package cstruct

  1. Overview
  2. Docs
Access C-like structures directly from OCaml

Install

Dune Dependency

Authors

Maintainers

Sources

cstruct-v5.1.1.tbz
sha256=55d1f42cb85f7872fee499c5ed382aea17b06d55d1709e071d1ba85c7a09fef3
sha512=c3aa9a5a9125a1d022506a76fd7cdf32b21edcdc9df1202d8a9f382d02a28a33fea9a958f79e9302907ade1fce3f166b620c320aed6486e3efcc9a7464379cab

doc/src/cstruct/cstruct.ml.html

Source file cstruct.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
(*
 * Copyright (c) 2012 Anil Madhavapeddy <anil@recoil.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *)

type buffer = (char, Bigarray_compat.int8_unsigned_elt, Bigarray_compat.c_layout) Bigarray_compat.Array1.t

(* Note:
 *
 * We try to maintain the property that no constructed [t] can ever point out of
 * its underlying buffer. This property is guarded by all of the constructing
 * functions and the fact that the type is private, and used by various
 * functions that would otherwise be completely unsafe.
 *
 * Furthermore, no operation on [t] is allowed to extend the view on the
 * underlying Bigarray structure, only narrowing is allowed. The deprecated
 * functions add_len and set_len violate this.
 *
 * All well-intended souls are kindly invited to cross-check that the code
 * indeed maintains this invariant.
 *)

type t = {
  buffer: buffer;
  off   : int;
  len   : int;
}

let pp_t ppf t =
  Format.fprintf ppf "[%d,%d](%d)" t.off t.len (Bigarray_compat.Array1.dim t.buffer)
let string_t ppf str =
  Format.fprintf ppf "[%d]" (String.length str)
let bytes_t ppf str =
  Format.fprintf ppf "[%d]" (Bytes.length str)

let err fmt =
  let b = Buffer.create 20 in                         (* for thread safety. *)
  let ppf = Format.formatter_of_buffer b in
  let k ppf = Format.pp_print_flush ppf (); invalid_arg (Buffer.contents b) in
  Format.kfprintf k ppf fmt

let err_of_bigarray t = err "Cstruct.of_bigarray off=%d len=%d" t
let err_sub t = err "Cstruct.sub: %a off=%d len=%d" pp_t t
let err_shift t = err "Cstruct.shift %a %d" pp_t t
let err_set_len t = err "Cstruct.set_len %a %d" pp_t t
let err_add_len t = err "Cstruct.add_len %a %d" pp_t t
let err_copy t = err "Cstruct.copy %a off=%d len=%d" pp_t t
let err_blit_src src dst =
  err "Cstruct.blit src=%a dst=%a src-off=%d len=%d" pp_t src pp_t dst
let err_blit_dst src dst =
  err "Cstruct.blit src=%a dst=%a dst-off=%d len=%d" pp_t src pp_t dst
let err_blit_from_string_src src dst =
  err "Cstruct.blit_from_string src=%a dst=%a src-off=%d len=%d"
    string_t src pp_t dst
let err_blit_from_string_dst src dst =
  err "Cstruct.blit_from_string src=%a dst=%a dst-off=%d len=%d"
    string_t src pp_t dst
let err_blit_from_bytes_src src dst =
  err "Cstruct.blit_from_bytes src=%a dst=%a src-off=%d len=%d"
    bytes_t src pp_t dst
let err_blit_from_bytes_dst src dst =
  err "Cstruct.blit_from_bytes src=%a dst=%a dst-off=%d len=%d"
    bytes_t src pp_t dst
let err_blit_to_bytes_src src dst =
  err "Cstruct.blit_to_bytes src=%a dst=%a src-off=%d len=%d"
    pp_t src bytes_t dst
let err_blit_to_bytes_dst src dst=
  err "Cstruct.blit_to_bytes src=%a dst=%a dst-off=%d len=%d"
    pp_t src bytes_t dst
let err_invalid_bounds f =
  err "invalid bounds in Cstruct.%s %a off=%d len=%d" f pp_t [@@inline never]
let err_split t = err "Cstruct.split %a start=%d off=%d" pp_t t
let err_iter t = err "Cstruct.iter %a i=%d len=%d" pp_t t

let of_bigarray ?(off=0) ?len buffer =
  let dim = Bigarray_compat.Array1.dim buffer in
  let len =
    match len with
    | None     -> dim - off
    | Some len -> len in
  if off < 0 || len < 0 || off + len < 0 || off + len > dim then err_of_bigarray off len
  else { buffer; off; len }

