package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.1.tar.gz
sha256=583471c8ed4f227cb374ee8a13a769c46579313d407db67a82d202ee48300e4b
doc/src/coq-core.vernac/egramcoq.ml.html
Source file egramcoq.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open CErrors open Names open Libnames open Constrexpr open Extend open Notation_gram open Pcoq (**********************************************************************) (* This determines (depending on the associativity of the current level and on the expected associativity) if a reference to constr_n is a reference to the current level (to be translated into "SELF" on the left border and into "constr LEVEL n" elsewhere), to the level below (to be translated into "NEXT") or to an below wrt associativity (to be translated in camlp5 into "constr" without level) or to another level (to be translated into "constr LEVEL n") The boolean is true if the entry was existing _and_ empty; this to circumvent a weakness of camlp5 whose undo mechanism is not the converse of the extension mechanism *) let constr_level = string_of_int let default_levels = [200,Gramlib.Gramext.RightA,false; 100,Gramlib.Gramext.RightA,false; 99,Gramlib.Gramext.RightA,true; 90,Gramlib.Gramext.RightA,true; 10,Gramlib.Gramext.LeftA,false; 9,Gramlib.Gramext.RightA,false; 8,Gramlib.Gramext.RightA,true; 1,Gramlib.Gramext.LeftA,false; 0,Gramlib.Gramext.RightA,false] let default_pattern_levels = [200,Gramlib.Gramext.RightA,true; 100,Gramlib.Gramext.RightA,false; 99,Gramlib.Gramext.RightA,true; 90,Gramlib.Gramext.RightA,true; 10,Gramlib.Gramext.LeftA,false; 1,Gramlib.Gramext.LeftA,false; 0,Gramlib.Gramext.RightA,false] let default_constr_levels = (default_levels, default_pattern_levels) let find_levels levels = function | InConstrEntry -> levels, String.Map.find "constr" levels | InCustomEntry s -> try levels, String.Map.find s levels with Not_found -> String.Map.add s ([],[]) levels, ([],[]) let save_levels levels custom lev = let s = match custom with InConstrEntry -> "constr" | InCustomEntry s -> s in String.Map.add s lev levels (* At a same level, LeftA takes precedence over RightA and NoneA *) (* In case, several associativity exists for a level, we make two levels, *) (* first LeftA, then RightA and NoneA together *) let admissible_assoc = function | Gramlib.Gramext.LeftA, Some (Gramlib.Gramext.RightA | Gramlib.Gramext.NonA) -> false | Gramlib.Gramext.RightA, Some Gramlib.Gramext.LeftA -> false | _ -> true let create_assoc = function | None -> Gramlib.Gramext.RightA | Some a -> a exception NotationLevelMismatch of entry_level * Gramlib.Gramext.g_assoc * Gramlib.Gramext.g_assoc let () = CErrors.register_handler (function | NotationLevelMismatch (p, current, expected) -> Some Pp.(str "Level " ++ int p ++ str " is already declared to have " ++ Gramlib.Gramext.pr_assoc current ++ str " while it is now expected to have " ++ Gramlib.Gramext.pr_assoc expected ++ str ".") | _ -> None) let error_level_assoc p current expected = raise @@ NotationLevelMismatch (p, current, expected) type position = NewFirst | NewAfter of int | ReuseFirst | ReuseLevel of int let create_pos = function | None -> NewFirst | Some lev -> NewAfter lev let find_position_gen current ensure assoc lev = match lev with | None -> current, (ReuseFirst, None, None, None) | Some n -> let after = ref None in let init = ref None in let rec add_level q = function | (p,_,_ as pa)::l when p > n -> pa :: add_level (Some p) l | (p,a,reinit)::l when Int.equal p n -> if reinit then let a' = create_assoc assoc in (init := Some (a', q); (p,a',false)::l) else if admissible_assoc (a,assoc) then raise_notrace Exit else error_level_assoc p a (Option.get assoc) | l -> after := q; (n,create_assoc assoc,ensure)::l in try let