package ctypes
Combinators for binding to C libraries without writing any C
Install
Dune Dependency
Authors
Maintainers
Sources
0.23.0.tar.gz
sha256=cae47d815b27dd4c824a007f1145856044542fe2588d23a443ef4eefec360bf1
md5=b1af973ec9cf7867a63714e92df82f2a
doc/src/ctypes.stubs/cstubs_c_language.ml.html
Source file cstubs_c_language.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
(* * Copyright (c) 2014 Jeremy Yallop. * * This file is distributed under the terms of the MIT License. * See the file LICENSE for details. *) (* C code representation. *) [@@@warning "-9"] open Ctypes_static let fresh_var = let var_counter = ref 0 in fun ?(prefix="x") () -> incr var_counter; Printf.sprintf "%s%d" prefix !var_counter type ty = Ty : _ typ -> ty type tfn = Fn : _ fn -> tfn type fieldname = string type cfunction = { fname: string; allocates: bool; reads_ocaml_heap: bool; fn: tfn; } type cglobal = { name: string; typ: ty; references_ocaml_heap: bool; } type clocal = [ `Local of string * ty ] type cvar = [ clocal | `Global of cglobal ] type storage_class = [`Static | `Extern] type cconst = [ `Int of Signed.sint ] type cexp = [ cconst | clocal | `Cast of ty * cexp | `Addr of cvar ] type clvalue = [ cvar | `Index of clvalue * cexp | `Field of clvalue * fieldname | `PointerField of clvalue * fieldname ] type camlop = [ `CAMLparam0 | `CAMLlocalN of cexp * cexp | `CAMLdrop ] type ceff = [ cexp | camlop | `Global of cglobal | `App of cfunction * cexp list | `Index of ceff * cexp | `Deref of cexp | `DerefField of cexp * fieldname ] type cbind = clocal * ceff type ccomp = [ ceff | `CAMLparam of string list * ccomp | `LetConst of clocal * cconst * ccomp | `LetAssign of clvalue * ceff * ccomp | `CAMLreturnT of ty * cexp | `Return of ty * cexp | `Let of cbind * ccomp ] type cfundec = [ `Fundec of string * (string * ty) list * ty ] type cfundef = [ `Function of cfundec * ccomp * storage_class ] let rec return_type : type a. a fn -> ty = function | Function (_, f) -> return_type f | Returns t -> Ty t let args : type a. a fn -> (string * ty) list = fun fn -> let rec loop : type a. a Ctypes.fn -> (string * ty) list = function | Ctypes_static.Function (ty, fn) -> (fresh_var (), Ty ty) :: loop fn | Ctypes_static.Returns _ -> [] in loop fn module Type_C = struct let cexp : cexp -> ty = function | `Int _ -> Ty sint | `Local (_, ty) -> ty | `Cast (Ty ty, _) -> Ty ty | `Addr (`Global { typ = Ty ty }) -> Ty (Pointer ty) | `Addr (`Local (_, Ty ty)) -> Ty (Pointer ty) let camlop : camlop -> ty = function | `CAMLparam0 | `CAMLlocalN _ | `CAMLdrop -> Ty Void let rec ceff : ceff -> ty = function | #cexp as e -> cexp e | #camlop as o -> camlop o | `Global { typ } -> typ | `App ({ fn = Fn f }, _) -> return_type f | `Index (e, _) -> reference_ceff e | `Deref e -> reference_ceff (e :> ceff) | `DerefField (e, f) -> field_ceff (e :> ceff) f and reference_ceff : ceff -> ty = fun e -> begin match ceff e with | Ty (Pointer ty) -> Ty ty | Ty (Array (ty, _)) -> Ty ty | Ty t -> Cstubs_errors.internal_error "dereferencing expression of non-pointer type %s" (Ctypes.string_of_typ t) end and field_ceff : ceff -> fieldname -> ty = fun e f -> begin match ceff e with Ty (Pointer (Struct { fields } as s)) -> lookup_field f s fields | Ty t -> Cstubs_errors.internal_error "accessing a field %s in an expression of type %s, which is not a pointer-to-struct type" f (Ctypes.string_of_typ t) end and lookup_field : type s a. string -> a typ -> s boxed_field list -> ty = fun f ty fields -> match fields with [] -> Cstubs_errors.internal_error "field %s not found in struct %s" f (Ctypes.string_of_typ ty) | BoxedField { ftype; fname } :: _ when fname = f -> Ty ftype | _ :: fields -> lookup_field f ty fields let rec ccomp : ccomp -> ty = function | #cexp as e -> cexp e | #ceff as e -> ceff e | `CAMLparam (_, c) -> ccomp c | `Let (_, c) | `LetConst (_, _, c) -> ccomp c | `LetAssign (_, _, c) -> ccomp c | `CAMLreturnT (ty, _) -> ty | `Return (ty, _) -> ty end let value : [`value] abstract typ = abstract ~name:"value" ~size:0 ~alignment:0 let reader fname fn = { fname; allocates = false; reads_ocaml_heap = true; fn = Fn fn } let conser fname fn = { fname; allocates = true; reads_ocaml_heap = false; fn = Fn fn } let immediater fname fn = { fname; allocates = false; reads_ocaml_heap = false; fn = Fn fn } module Unchecked_function_types = struct (* We're using an abstract type ([value]) as an argument and return type, so we'll use the [Function] and [Return] constructors directly. The smart constructors [@->] and [returning] would reject the abstract type. *) let (@->) f t = Function (f, t) let returning t = Returns t end let prim_prj : type a. a Ctypes_primitive_types.prim -> _ = let open Unchecked_function_types in let open Ctypes_primitive_types in function | Char -> reader "Int_val" (value @-> returning int) | Schar -> reader "Int_val" (value @-> returning int) | Uchar -> reader "Uint8_val" (value @-> returning uint8_t) | Bool -> reader "Bool_val" (value @-> returning bool) | Short -> reader "Int_val" (value @-> returning int) | Int -> reader "Long_val" (value @-> returning int) | Long -> reader "ctypes_long_val" (value @-> returning long) | Llong -> reader "ctypes_llong_val" (value @-> returning llong) | Ushort -> reader "ctypes_ushort_val" (value @-> returning ushort) | Sint -> reader "ctypes_sint_val" (value @-> returning sint) | Uint -> reader "ctypes_uint_val" (value @-> returning uint) | Ulong -> reader "ctypes_ulong_val" (value @-> returning ulong) | Ullong -> reader "ctypes_ullong_val" (value @-> returning ullong) | Size_t -> reader "ctypes_size_t_val" (value @-> returning size_t) | Int8_t -> reader "Int_val" (value @-> returning int) | Int16_t -> reader "Int_val" (value @-> returning int) | Int32_t -> reader "Int32_val" (value @-> returning int32_t) | Int64_t -> reader "Int64_val" (value @-> returning int64_t) | Uint8_t -> reader "Uint8_val" (value @-> returning uint8_t) | Uint16_t -> reader "Uint16_val" (value @-> returning uint16_t) | Uint32_t -> reader "Uint32_val" (value @-> returning uint32_t) | Uint64_t -> reader "Uint64_val" (value @-> returning uint64_t) | Camlint -> reader "Long_val" (value @-> returning int) | Nativeint -> reader "Nativeint_val" (value @-> returning nativeint) | Float -> reader "Double_val" (value @-> returning double) | Double -> reader "Double_val" (value @-> returning double) | LDouble -> reader "ctypes_ldouble_val" (value @-> returning ldouble) | Complex32 -> reader "ctypes_float_complex_val" (value @-> returning complex32) | Complex64 -> reader "ctypes_double_complex_val" (value @-> returning complex64) | Complexld -> reader "ctypes_ldouble_complex_val" (value @-> returning complexld) let prim_inj : type a. a Ctypes_primitive_types.prim -> _ = let open Unchecked_function_types in let open Ctypes_primitive_types in function | Char -> immediater "Ctypes_val_char" (int @-> returning value) | Schar -> immediater "Val_int" (int @-> returning value) | Uchar -> immediater "Integers_val_uint8" (uint8_t @-> returning value) | Bool -> immediater "Val_bool" (bool @-> returning value) | Short -> immediater "Val_int" (int @-> returning value) | Int -> immediater "Val_long" (int @-> returning value) | Long -> conser "ctypes_copy_long" (long @-> returning value) | Llong -> conser "ctypes_copy_llong" (llong @-> returning value) | Ushort -> conser "ctypes_copy_ushort" (ushort @-> returning value) | Sint -> conser "ctypes_copy_sint" (sint @-> returning value) | Uint -> conser "ctypes_copy_uint" (uint @-> returning value) | Ulong -> conser "ctypes_copy_ulong" (ulong @-> returning value) | Ullong -> conser "ctypes_copy_ullong" (ullong @-> returning value) | Size_t -> conser "ctypes_copy_size_t" (size_t @-> returning value) | Int8_t -> immediater "Val_int" (int @-> returning value) | Int16_t -> immediater "Val_int" (int @-> returning value) | Int32_t -> conser "caml_copy_int32" (int32_t @-> returning value) | Int64_t -> conser "caml_copy_int64" (int64_t @-> returning value) | Uint8_t -> immediater "Integers_val_uint8" (uint8_t @-> returning value) | Uint16_t -> immediater "Integers_val_uint16" (uint16_t @-> returning value) | Uint32_t -> conser "integers_copy_uint32" (uint32_t @-> returning value) | Uint64_t -> conser "integers_copy_uint64" (uint64_t @-> returning value) | Camlint -> immediater "Val_long" (int @-> returning value) | Nativeint -> conser "caml_copy_nativeint" (nativeint @-> returning value) | Float -> conser "caml_copy_double" (double @-> returning value) | Double -> conser "caml_copy_double" (double @-> returning value) | LDouble -> conser "ctypes_copy_ldouble" (ldouble @-> returning value) | Complex32 -> conser "ctypes_copy_float_complex" (complex32 @-> returning value) | Complex64 -> conser "ctypes_copy_double_complex" (complex64 @-> returning value) | Complexld -> conser "ctypes_copy_ldouble_complex" (complexld @-> returning value)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>