let to_bigarray buffer =
  Bigarray_compat.Array1.sub buffer.buffer buffer.off buffer.len

let create_unsafe len =
  let buffer = Bigarray_compat.(Array1.create char c_layout len) in
  { buffer ; len ; off = 0 }

let check_bounds t len =
  len >= 0 && Bigarray_compat.Array1.dim t.buffer >= len

let empty = create_unsafe 0

external check_alignment_bigstring : buffer -> int -> int -> bool = "caml_check_alignment_bigstring"

let check_alignment t alignment =
  if alignment > 0 then
    check_alignment_bigstring t.buffer t.off alignment
  else invalid_arg "check_alignment must be positive integer"

type byte = char

let byte (i:int) : byte = Char.chr i
let byte_to_int (b:byte) = int_of_char b

type uint8 = int
type uint16 = int
type uint32 = int32
type uint64 = int64

let debug t =
  let max_len = Bigarray_compat.Array1.dim t.buffer in
  if t.off+t.len > max_len || t.len < 0 || t.off < 0 then (
    Format.printf "ERROR: t.off+t.len=%d %a\n%!" (t.off+t.len) pp_t t;
    assert false;
  ) else
    Format.asprintf "%a" pp_t t

let sub t off len =
  (* from https://github.com/mirage/ocaml-cstruct/pull/245

     Cstruct.sub should select what a programmer intuitively expects a
     sub-cstruct to be. I imagine holding out my hands, with the left
     representing the start offset and the right the end. I think of a
     sub-cstruct as any span within this range. If I move my left hand only to
     the right (new_start >= t.off), and my right hand only to the left
     (new_end <= old_end), and they don't cross (new_start <= new_end), then I
     feel sure the result will be a valid sub-cstruct. And if I violate any one
     of these constraints (e.g. moving my left hand further left), then I feel
     sure that the result wouldn't be something I'd consider to be a sub-cstruct.

     Wrapping considerations in modular arithmetic:

     Note that if x is non-negative, and x + y wraps, then x + y must be
     negative. This is easy to see with modular arithmetic because if y is
     negative then the two arguments will cancel to some degree the result
     cannot be further from zero than one of the arguments. If y is positive
     then x + y can wrap, but even max_int + max_int doesn't wrap all the way to
     zero.

     The three possibly-wrapping operations are:

     new_start = t.off + off. t.off is non-negative so if this wraps then
     new_start will be negative and will fail the new_start >= t.off test.

     new_end = new_start + len. The above test ensures that new_start is
     non-negative in any successful return. So if this wraps then new_end will
     be negative and will fail the new_start <= new_end test.

     old_end = t.off + t.len. This uses only the existing trusted values. It
     could only wrap if the underlying bigarray had a negative length!  *)
  let new_start = t.off + off in
  let new_end = new_start + len in
  let old_end = t.off + t.len in
  if new_start >= t.off && new_end <= old_end && new_start <= new_end then
    { t with off = new_start ; len }
  else
    err_sub t off len

let shift t amount =
  let off = t.off + amount in
  let len = t.len - amount in
  if amount < 0 || amount > t.len || not (check_bounds t (off+len)) then
    err_shift t amount
  else { t with off; len }

let set_len t len =
  if len < 0 || not (check_bounds t (t.off+len)) then err_set_len t len
  else { t with len }

let add_len t len =
  let len = t.len + len in
  if len < 0 || not (check_bounds t (t.off+len)) then err_add_len t len
  else { t with len }


external unsafe_blit_bigstring_to_bigstring : buffer -> int -> buffer -> int -> int -> unit = "caml_blit_bigstring_to_bigstring" [@@noalloc]

external unsafe_blit_string_to_bigstring : string -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc]

external unsafe_blit_bytes_to_bigstring : Bytes.t -> int -> buffer -> int -> int -> unit = "caml_blit_string_to_bigstring" [@@noalloc]

external unsafe_blit_bigstring_to_bytes : buffer -> int -> Bytes.t -> int -> int -> unit = "caml_blit_bigstring_to_string" [@@noalloc]

external unsafe_compare_bigstring : buffer -> int -> buffer -> int -> int -> int = "caml_compare_bigstring" [@@noalloc]

external unsafe_fill_bigstring : buffer -> int -> int -> int -> unit = "caml_fill_bigstring" [@@noalloc]