updated = add_level None current in let assoc = create_assoc assoc in begin match !init with | None -> (* Create the entry *) updated, (create_pos !after, Some assoc, Some (constr_level n), None) | _ -> (* The reinit flag has been updated *) updated, (ReuseLevel n, None, None, !init) end with (* Nothing has changed *) Exit -> (* Just inherit the existing associativity and name (None) *) current, (ReuseLevel n, None, None, None) let rec list_mem_assoc_triple x = function | [] -> false | (a,b,c) :: l -> Int.equal a x || list_mem_assoc_triple x l let register_empty_levels accu forpat levels = let rec filter accu = function | [] -> ([], accu) | (where,n) :: rem -> let rem, accu = filter accu rem in let accu, (clev, plev) = find_levels accu where in let levels = if forpat then plev else clev in if not (list_mem_assoc_triple n levels) then let nlev, ans = find_position_gen levels true None (Some n) in let nlev = if forpat then (clev, nlev) else (nlev, plev) in (where, ans) :: rem, save_levels accu where nlev else rem, accu in let (l,accu) = filter accu levels in List.rev l, accu let find_position accu custom forpat assoc level = let accu, (clev, plev) = find_levels accu custom in let levels = if forpat then plev else clev in let nlev, ans = find_position_gen levels false assoc level in let nlev = if forpat then (clev, nlev) else (nlev, plev) in (ans, save_levels accu custom nlev) (**************************************************************************) (* * --- Note on the mapping of grammar productions to camlp5 actions --- * * Translation of environments: a production * [ nt1(x1) ... nti(xi) ] -> act(x1..xi) * is written (with camlp5 conventions): * (fun vi -> .... (fun v1 -> act(v1 .. vi) )..) * where v1..vi are the values generated by non-terminals nt1..nti. * Since the actions are executed by substituting an environment, * the make_*_action family build the following closure: * * ((fun env -> * (fun vi -> * (fun env -> ... * * (fun v1 -> * (fun env -> gram_action .. env act) * ((x1,v1)::env)) * ...) * ((xi,vi)::env))) * []) *) (**********************************************************************) (** Declare Notations grammar rules *) (**********************************************************************) (* Binding constr entry keys to entries *) (* Camlp5 levels do not treat NonA: use RightA with a NEXT on the left *) let camlp5_assoc = let open Gramlib.Gramext in function | Some NonA | Some RightA -> RightA | None | Some LeftA -> LeftA let assoc_eq al ar = let open Gramlib.Gramext in match al, ar with | NonA, NonA | RightA, RightA | LeftA, LeftA -> true | _, _ -> false (** [adjust_level assoc from prod] where [assoc] and [from] are the name and associativity of the level where to add the rule; the meaning of the result is DefaultLevel = entry name NextLevel = NEXT NumLevel n = constr LEVEL n *) let adjust_level custom assoc (custom',from) p = let open Gramlib.Gramext in match p with (* If a level in a different grammar, no other choice than denoting it by absolute level *) | (NumLevel n,_) when not (Notation.notation_entry_eq custom custom') -> NumLevel n (* If a default level in a different grammar, the entry name is ok *) | (DefaultLevel,InternalProd) -> if Notation.notation_entry_eq custom InConstrEntry then NumLevel 200 else DefaultLevel | (DefaultLevel,BorderProd _) when not (Notation.notation_entry_eq custom custom') -> if Notation.notation_entry_eq custom InConstrEntry then NumLevel 200 else DefaultLevel (* Associativity is None means force the level *) | (NumLevel n,BorderProd (_,None)) -> NumLevel n | (DefaultLevel,BorderProd (_,None)) -> assert false (* Compute production name on the right side *) (* If NonA or LeftA on the right-hand side, set to NEXT *) | ((NumLevel _ | DefaultLevel),BorderProd (Right,Some (NonA|LeftA))) -> NextLevel (* If RightA on the right-hand side, set to the explicit (current) level *) | (NumLevel n,BorderProd (Right,Some RightA)) -> NumLevel n | (DefaultLevel,BorderProd (Right,Some RightA)) -> NumLevel from (* Compute production name on the left side *) (* If NonA on the left-hand side, adopt the current assoc ?? *) | ((NumLevel _ | DefaultLevel),BorderProd (Left,Some NonA)) -> DefaultLevel (* If the expected assoc is the current one, set to SELF *) | ((NumLevel _ | DefaultLevel),BorderProd (Left,Some a)) when assoc_eq a (camlp5_assoc assoc) -> DefaultLevel (* Otherwise, force the level, n or n-1, according to expected assoc *) | (NumLevel n,BorderProd (Left,Some LeftA)) -> NumLevel n | ((NumLevel _ | DefaultLevel),BorderProd (Left,Some _)) -> NextLevel (* None means NEXT *) | (NextLevel,_) -> assert (Notation.notation_entry_eq custom custom'); NextLevel (* Compute production name elsewhere *) | (NumLevel n,InternalProd) -> if from = n + 1 then NextLevel else NumLevel n type _ target = | ForConstr : constr_expr target | ForPattern : cases_pattern_expr target type prod_info = production_level * production_position type (_, _) entry = | TTIdent : ('self, lident) entry | TTName : ('self, lname) entry | TTGlobal : ('self, qualid) entry | TTBigint : ('self, string) entry | TTBinder : bool -> ('self, kinded_cases_pattern_expr) entry | TTConstr : notation_entry * prod_info * 'r target -> ('r, 'r) entry | TTConstrList : notation_entry * prod_info * (bool * string) list * 'r target -> ('r, 'r list) entry | TTPattern : int -> ('self, cases_pattern_expr) entry | TTOpenBinderList : ('self, local_binder_expr list) entry | TTClosedBinderList : (bool * string) list -> ('self, local_binder_expr list list) entry type _ any_entry = TTAny : ('s, 'r) entry -> 's any_entry let constr_custom_entry : (string, Constrexpr.constr_expr) entry_command = create_entry_command "constr" (fun s st -> [s], st) let pattern_custom_entry : (string, Constrexpr.cases_pattern_expr) entry_command = create_entry_command "pattern" (fun s st -> [s], st) let custom_entry_locality = Summary.ref ~name:"LOCAL-CUSTOM-ENTRY" String.Set.empty (** If the entry is present then local *) let create_custom_entry ~local s = if List.mem s ["constr";"pattern";"ident";"global";"binder";"bigint"] then user_err Pp.(quote (str s) ++ str " is a reserved entry name."); let sc = "custom:"^s in let sp = "custom_pattern:"^s in let _ = extend_entry_command constr_custom_entry sc in let _ = extend_entry_command pattern_custom_entry sp in let () = if local then custom_entry_locality := String.Set.add s !custom_entry_locality in () let find_custom_entry s = let sc = "custom:"^s in let sp = "custom_pattern:"^s in try (find_custom_entry constr_custom_entry sc, find_custom_entry pattern_custom_entry sp) with Not_found -> user_err Pp.(str "Undeclared custom entry: " ++ str s ++ str ".") let exists_custom_entry s = match find_custom_entry s with | _ -> true | exception _ -> false let locality_of_custom_entry s = String.Set.mem s !custom_entry_locality (* This computes the name of the level where to add a new rule *) let interp_constr_entry_key : type r. _ -> r target -> int -> r Entry.t * int option = fun custom forpat level -> match custom with | InCustomEntry s -> (let (entry_for_constr, entry_for_patttern) = find_custom_entry s in match forpat with | ForConstr -> entry_for_constr, Some level | ForPattern -> entry_for_patttern, Some level) | InConstrEntry -> match forpat with | ForConstr -> if level = 200 then Constr.binder_constr, None else Constr.term, Some level | ForPattern -> Constr.pattern, Some level let target_entry : type s. notation_entry -> s target -> s Entry.t = function | InConstrEntry -> (function | ForConstr -> Constr.term | ForPattern -> Constr.pattern) | InCustomEntry s -> let (entry_for_constr, entry_for_patttern) = find_custom_entry s in function | ForConstr -> entry_for_constr | ForPattern -> entry_for_patttern let is_self custom (custom',from) e = Notation.notation_entry_eq custom custom' && match e with | (NumLevel n, BorderProd (Right, _ (* Some(NonA|LeftA) *))) -> false | (NumLevel n, BorderProd (Left, _)) -> Int.equal from n | _ -> false let is_binder_level custom (custom',from) e = match e with | (NumLevel 200, (BorderProd (Right, _) | InternalProd)) -> custom = InConstrEntry && custom' = InConstrEntry && from = 200 | _ -> false let make_pattern (keyword,s) = if keyword then TPattern (Tok.PKEYWORD s) else match NumTok.Unsigned.parse_string s with | Some n -> TPattern (Tok.PNUMBER (Some n)) | None -> TPattern (Tok.PIDENT (Some s)) let make_sep_rules tkl = Pcoq.Symbol.tokens (List.map make_pattern tkl) type ('s, 'a) mayrec_symbol = | MayRecNo : ('s, Gramlib.Grammar.norec, 'a) Symbol.t -> ('s, 'a) mayrec_symbol | MayRecMay : ('s, Gramlib.Grammar.mayrec, 'a) Symbol.t -> ('s, 'a) mayrec_symbol let symbol_of_target : type s. _ -> _ -> _ -> _ -> s target -> (s, s) mayrec_symbol = fun custom p assoc from forpat -> if is_binder_level custom from p then (* Prevent self *) MayRecNo (Pcoq.Symbol.nterml (target_entry custom forpat) "200") else if is_self custom from p then MayRecMay Pcoq.Symbol.self else let g = target_entry custom forpat in let lev = adjust_level custom assoc from p in begin match lev with | DefaultLevel -> MayRecNo (Pcoq.Symbol.nterm g) | NextLevel -> MayRecMay Pcoq.Symbol.next | NumLevel lev -> MayRecNo (Pcoq.Symbol.nterml g (string_of_int lev)) end let symbol_of_entry : type s r. _ -> _ -> (s, r) entry -> (s, r) mayrec_symbol = fun assoc from typ -> match typ with | TTConstr (s, p, forpat) -> symbol_of_target s p assoc from forpat | TTConstrList (s, typ', [], forpat) -> begin match symbol_of_target s typ' assoc from forpat with | MayRecNo s -> MayRecNo (Pcoq.Symbol.list1 s) | MayRecMay s -> MayRecMay (Pcoq.Symbol.list1 s) end | TTConstrList (s, typ', tkl, forpat) -> begin match symbol_of_target s typ' assoc from forpat with | MayRecNo s -> MayRecNo (Pcoq.Symbol.list1sep s (make_sep_rules tkl) false) | MayRecMay s -> MayRecMay (Pcoq.Symbol.list1sep s (make_sep_rules tkl) false) end | TTPattern p -> MayRecNo (Pcoq.Symbol.nterml Constr.pattern (string_of_int p)) | TTClosedBinderList [] -> MayRecNo (Pcoq.Symbol.list1 (Pcoq.Symbol.nterm Constr.binder)) | TTClosedBinderList tkl -> MayRecNo (Pcoq.Symbol.list1sep (Pcoq.Symbol.nterm Constr.binder) (make_sep_rules tkl) false) | TTIdent -> MayRecNo (Pcoq.Symbol.nterm Prim.identref) | TTName -> MayRecNo (Pcoq.Symbol.nterm Prim.name) | TTBinder true -> MayRecNo (Pcoq.Symbol.nterm Constr.one_open_binder) | TTBinder false -> MayRecNo (Pcoq.Symbol.nterm Constr.one_closed_binder) | TTOpenBinderList -> MayRecNo (Pcoq.Symbol.nterm Constr.open_binders) | TTBigint -> MayRecNo (Pcoq.Symbol.nterm Prim.bignat) | TTGlobal -> MayRecNo (Pcoq.Symbol.nterm Constr.global) let interp_entry forpat e = match e with | ETProdIdent -> TTAny TTIdent | ETProdName -> TTAny TTName | ETProdGlobal -> TTAny TTGlobal | ETProdBigint -> TTAny TTBigint | ETProdOneBinder o -> TTAny (TTBinder o) | ETProdConstr (s,p) -> TTAny (TTConstr (s, p, forpat)) | ETProdPattern p -> TTAny (TTPattern p) | ETProdConstrList (s, p, tkl) -> TTAny (TTConstrList (s, p, tkl, forpat)) | ETProdBinderList ETBinderOpen -> TTAny TTOpenBinderList | ETProdBinderList (ETBinderClosed tkl) -> TTAny (TTClosedBinderList tkl) let cases_pattern_expr_of_id { CAst.loc; v = id } = CAst.make ?loc @@ CPatAtom (Some (qualid_of_ident ?loc id)) let