package core
Industrial strength alternative to OCaml's standard library
Install
Dune Dependency
Authors
Maintainers
Sources
v0.17.1.tar.gz
md5=743a141234e04210e295980f7a78a6d9
sha512=61b415f4fb12c78d30649fff1aabe3a475eea926ce6edb7774031f4dc7f37ea51f5d9337ead6ec73cd93da5fd1ed0f2738c210c71ebc8fe9d7f6135a06bd176f
doc/src/core/blang.ml.html
Source file blang.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
open! Import open Std_internal (* The module [T] serves to enforce the invariant that all Blang.t values are in a normal form whereby boolean constants True and False only appear as the topmost constructor -- in any other position they are simplified away using laws of boolean algebra. We also enforce that nested [And]s and [Or]s each lean to the right so that [eval] doesn't need so much stack space as it would if they leaned to the left. Thought experiment: compare how [eval] works on right-leaning [And (a, And (b, And (c, d)))] versus left-leaning [And (And (And (a, b), c), d)]. The former is the best case and is enforced. Note: this file deviates from the usual pattern of modules with Stable interfaces in that the Stable sub-module is not the first thing to be defined in the module. The reason for this deviation is so that one can convince oneself of the aforementioned invariant after reading only this small amount of code. After defining T we then immediately define its Stable interface. *) module T : sig type +'a t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a [@@deriving bin_io ~localize, compare, equal, hash, typerep] val invariant : 'a t -> unit val true_ : 'a t val false_ : 'a t val not_ : 'a t -> 'a t val andalso : 'a t -> 'a t -> 'a t val orelse : 'a t -> 'a t -> 'a t val if_ : 'a t -> 'a t -> 'a t -> 'a t val base : 'a -> 'a t end = struct type +'a t = | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a [@@deriving bin_io ~localize, compare, equal, hash, typerep] let invariant = let subterms = function | True | False | Base _ -> [] | Not t1 -> [ t1 ] | And (t1, t2) | Or (t1, t2) -> [ t1; t2 ] | If (t1, t2, t3) -> [ t1; t2; t3 ] in let rec contains_no_constants = function | True | False -> assert false | t -> List.iter ~f:contains_no_constants (subterms t) in fun t -> List.iter ~f:contains_no_constants (subterms t) ;; let true_ = True let false_ = False let base v = Base v let not_ = function | True -> False | False -> True | Not t -> t | t -> Not t ;; let rec andalso t1 t2 = match t1, t2 with | _, False | False, _ -> False | other, True | True, other -> other | And (t1a, t1b), _ -> (* nested [And]s lean right -- see comment above *) And (t1a, andalso t1b t2) | _ -> And (t1, t2) ;; let rec orelse t1 t2 = match t1, t2 with | _, True | True, _ -> True | other, False | False, other -> other | Or (t1a, t1b), _ -> (* nested [Or]s lean right -- see comment above *) Or (t1a, orelse t1b t2) | _ -> Or (t1, t2) ;; let if_ a b c = match a with | True -> b | False -> c | _ -> (match b, c with | True, _ -> orelse a c | _, False -> andalso a b | _, True -> orelse (not_ a) b | False, _ -> andalso (not_ a) c | _ -> If (a, b, c)) ;; end module Raw = struct type 'a t = 'a T.t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a [@@deriving sexp_of] end include T module Stable = struct module V1 : sig (* THIS TYPE AND ITS SERIALIZATIONS SHOULD NEVER BE CHANGED - PLEASE SPEAK WITH ANOTHER DEVELOPER IF YOU NEED MORE DETAIL *) type 'a t = 'a T.t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a [@@deriving bin_io ~localize, stable_witness, compare, equal, hash, sexp, sexp_grammar] (* the