let copy src srcoff len =
  if len < 0 || srcoff < 0 || src.len - srcoff < len then
    err_copy src srcoff len
  else
    let b = Bytes.create len in
    unsafe_blit_bigstring_to_bytes src.buffer (src.off+srcoff) b 0 len;
    (* The following call is safe, since b is not visible elsewhere. *)
    Bytes.unsafe_to_string b

let blit src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || src.len - srcoff < len then
    err_blit_src src dst srcoff len
  else if dstoff < 0 || dst.len - dstoff < len then
    err_blit_dst src dst dstoff len
  else
    unsafe_blit_bigstring_to_bigstring src.buffer (src.off+srcoff) dst.buffer
      (dst.off+dstoff) len

let blit_from_string src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || dstoff < 0 || String.length src - srcoff < len then
    err_blit_from_string_src src dst srcoff len
  else if dst.len - dstoff < len then
    err_blit_from_string_dst src dst dstoff len
  else
    unsafe_blit_string_to_bigstring src srcoff dst.buffer (dst.off+dstoff) len

let blit_from_bytes src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || dstoff < 0 || Bytes.length src - srcoff < len then
    err_blit_from_bytes_src src dst srcoff len
  else if dst.len - dstoff < len then
    err_blit_from_bytes_dst src dst dstoff len
  else
    unsafe_blit_bytes_to_bigstring src srcoff dst.buffer (dst.off+dstoff) len

let blit_to_bytes src srcoff dst dstoff len =
  if len < 0 || srcoff < 0 || dstoff < 0 || src.len - srcoff < len then
    err_blit_to_bytes_src src dst srcoff len
  else if Bytes.length dst - dstoff < len then
    err_blit_to_bytes_dst src dst dstoff len
  else
    unsafe_blit_bigstring_to_bytes src.buffer (src.off+srcoff) dst dstoff len

let blit_to_string = blit_to_bytes

let compare t1 t2 =
  let l1 = t1.len
  and l2 = t2.len in
  match compare l1 l2 with
  | 0 ->
    ( match unsafe_compare_bigstring t1.buffer t1.off t2.buffer t2.off l1 with
      | 0 -> 0
      | r -> if r < 0 then -1 else 1 )
  | r -> r

let equal t1 t2 = compare t1 t2 = 0

(* Note that this is only safe as long as all [t]s are coherent. *)
let memset t x = unsafe_fill_bigstring t.buffer t.off t.len x

let create len =
  let t = create_unsafe len in
  memset t 0;
  t

let set_uint8 t i c =
  if i >= t.len || i < 0 then err_invalid_bounds "set_uint8" t i 1
  else Bigarray_compat.Array1.set t.buffer (t.off+i) (Char.unsafe_chr c)

let set_char t i c =
  if i >= t.len || i < 0 then err_invalid_bounds "set_char" t i 1
  else Bigarray_compat.Array1.set t.buffer (t.off+i) c

let get_uint8 t i =
  if i >= t.len || i < 0 then err_invalid_bounds "get_uint8" t i 1
  else Char.code (Bigarray_compat.Array1.get t.buffer (t.off+i))

let get_char t i =
  if i >= t.len || i < 0 then err_invalid_bounds "get_char" t i 1
  else Bigarray_compat.Array1.get t.buffer (t.off+i)


external ba_set_int16 : buffer -> int -> uint16 -> unit = "%caml_bigstring_set16u"
external ba_set_int32 : buffer -> int -> uint32 -> unit = "%caml_bigstring_set32u"
external ba_set_int64 : buffer -> int -> uint64 -> unit = "%caml_bigstring_set64u"
external ba_get_int16 : buffer -> int -> uint16 = "%caml_bigstring_get16u"
external ba_get_int32 : buffer -> int -> uint32 = "%caml_bigstring_get32u"
external ba_get_int64 : buffer -> int -> uint64 = "%caml_bigstring_get64u"

external swap16 : int -> int = "%bswap16"
external swap32 : int32 -> int32 = "%bswap_int32"
external swap64 : int64 -> int64 = "%bswap_int64"

let set_uint16 swap p t i c =
  if i > t.len - 2 || i < 0 then err_invalid_bounds (p ^ ".set_uint16") t i 2
  else ba_set_int16 t.buffer (t.off+i) (if swap then swap16 c else c) [@@inline]