cases_pattern_expr_of_name { CAst.loc; v = na } = CAst.make ?loc @@ match na with | Anonymous -> CPatAtom None | Name id -> CPatAtom (Some (qualid_of_ident ?loc id)) type 'r env = { constrs : 'r list; constrlists : 'r list list; binders : kinded_cases_pattern_expr list; binderlists : local_binder_expr list list; } let push_constr subst v = { subst with constrs = v :: subst.constrs } let push_item : type s r. s target -> (s, r) entry -> s env -> r -> s env = fun forpat e subst v -> match e with | TTConstr _ -> push_constr subst v | TTIdent -> begin match forpat with | ForConstr -> { subst with binders = (cases_pattern_expr_of_id v, Glob_term.Explicit) :: subst.binders } | ForPattern -> push_constr subst (cases_pattern_expr_of_id v) end | TTName -> begin match forpat with | ForConstr -> { subst with binders = (cases_pattern_expr_of_name v, Glob_term.Explicit) :: subst.binders } | ForPattern -> push_constr subst (cases_pattern_expr_of_name v) end | TTPattern _ -> begin match forpat with | ForConstr -> { subst with binders = (v, Glob_term.Explicit) :: subst.binders } | ForPattern -> push_constr subst v end | TTBinder o -> { subst with binders = v :: subst.binders } | TTOpenBinderList -> { subst with binderlists = v :: subst.binderlists } | TTClosedBinderList _ -> { subst with binderlists = List.flatten v :: subst.binderlists } | TTBigint -> begin match forpat with | ForConstr -> push_constr subst (CAst.make @@ CPrim (Number (NumTok.Signed.of_int_string v))) | ForPattern -> push_constr subst (CAst.make @@ CPatPrim (Number (NumTok.Signed.of_int_string v))) end | TTGlobal -> begin match forpat with | ForConstr -> push_constr subst (CAst.make @@ CRef (v, None)) | ForPattern -> push_constr subst (CAst.make @@ CPatAtom (Some v)) end | TTConstrList _ -> { subst with constrlists = v :: subst.constrlists } type (_, _) ty_symbol = | TyTerm : 'a Tok.p -> ('s, 'a) ty_symbol | TyNonTerm : 's target * ('s, 'a) entry * ('s, 'a) mayrec_symbol * bool -> ('s, 'a) ty_symbol type ('self, _, 'r) ty_rule = | TyStop : ('self, 'r, 'r) ty_rule | TyNext : ('self, 'a, 'r) ty_rule * ('self, 'b) ty_symbol -> ('self, 'b -> 'a, 'r) ty_rule | TyMark : int * bool * int * ('self, 'a, 'r) ty_rule -> ('self, 'a, 'r) ty_rule type 'r gen_eval = Loc.t -> 'r env -> 'r let rec ty_eval : type s a. (s, a, Loc.t -> s) ty_rule -> s gen_eval -> s env -> a = function | TyStop -> fun f env loc -> f loc env | TyNext (rem, TyTerm _) -> fun f env _ -> ty_eval rem f env | TyNext (rem, TyNonTerm (_, _, _, false)) -> fun f env _ -> ty_eval rem f env | TyNext (rem, TyNonTerm (forpat, e, _, true)) -> fun f env v -> ty_eval rem f (push_item forpat e env v) | TyMark (n, b, p, rem) -> fun f env -> let heads, constrs = List.chop n env.constrs in let constrlists, constrs = if b then (* We rearrange constrs = c1..cn rem and constrlists = [d1..dr e1..ep] rem' into constrs = e1..ep rem and constrlists [c1..cn d1..dr] rem' *) let constrlist = List.hd env.constrlists in let constrlist, tail = List.chop (List.length constrlist - p) constrlist in (heads @ constrlist) :: List.tl env.constrlists, tail @ constrs else (* We rearrange constrs = c1..cn e1..ep rem into constrs = e1..ep rem and add a constr list [c1..cn] *) let constrlist, tail = List.chop (n - p) heads in constrlist :: env.constrlists, tail @ constrs in ty_eval rem f { env with constrs; constrlists; } type ('s, 'a, 'r) mayrec_rule = | MayRecRNo : ('s, Gramlib.Grammar.norec, 'a, 'r) Rule.t -> ('s, 'a, 'r) mayrec_rule | MayRecRMay : ('s, Gramlib.Grammar.mayrec, 'a, 'r) Rule.t -> ('s, 'a, 'r) mayrec_rule let rec ty_erase : type s a r. (s, a, r) ty_rule -> (s, a, r) mayrec_rule = function | TyStop -> MayRecRNo Rule.stop | TyMark (_, _, _, r) -> ty_erase r | TyNext (rem, TyTerm tok) -> begin match