package cryptodbm
Encrypted layer over the dbm library: access to serverless, key-value databases with symmetric encryption.
Install
Dune Dependency
Authors
Maintainers
Sources
v0.84.2.tar.gz
sha256=388a4a8bf17c9ad0825907251720ba40291a19afb643f64066a29e813be50a7e
md5=7c33f55fca768501d06e2ef0eb583f80
doc/src/cryptodbm.internals/setp.ml.html
Source file setp.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
(* * Set, polymorphic version. * Adapted from set.ml in the ocaml distribution. *) (* This is the original copyright: *) (***********************************************************************) (* *) (* Objective Caml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. All rights reserved. This file is distributed *) (* under the terms of the GNU Library General Public License, with *) (* the special exception on linking described in file ../LICENSE. *) (* *) (***********************************************************************) (* $Id: set.ml 6694 2004-11-25 00:06:06Z doligez $ *) (* Sets over ordered types *) type 'a cmp = 'a -> 'a -> int type 'a tree = Empty | Node of 'a tree * 'a * 'a tree * int type 'a t = { cmp : 'a cmp ; tree : 'a tree ; } let check_cmp msg s1 s2 = if s1.cmp != s2.cmp then failwith (Printf.sprintf "Setp.%s: arguments have different comparison functions." msg) else s1.cmp (* Sets are represented by balanced binary trees (the heights of the children differ by at most 2 *) let height = function Empty -> 0 | Node(_, _, _, h) -> h (* Creates a new node with left son l, value v and right son r. We must have all elements of l < v < all elements of r. l and r must be balanced and | height l - height r | <= 2. Inline expansion of height for better speed. *) let create l v r = let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1)) (* Same as create, but performs one step of rebalancing if necessary. Assumes l and r balanced and | height l - height r | <= 3. Inline expansion of create for better speed in the most frequent case where no rebalancing is required. *) let bal l v r = let hl = match l with Empty -> 0 | Node(_,_,_,h) -> h in let hr = match r with Empty -> 0 | Node(_,_,_,h) -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Set.bal" | Node(ll, lv, lr, _) -> if height ll >= height lr then create ll lv (create lr v r) else begin match lr with Empty -> invalid_arg "Set.bal" | Node(lrl, lrv, lrr, _)-> create (create ll lv lrl) lrv (create lrr v r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Set.bal" | Node(rl, rv, rr, _) -> if height rr >= height rl then create (create l v rl) rv rr else begin match rl with Empty -> invalid_arg "Set.bal" | Node(rll, rlv, rlr, _) -> create (create l v rll) rlv (create rlr rv rr) end end else Node(l, v, r, (if hl >= hr then hl + 1 else hr + 1)) (* Insertion of one element *) let rec add cmp x = function Empty -> Node(Empty, x, Empty, 1) | Node(l, v, r, _) as t -> let c = cmp x v in if c = 0 then t else if c < 0 then bal (add cmp x l) v r else bal l v (add cmp x r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join cmp l v r = match (l, r) with (Empty, _) -> add cmp v r | (_, Empty) -> add cmp v l | (Node(ll, lv, lr, lh), Node(rl, rv, rr, rh)) -> if lh > rh + 2 then bal ll lv (join cmp lr v r) else if rh > lh + 2 then bal (join cmp l v rl) rv rr else create l v r (* Smallest and greatest element of a set *) let rec min_elt = function Empty -> raise Not_found | Node(Empty, v, r, _) -> v | Node(l, v, r, _) -> min_elt l let rec max_elt = function Empty -> raise Not_found | Node(l, v, Empty, _) -> v | Node(l, v, r, _) -> max_elt r (* Remove the smallest element of the given set *) let rec remove_min_elt = function Empty -> invalid_arg "Set.remove_min_elt" | Node(Empty, v, r, _) -> r | Node(l, v, r, _) -> bal (remove_min_elt l) v r (* Merge two trees l and r into one. All elements of l must precede the elements of r. Assume | height l - height r | <= 2. *) let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2) (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat cmp t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> join cmp t1 (min_elt t2) (remove_min_elt t2) (* Splitting. split x s returns a triple (l, present, r) where - l is the set of elements of s that are < x - r is the set of elements of s that are > x - present is false if s contains no element equal to x, or true if s contains an element equal to x. *) let rec split cmp x = function Empty -> (Empty, false, Empty) | Node(l, v, r, _) -> let c = cmp x v in if c = 0 then (l, true, r) else if c < 0 then let (ll, pres, rl) = split cmp x l in (ll, pres, join cmp rl v r) else let (lr, pres, rr) = split cmp x r in (join cmp l v lr, pres, rr) (* Implementation of the set operations *) let empty cmp = { cmp ; tree = Empty } let is_empty s = match s.tree with Empty -> true | _ -> false let rec mem cmp x = function Empty -> false | Node(l, v, r, _) -> let c = cmp x v in c = 0 || mem cmp x (if c < 0 then l else r) let rec find cmp x = function | Empty -> raise Not_found | Node (l, v, r, _) -> let c = cmp x v in if c = 0 then v else find cmp x (if c < 0 then l else r) let singleton cmp x = { cmp ; tree = Node(Empty, x, Empty, 1) } let rec remove cmp x = function Empty -> Empty | Node(l, v, r, _) -> let c = cmp x v in if c = 0 then merge l r else if c < 0 then bal (remove cmp x l) v r else bal l v (remove cmp x r) let rec union cmp s1 s2 = match (s1, s2) with (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Node(l1, v1, r1, h1), Node(l2, v2, r2, h2)) -> if h1 >= h2 then if h2 = 1 then add cmp v2 s1 else begin let (l2, _, r2) = split cmp v1 s2 in join cmp (union cmp l1 l2) v1 (union cmp r1 r2) end else if h1 = 1 then add cmp v1 s2 else begin let (l1, _, r1) = split cmp v2 s1 in join cmp (union cmp l1 l2) v2 (union cmp r1 r2) end let rec inter cmp s1 s2 = match (s1, s2) with (Empty, t2) -> Empty | (t1, Empty) -> Empty | (Node(l1, v1, r1, _), t2) -> match split cmp v1 t2 with (l2, false, r2) -> concat cmp (inter cmp l1 l2) (inter cmp r1 r2) | (l2, true, r2) -> join cmp (inter cmp l1 l2) v1 (inter cmp r1 r2) let rec diff cmp s1 s2 = match (s1, s2) with (Empty, t2) -> Empty | (t1, Empty) -> t1 | (Node(l1, v1, r1, _), t2) -> match split cmp v1 t2 with (l2, false, r2) -> join cmp (diff cmp l1 l2) v1 (diff cmp r1 r2) | (l2, true, r2) -> concat cmp (diff cmp l1 l2) (diff cmp r1 r2) type 'a enumeration = End | More of 'a * 'a tree * 'a enumeration let rec cons_enum s e = match s with Empty -> e | Node(l, v, r, _) -> cons_enum l (More(v, r, e)) let rec compare_aux cmp e1 e2 = match (e1, e2) with (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More(v1, r1, e1), More(v2, r2, e2)) -> let c = cmp v1 v2 in if c <> 0 then c else compare_aux cmp (cons_enum r1 e1) (cons_enum r2 e2) let compare s1 s2 = let cmp = check_cmp "compare" s1 s2 in compare_aux cmp (cons_enum s1.tree End) (cons_enum s2.tree End) let equal s1 s2 = compare s1 s2 = 0 let rec subset cmp s1 s2 = match (s1, s2) with Empty, _ -> true | _, Empty -> false | Node (l1, v1, r1, _), (Node (l2, v2, r2, _) as t2) -> let c = cmp v1 v2 in if c = 0 then subset cmp l1 l2 && subset cmp r1 r2 else if c < 0 then subset cmp (Node (l1, v1, Empty, 0)) l2 && subset cmp r1 t2 else subset cmp (Node (Empty, v1, r1, 0)) r2 && subset cmp l1 t2 let rec iter f = function Empty -> () | Node(l, v, r, _) -> iter f l; f v; iter f r let rec fold f s accu = match s with Empty -> accu | Node(l, v, r, _) -> fold f r (f v (fold f l accu)) let rec for_all p = function Empty -> true | Node(l, v, r, _) -> p v && for_all p l && for_all p r let rec exists p = function Empty -> false | Node(l, v, r, _) -> p v || exists p l || exists p r let filter cmp p s = let rec filt accu = function | Empty -> accu | Node(l, v, r, _) -> filt (filt (if p v then add cmp v accu else accu) l) r in filt Empty s let partition cmp p s = let rec part (t, f as accu) = function | Empty -> accu | Node(l, v, r, _) -> part (part (if p v then (add cmp v t, f) else (t, add cmp v f)) l) r in part (Empty, Empty) s let rec cardinal = function Empty -> 0 | Node(l, v, r, _) -> cardinal l + 1 + cardinal r let rec elements_aux accu = function Empty -> accu | Node(l, v, r, _) -> elements_aux (v :: elements_aux accu r) l let elements s = elements_aux [] s let mem x s = mem s.cmp x s.tree let find x s = find s.cmp x s.tree let add x s = { cmp = s.cmp ; tree = add s.cmp x s.tree } let remove x s = { cmp = s.cmp ; tree = remove s.cmp x s.tree } (* It is not worth factorizing the following few definitions...for the moment. *) let union s1 s2 = { cmp = check_cmp "union" s1 s2 ; tree = union s1.cmp s1.tree s2.tree } let inter s1 s2 = { cmp = check_cmp "inter" s1 s2 ; tree = inter s1.cmp s1.tree s2.tree } let diff s1 s2 = { cmp = check_cmp "diff" s1 s2 ; tree = diff s1.cmp s1.tree s2.tree } let subset s1 s2 = subset (check_cmp "subset" s1 s2) s1.tree s2.tree let iter f s = iter f s.tree let fold f s a = fold f s.tree a let for_all f s = for_all f s.tree let exists f s = exists f s.tree let filter f s = { cmp = s.cmp ; tree = filter s.cmp f s.tree } let partition f s = let (tree1, tree2) = partition s.cmp f s.tree in { cmp = s.cmp ; tree = tree1 }, { cmp = s.cmp ; tree = tree2 } let split x s = let (tree1, flag, tree2) = split s.cmp x s.tree in { cmp = s.cmp ; tree = tree1 }, flag, { cmp = s.cmp ; tree = tree2 } let cardinal s = cardinal s.tree let elements s = elements s.tree let min_elt s = min_elt s.tree let max_elt s = max_elt s.tree let choose = min_elt
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>