let set_uint32 swap p t i c =
  if i > t.len - 4 || i < 0 then err_invalid_bounds (p ^ ".set_uint32") t i 4
  else ba_set_int32 t.buffer (t.off+i) (if swap then swap32 c else c) [@@inline]

let set_uint64 swap p t i c =
  if i > t.len - 8 || i < 0 then err_invalid_bounds (p ^ ".set_uint64") t i 8
  else ba_set_int64 t.buffer (t.off+i) (if swap then swap64 c else c) [@@inline]

let get_uint16 swap p t i =
  if i > t.len - 2 || i < 0 then err_invalid_bounds (p ^ ".get_uint16") t i 2
  else
    let r = ba_get_int16 t.buffer (t.off+i) in
    if swap then swap16 r else r [@@inline]

let get_uint32 swap p t i =
  if i > t.len - 4 || i < 0 then err_invalid_bounds (p ^ ".get_uint32") t i 4
  else
    let r = ba_get_int32 t.buffer (t.off+i) in
    if swap then swap32 r else r [@@inline]

let get_uint64 swap p t i =
  if i > t.len - 8 || i < 0 then err_invalid_bounds (p ^ ".get_uint64") t i 8
  else
    let r = ba_get_int64 t.buffer (t.off+i) in
    if swap then swap64 r else r [@@inline]

module BE = struct
  let set_uint16 t i c = set_uint16 (not Sys.big_endian) "BE" t i c [@@inline]
  let set_uint32 t i c = set_uint32 (not Sys.big_endian) "BE" t i c [@@inline]
  let set_uint64 t i c = set_uint64 (not Sys.big_endian) "BE" t i c [@@inline]
  let get_uint16 t i = get_uint16 (not Sys.big_endian) "BE" t i [@@inline]
  let get_uint32 t i = get_uint32 (not Sys.big_endian) "BE" t i [@@inline]
  let get_uint64 t i = get_uint64 (not Sys.big_endian) "BE" t i [@@inline]
end

module LE = struct
  let set_uint16 t i c = set_uint16 Sys.big_endian "LE" t i c [@@inline]
  let set_uint32 t i c = set_uint32 Sys.big_endian "LE" t i c [@@inline]
  let set_uint64 t i c = set_uint64 Sys.big_endian "LE" t i c [@@inline]
  let get_uint16 t i = get_uint16 Sys.big_endian "LE" t i [@@inline]
  let get_uint32 t i = get_uint32 Sys.big_endian "LE" t i [@@inline]
  let get_uint64 t i = get_uint64 Sys.big_endian "LE" t i [@@inline]
end

let len t =
  t.len

(** [sum_lengths ~caller acc l] is [acc] plus the sum of the lengths
    of the elements of [l].  Raises [Invalid_argument caller] if
    arithmetic overflows. *)
let rec sum_lengths_aux ~caller acc = function
  | [] -> acc
  | h :: t ->
     let sum = len h + acc in
     if sum < acc then invalid_arg caller
     else sum_lengths_aux ~caller sum t

let sum_lengths ~caller l = sum_lengths_aux ~caller 0 l

let lenv l = sum_lengths ~caller:"Cstruct.lenv" l

let copyv ts =
  let sz = sum_lengths ~caller:"Cstruct.copyv" ts in
  let dst = Bytes.create sz in
  let _ = List.fold_left
    (fun off src ->
      let x = len src in
      unsafe_blit_bigstring_to_bytes src.buffer src.off dst off x;
      off + x
    ) 0 ts in
  (* The following call is safe, since dst is not visible elsewhere. *)
  Bytes.unsafe_to_string dst

let fillv ~src ~dst =
  let rec aux dst n = function
    | [] -> n, []
    | hd::tl ->
        let avail = len dst in
        let first = len hd in
        if first <= avail then (
          blit hd 0 dst 0 first;
          aux (shift dst first) (n + first) tl
        ) else (
          blit hd 0 dst 0 avail;
          let rest_hd = shift hd avail in
          (n + avail, rest_hd :: tl)
        ) in
  aux dst 0 src


let to_bytes t =
  let sz = len t in
  let b = Bytes.create sz in
  unsafe_blit_bigstring_to_bytes t.buffer t.off b 0 sz;
  b

let to_string t =
  (* The following call is safe, since this is the only reference to the
     freshly-created value built by [to_bytes t]. *)
  Bytes.unsafe_to_string (to_bytes t)

