ->
      Atom.ranged_int ~minimum ~maximum !!"ranged int" state
  | RangedFloat {minimum; maximum} ->
      Atom.ranged_float ~minimum ~maximum !!"ranged float" state
  | String_enum (_, arr) -> Atom.string_enum arr !!"enum" state
  | Array (max_length, e) ->
      let max_length = match max_length with Some l -> l | None -> max_int in
      let l = read_list List_too_long max_length e ?name state in
      Array.of_list l
  | List (max_length, e) ->
      let max_length = match max_length with Some l -> l | None -> max_int in
      read_list Array_too_long max_length e ?name state
  | Obj (Req {encoding = e; name; _}) -> read_rec e ~name state
  | Obj (Dft {encoding = e; name; _}) -> read_rec e ~name state
  | Obj (Opt {kind = `Dynamic; encoding = e; name; _}) ->
      let present = Atom.bool (name ^ " presence flag") state in
      if not present then None else Some (read_rec e ~name:!!name state)
  | Obj (Opt {kind = `Variable; encoding = e; name; _}) ->
      if state.remaining_bytes = 0 then None
      else Some (read_rec e ~name:!!name state)
  | Objs {kind = `Fixed sz; left; right} ->
      ignore (check_remaining_bytes state sz : int);
      ignore (check_allowed_bytes state sz : int option);
      let left = read_rec left ?name state in
      let right = read_rec right ?name state in
      (left, right)
  | Objs {kind = `Dynamic; left; right} ->
      let left = read_rec left ?name state in
      let right = read_rec right ?name state in
      (left, right)
  | Objs {kind = `Variable; left; right} ->
      read_variable_pair left right ?name state
  | Tup e -> read_rec e ?name state
  | Tups {kind = `Fixed sz; left; right} ->
      ignore (check_remaining_bytes state sz : int);
      ignore (check_allowed_bytes state sz : int option);
      let left = read_rec left ?name state in
      let right = read_rec right ?name state in
      (left, right)
  | Tups {kind = `Dynamic; left; right} ->
      let left = read_rec left ?name state in
      let right = read_rec right ?name state in
      (left, right)
  | Tups {kind = `Variable; left; right} ->
      read_variable_pair left right ?name state
  | Conv {inj; encoding; _} -> inj (read_rec encoding ?name state)
  | Union {tag_size; cases; _} ->
      let ctag = Atom.tag tag_size "DUMMY" state in
      let (Case {encoding; inj; _}) =
        try
          List.find
            (function
              | Case {tag = tg; title; _} ->
                  if Uint_option.is_some tg && Uint_option.get tg = ctag then (
                    let {value; pretty_printed; _} = List.hd state.slices in
                    state.slices <-
                      {name = title ^ " tag"; value; pretty_printed}
                      :: List.tl state.slices;
                    true )
                  else false)
            cases
        with Not_found -> raise (Unexpected_tag ctag)
      in
      inj (read_rec encoding ?name state)
  | Dynamic_size {kind; encoding = e} ->
      let sz = Atom.int kind "dynamic length" state in
      let remaining = check_remaining_bytes state sz in
      state.remaining_bytes <- sz;
      ignore (check_allowed_bytes state sz : int option);
      let v = read_rec e ?name state in
      if state.remaining_bytes <> 0 then raise Extra_bytes;
      state.remaining_bytes <- remaining;
      v
  | Check_size {limit; encoding = e} ->
      let old_allowed_bytes = state.allowed_bytes in
      let limit =
        match state.allowed_bytes with
        | None -> limit
        | Some current_limit -> min current_limit limit
      in
      state.allowed_bytes <- Some limit;
      let v = read_rec e ?name state in
      let allowed_bytes =
        match old_allowed_bytes with
        | None -> None
        | Some old_limit ->
            let remaining =
              match state.allowed_bytes with
              | None -> assert false
              | Some remaining -> remaining
            in
            let read = limit - remaining in
            Some (old_limit - read)
      in
      state.allowed_bytes <- allowed_bytes;
      v
  | Describe {encoding = e; id; _} -> read_rec e ~name:!!id state
  | Splitted {encoding = e; _} -> read_rec e ?name state
  | Mu {fix; name; _} -> read_rec (fix e) ~name:!!name state
  | Delayed f -> read_rec (f ()) ?name state

and read_variable_pair :
    type left right.
    left Encoding.t ->
    right Encoding.t ->
    ?name:string ->
    slicer_state ->
    left * right =
 fun e1 e2 ?name state ->
  match (Encoding.classify e1, Encoding.classify e2) with
  | ((`Dynamic | `Fixed _), `Variable) ->
      let left = read_rec e1 ?name state in
      let right = read_rec e2 ?name state in
      (left, right)
  | (`Variable, `Fixed n) ->
      if n > state.remaining_bytes then raise Not_enough_data;
      state.remaining_bytes <- state.remaining_bytes - n;
      let left = read_rec e1 ?name state in
      assert (state.remaining_bytes = 0);
      state.remaining_bytes <- n;
      let right = read_rec e2 ?name state in
      assert (state.remaining_bytes = 0);
      (left, right)
  | _ -> assert false

and read_list :
    type a.
    read_error -> int -> a Encoding.t -> ?name:string -> slicer_state -> a list
    =
 fun error max_length e ?name state ->
  let rec loop max_length acc =
    if state.remaining_bytes = 0 then List.rev acc
    else if max_length = 0 then raise error
    else
      let name = Option.map (fun name -> name ^ " element") name in
      let v = read_rec e ?name state in
      loop (max_length - 1) (v :: acc)
  in
  loop max_length []

(** Various entry points *)

let slice_exn encoding state =
  let _ = read_rec encoding state in
  List.rev state.slices

let slice encoding state =
  try Ok (slice_exn encoding state) with Read_error e -> Error e

let slice_opt encoding state =
  try Some (slice_exn encoding state) with Read_error _ -> None

let slice_string_exn encoding buffer =
  let len = String.length buffer in
  let state =
    {
      buffer;
      offset = 0;
      slices = [];
      remaining_bytes = len;
      allowed_bytes = None;
    }
  in
  let _ = read_rec encoding state in
  if state.offset <> len then raise Extra_bytes;
  List.rev state.slices

let slice_string encoding buffer =
  try Ok (slice_string_exn encoding buffer) with Read_error e -> Error e

let slice_string_opt encoding buffer =
  try Some (slice_string_exn encoding buffer) with Read_error _ -> None

let slice_bytes e b = slice_string e (Bytes.unsafe_to_string b)

let slice_bytes_opt e b = slice_string_opt e (Bytes.unsafe_to_string b)

let slice_bytes_exn e b = slice_string_exn e (Bytes.unsafe_to_string b)
OCaml

Innovation. Community. Security.