remainder of this signature consists of functions used in the definitions of sexp conversions that are also useful more generally *) val and_ : 'a t list -> 'a t val or_ : 'a t list -> 'a t val gather_conjuncts : 'a t -> 'a t list val gather_disjuncts : 'a t -> 'a t list end = struct type 'a t = 'a T.t = private | True | False | And of 'a t * 'a t | Or of 'a t * 'a t | Not of 'a t | If of 'a t * 'a t * 'a t | Base of 'a (* This type is assumed to be stable if the 'a is stable (see big comment above). *) let stable_witness (_ : 'a Stable_witness.t) : 'a t Stable_witness.t = Stable_witness.assert_stable ;; include ( T : sig type 'a t [@@deriving bin_io ~localize, compare, equal, hash] end with type 'a t := 'a t) type sexp = Sexp.t = | Atom of string | List of sexp list (* cheap import *) (* flatten out nested and's *) let gather_conjuncts t = let rec loop acc = function | True :: ts -> loop acc ts | And (t1, t2) :: ts -> loop acc (t1 :: t2 :: ts) | t :: ts -> loop (t :: acc) ts | [] -> List.rev acc in loop [] [ t ] ;; (* flatten out nested or's *) let gather_disjuncts t = let rec loop acc = function | False :: ts -> loop acc ts | Or (t1, t2) :: ts -> loop acc (t1 :: t2 :: ts) | t :: ts -> loop (t :: acc) ts | [] -> List.rev acc in loop [] [ t ] ;; (* [and_] and [or_] use [fold_right] instead of [fold_left] to avoid quadratic behavior with [andalso] or [orelse], respectively. *) let and_ ts = List.fold_right ts ~init:true_ ~f:andalso let or_ ts = List.fold_right ts ~init:false_ ~f:orelse let unary name args sexp = match args with | [ x ] -> x | _ -> let n = List.length args in of_sexp_error (sprintf "%s expects one argument, %d found" name n) sexp ;; let ternary name args sexp = match args with | [ x; y; z ] -> x, y, z | _ -> let n = List.length args in of_sexp_error (sprintf "%s expects three arguments, %d found" name n) sexp ;; let sexp_of_t sexp_of_value t = let rec aux t = match t with | Base x -> sexp_of_value x | True -> Atom "true" | False -> Atom "false" | Not t -> List [ Atom "not"; aux t ] | If (t1, t2, t3) -> List [ Atom "if"; aux t1; aux t2; aux t3 ] | And _ as t -> let ts = gather_conjuncts t in List (Atom "and" :: List.map ~f:aux ts) | Or _ as t -> let ts = gather_disjuncts t in List (Atom "or" :: List.map ~f:aux ts) in aux t ;; let t_of_sexp base_of_sexp sexp = let base sexp = base (base_of_sexp sexp) in let rec aux sexp = match sexp with | Atom kw -> (match String.lowercase kw with | "true" -> true_ | "false" -> false_ | _ -> base sexp) | List (Atom kw :: args) -> (match String.lowercase kw with | "and" -> and_ (List.map ~f:aux args) | "or" -> or_ (List.map ~f:aux args) | "not" -> not_ (aux (unary "not" args sexp)) | "if" -> let x, y, z = ternary "if" args sexp in if_ (aux x) (aux y) (aux z) | _ -> base sexp) | _ -> base sexp in aux sexp ;; let t_sexp_grammar : 'a. 'a Sexplib.Sexp_grammar.t -> 'a t Sexplib.Sexp_grammar.t = let defns : Sexplib.Sexp_grammar.defn list = let blang : Sexplib.Sexp_grammar.grammar = Recursive ("blang", [ Tyvar "a" ]) in [ { tycon = "blang" ; tyvars = [ "a" ] ; grammar = Union [ Tyvar "a" ; Variant { case_sensitivity = Case_insensitive ; clauses = [ No_tag { name = "true"; clause_kind = Atom_clause } ; No_tag { name = "false"; clause_kind = Atom_clause } ; No_tag { name = "if" ; clause_kind = List_clause { args = Cons (blang, Cons (blang, Cons (blang, Empty))) } } ; No_tag { name = "and" ; clause_kind = List_clause { args = Many blang } } ; No_tag { name = "or" ; clause_kind = List_clause { args = Many blang } } ; No_tag { name = "not" ; clause_kind = List_clause { args = Cons (blang, Empty) } } ] } ] } ] in fun base_grammar -> { untyped = Tycon ("blang", [ base_grammar.untyped ], defns) } ;; end end include (Stable.V1 : module type of Stable.V1 with type 'a t := 'a t) let constant b = if b then true_ else false_ module type Constructors = sig val base : 'a -> 'a t val true_ : _ t val false_ : _ t val constant : bool -> _ t val not_ : 'a t -> 'a t val and_ : 'a t list -> 'a t val or_ : 'a t list -> 'a t val if_ : 'a t -> 'a t -> 'a t -> 'a t end module O = struct include T let not = not_ let and_ = and_ let or_ = or_ let constant = constant let ( && ) = andalso let ( || ) = orelse let ( ==> ) a b = (not a) || b end let constant_value = function | True -> Some true | False -> Some false | _ -> None ;; (* [values t] lists the base predicates in [t] from left to right *) let values t = let rec loop acc = function | Base v :: ts -> loop (v :: acc) ts | True :: ts -> loop acc ts | False :: ts -> loop acc ts | Not t1 :: ts -> loop acc (t1 :: ts) | And (t1, t2) :: ts -> loop acc (t1 :: t2 :: ts) | Or (t1, t2) :: ts -> loop acc (t1 :: t2 :: ts) | If (t1, t2, t3) :: ts -> loop acc (t1 :: t2 :: t3 :: ts) | [] -> List.rev acc in loop [] [ t ] ;; module C = Container.Make (struct type 'a t = 'a T.t let fold t ~init ~f = let rec loop acc t pending = match t with | Base a -> next (f acc a) pending | True | False -> next acc pending | Not t -> loop acc t pending | And (t1, t2) | Or (t1, t2) -> loop acc t1 (t2 :: pending) | If (t1, t2, t3) -> loop acc t1 (t2 :: t3 :: pending) and next acc = function | [] -> acc | t :: ts -> loop acc t ts in loop init t [] [@nontail] ;; (* Don't allocate *) let rec iter t ~f = match t with | Base a -> f a | True | False -> () | Not t -> iter t ~f | And (t1, t2) | Or (t1, t2) -> iter t1 ~f; iter t2 ~f | If (t1, t2, t3) -> iter t1 ~f; iter t2 ~f; iter t3 ~f ;; let iter = `Custom iter let length = `Define_using_fold end) let count = C.count let sum = C.sum let exists = C.exists let find = C.find let find_map = C.find_map let fold = C.fold let for_all = C.for_all let is_empty = C.is_empty let iter = C.iter let length = C.length let mem = C.mem let to_array = C.to_array let to_list = C.to_list let min_elt = C.min_elt let max_elt = C.max_elt let fold_result = C.fold_result let fold_until = C.fold_until let rec bind t ~f:k = match t with | Base v -> k v | True -> true_ | False -> false_ | Not t1 -> not_ (bind t1 ~f:k) (* Unfortunately we need to duplicate some of the short-circuiting from [andalso] and friends here. In principle we could do something involving [Lazy.t] but the overhead probably wouldn't be worth it. *) | And (t1, t2) -> (match bind t1 ~f:k with | False -> false_ | other -> andalso other (bind t2 ~f:k)) | Or (t1, t2) -> (match bind t1 ~f:k with | True -> true_ | other -> orelse other (bind t2 ~f:k)) | If (t1, t2, t3) -> (match bind t1 ~f:k with | True -> bind t2 ~f:k | False -> bind t3 ~f:k | other -> if_ other (bind t2 ~f:k) (bind t3 ~f:k)) ;; (* semantics *) let rec eval t base_eval = match t with | True -> true | False -> false | And (t1, t2) -> eval t1 base_eval && eval t2 base_eval | Or (t1, t2) -> eval t1 base_eval || eval t2 base_eval | Not t -> not (eval t base_eval) | If (t1, t2, t3) -> if eval t1 base_eval then eval t2 base_eval else eval t3 base_eval | Base x -> base_eval x ;; let specialize t f = bind t ~f:(fun v -> match f v with | `Known c -> constant c | `Unknown -> base v) [@nontail] ;; let eval_set ~universe:all set_of_base t = let rec aux (b : _ t) = match b with | True -> force all | False -> Set.Using_comparator.empty ~comparator:(Set.comparator (force all)) | And (a, b) -> Set.inter (aux a) (aux b) | Or (a, b) -> Set.union (aux a) (aux b) | Not a -> Set.diff (force all) (aux a) | Base a -> set_of_base a | If (cond, a, b) -> let cond = aux cond in Set.union (Set.inter cond (aux a)) (Set.inter (Set.diff (force all) cond) (aux b)) in aux t [@nontail] ;; include Monad.Make (struct type 'a t = 'a T.t let return = base let bind = bind let map = `Define_using_bind end) module type Monadic = sig module M : Monad.S val map : 'a t -> f:('a -> 'b M.t) -> 'b t M.t val bind : 'a t -> f:('a -> 'b t M.t) -> 'b t M.t val eval : 'a t -> f:('a -> bool M.t) -> bool M.t end module For_monad (M : Monad.S) : Monadic with module M := M = struct open M.Monad_infix let rec bind t ~f = match t with | Base x -> f x | True -> M.return true_ | False -> M.return false_ | And (a, b) -> bind a ~f >>= (function | False -> M.return false_ | True -> bind b ~f | a -> bind b ~f >>| fun b -> andalso a b) | Or (a, b) -> bind a ~f >>= (function | True -> M.return true_ | False -> bind b ~f | a -> bind b ~f >>| fun b -> orelse a b) | Not a -> bind a ~f >>| not_ | If (a, b, c) -> bind a ~f >>= (function | True -> bind b ~f | False -> bind c ~f | a -> bind b ~f >>= fun b -> bind c ~f >>| fun c -> if_ a b c) ;; let map t ~f = bind t ~f:(fun x -> f x >>| base) let eval t ~f = bind t ~f:(fun x -> f x >>| function | true -> true_ | false -> false_) >>| fun t -> eval t Nothing.unreachable_code ;; end (** We avoid deriving quickcheck to ensure that the invariants described in [T]'s comments above are preserved. *) let quickcheck_generator a_generator = Quickcheck.Generator.recursive_union [ Quickcheck.Generator.map ~f:base a_generator ; Quickcheck.Generator.singleton true_ ; Quickcheck.Generator.singleton false_ ] ~f:(fun self -> [ Quickcheck.Generator.map self ~f:not_ ; Quickcheck.Generator.map2 self self ~f:O.( || ) ; Quickcheck.Generator.map2 self self ~f:O.( && ) ; Quickcheck.Generator.map3 self self self ~f:if_ ]) ;; let quickcheck_shrinker (type a) (a_shrinker : a Quickcheck.Shrinker.t) = Quickcheck.Shrinker.fixed_point (fun self -> let binop operator left right = Sequence.round_robin [ Sequence.singleton left ; Sequence.singleton right ; Sequence.map (Quickcheck.Shrinker.shrink self left) ~f:(fun left -> operator left right) ; Sequence.map (Quickcheck.Shrinker.shrink self right) ~f:(fun right -> operator left right) ] in Quickcheck.Shrinker.create (fun t -> match t with | True | False -> Sequence.empty | Base a -> Sequence.map ~f:base (Quickcheck.Shrinker.shrink a_shrinker a) | Or (left, right) -> binop O.( || ) left right | And (left, right) -> binop O.( && ) left right | Not t -> Sequence.append (Sequence.singleton t) (Sequence.map ~f:not_ (Quickcheck.Shrinker.shrink self t)) | If (if_, then_, else_) -> Sequence.round_robin [ Sequence.singleton if_ ; Sequence.singleton then_ ; Sequence.singleton else_ ; Sequence.map (Quickcheck.Shrinker.shrink self if_) ~f:(fun if_ -> O.if_ if_ then_ else_) ; Sequence.map (Quickcheck.Shrinker.shrink self then_) ~f:(fun then_ -> O.if_ if_ then_ else_) ; Sequence.map (Quickcheck.Shrinker.shrink self else_) ~f:(fun else_ -> O.if_ if_ then_ else_) ])) ;; let quickcheck_observer (type a) (a_observer : a Quickcheck.Observer.t) = Base_quickcheck.Observer.create (fun t ~size ~hash -> hash_fold_t (fun hash a -> Quickcheck.Observer.observe a_observer a ~size ~hash) hash t) ;;
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>