let of_data_abstract blitfun lenfun ?allocator ?(off=0) ?len buf =
  let buflen =
    match len with
    | None -> lenfun buf
    | Some len -> len in
  match allocator with
  | None ->
    let c = create_unsafe buflen in
    blitfun buf off c 0 buflen;
    c
  | Some fn ->
    let c = fn buflen in
    blitfun buf off c 0 buflen;
    set_len c buflen

let of_string ?allocator ?off ?len buf =
  of_data_abstract blit_from_string String.length ?allocator ?off ?len buf

let of_bytes ?allocator ?off ?len buf =
  of_data_abstract blit_from_bytes Bytes.length ?allocator ?off ?len buf

let of_hex str =
  let string_fold ~f ~z str =
    let st = ref z in
    ( String.iter (fun c -> st := f !st c) str  ; !st )
  in
  let hexdigit p = function
    | 'a' .. 'f' as x -> int_of_char x - 87
    | 'A' .. 'F' as x -> int_of_char x - 55
    | '0' .. '9' as x -> int_of_char x - 48
    | x ->
      Format.ksprintf invalid_arg "of_hex: invalid character at pos %d: %C" p x
  in
  let whitespace = function
    | ' ' | '\t' | '\r' | '\n' -> true
    | _ -> false
  in
  match
    string_fold
      ~f:(fun (cs, i, p, acc) ->
          let p' = succ p in
          function
          | char when whitespace char -> (cs, i, p', acc)
          | char ->
            match acc, hexdigit p char with
            | (None  , x) -> (cs, i, p', Some (x lsl 4))
            | (Some y, x) -> set_uint8 cs i (x lor y) ; (cs, succ i, p', None))
      ~z:(create_unsafe (String.length str lsr 1), 0, 0, None)
      str
  with
  | _ , _, _, Some _ ->
    Format.ksprintf invalid_arg "of_hex: odd numbers of characters"
  | cs, i, _, _ -> sub cs 0 i

let hexdump_pp fmt t =
  let before fmt =
    function
    | 0 -> ()
    | 8 -> Format.fprintf fmt "  ";
    | _ -> Format.fprintf fmt " "
  in
  let after fmt =
    function
    | 15 -> Format.fprintf fmt "@;"
    |  _ -> ()
  in
  Format.pp_open_vbox fmt 0 ;
  for i = 0 to len t - 1 do
    let column = i mod 16 in
    let c = Char.code (Bigarray_compat.Array1.get t.buffer (t.off+i)) in
    Format.fprintf fmt "%a%.2x%a" before column c after column
  done ;
  Format.pp_close_box fmt ()

let hexdump = Format.printf "@\n%a@." hexdump_pp

let hexdump_to_buffer buf t =
  let f = Format.formatter_of_buffer buf in
  Format.fprintf f "@\n%a@." hexdump_pp t

let split ?(start=0) t off =
  try
    let header =sub t start off in
    let body = sub t (start+off) (len t - off - start) in
    header, body
  with Invalid_argument _ -> err_split t start off

type 'a iter = unit -> 'a option
let iter lenfn pfn t =
  let body = ref (Some t) in
  let i = ref 0 in
  fun () ->
    match !body with
      |Some buf when len buf = 0 ->
        body := None;
        None
      |Some buf -> begin
        match lenfn buf with
        |None ->
          body := None;
          None
        |Some plen ->
          incr i;
          let p,rest =
            try split buf plen with Invalid_argument _ -> err_iter buf !i plen
          in
          body := Some rest;
          Some (pfn p)
      end
      |None -> None

let rec fold f next acc = match next () with
  | None -> acc
  | Some v -> fold f next (f acc v)

let append cs1 cs2 =
  let l1 = len cs1 and l2 = len cs2 in
  let cs = create_unsafe (l1 + l2) in
  blit cs1 0 cs 0  l1 ;
  blit cs2 0 cs l1 l2 ;
  cs

let concat = function
  | []   -> create_unsafe 0
  | [cs] -> cs
  | css  ->
      let result = create_unsafe (sum_lengths ~caller:"Cstruct.concat" css) in
      let aux off cs =
        let n = len cs in
        blit cs 0 result off n ;
        off + n in
      ignore @@ List.fold_left aux 0 css ;
      result

let rev t =
  let n = len t in
  let out = create_unsafe n in
  for i_src = 0 to n - 1 do
    let byte = get_uint8 t i_src in
    let i_dst = n - 1 - i_src in
    set_uint8 out i_dst byte
  done;
  out
OCaml

Innovation. Community. Security.