ty_erase rem with | MayRecRNo rem -> MayRecRMay (Rule.next rem (Symbol.token tok)) | MayRecRMay rem -> MayRecRMay (Rule.next rem (Symbol.token tok)) end | TyNext (rem, TyNonTerm (_, _, s, _)) -> begin match ty_erase rem, s with | MayRecRNo rem, MayRecNo s -> MayRecRMay (Rule.next rem s) | MayRecRNo rem, MayRecMay s -> MayRecRMay (Rule.next rem s) | MayRecRMay rem, MayRecNo s -> MayRecRMay (Rule.next rem s) | MayRecRMay rem, MayRecMay s -> MayRecRMay (Rule.next rem s) end type ('self, 'r) any_ty_rule = | AnyTyRule : ('self, 'act, Loc.t -> 'r) ty_rule -> ('self, 'r) any_ty_rule let make_ty_rule assoc from forpat prods = let rec make_ty_rule = function | [] -> AnyTyRule TyStop | GramConstrTerminal (kw,s) :: rem -> let AnyTyRule r = make_ty_rule rem in let TPattern tk = make_pattern (kw,s) in AnyTyRule (TyNext (r, TyTerm tk)) | GramConstrNonTerminal (e, var) :: rem -> let AnyTyRule r = make_ty_rule rem in let TTAny e = interp_entry forpat e in let s = symbol_of_entry assoc from e in let bind = match var with None -> false | Some _ -> true in AnyTyRule (TyNext (r, TyNonTerm (forpat, e, s, bind))) | GramConstrListMark (n, b, p) :: rem -> let AnyTyRule r = make_ty_rule rem in AnyTyRule (TyMark (n, b, p, r)) in make_ty_rule (List.rev prods) let target_to_bool : type r. r target -> bool = function | ForConstr -> false | ForPattern -> true let prepare_empty_levels forpat (where,(pos,p4assoc,name,reinit)) = let empty = match pos with | ReuseFirst -> Pcoq.Reuse (None, []) | ReuseLevel n -> Pcoq.Reuse (Some (constr_level n), []) | NewFirst -> Pcoq.Fresh (Gramlib.Gramext.First, [(name, p4assoc, [])]) | NewAfter n -> Pcoq.Fresh (Gramlib.Gramext.After (constr_level n), [(name, p4assoc, [])]) in match reinit with | None -> ExtendRule (target_entry where forpat, empty) | Some (assoc, pos) -> let pos = match pos with None -> Gramlib.Gramext.First | Some n -> Gramlib.Gramext.After (constr_level n) in let reinit = (assoc, pos) in ExtendRuleReinit (target_entry where forpat, reinit, empty) let different_levels (custom,opt_level) (custom',string_level) = match opt_level with | None -> true | Some level -> not (Notation.notation_entry_eq custom custom') || level <> int_of_string string_level let rec pure_sublevels' assoc from forpat level = function | [] -> [] | GramConstrNonTerminal (e,_) :: rem -> let rem = pure_sublevels' assoc from forpat level rem in let push where p rem = match symbol_of_target where p assoc from forpat with | MayRecNo sym -> (match Pcoq.level_of_nonterm sym with | None -> rem | Some i -> if different_levels (fst from,level) (where,i) then (where,int_of_string i) :: rem else rem) | _ -> rem in (match e with | ETProdPattern i -> push InConstrEntry (NumLevel i,InternalProd) rem | ETProdConstr (s,p) -> push s p rem | _ -> rem) | (GramConstrTerminal _ | GramConstrListMark _) :: rem -> pure_sublevels' assoc from forpat level rem let make_act : type r. r target -> _ -> r gen_eval = function | ForConstr -> fun notation loc env -> let env = (env.constrs, env.constrlists, env.binders, env.binderlists) in CAst.make ~loc @@ CNotation (None, notation, env) | ForPattern -> fun notation loc env -> let env = (env.constrs, env.constrlists) in CAst.make ~loc @@ CPatNotation (None, notation, env, []) let extend_constr state forpat ng = let custom,n,_ = ng.notgram_level in let assoc = ng.notgram_assoc in let (entry, level) = interp_constr_entry_key custom forpat n in let fold (accu, state) pt = let AnyTyRule r = make_ty_rule assoc (custom,n) forpat pt in let pure_sublevels = pure_sublevels' assoc (custom,n) forpat level pt in let isforpat = target_to_bool forpat in let needed_levels, state = register_empty_levels state isforpat pure_sublevels in let (pos,p4assoc,name,reinit), state = find_position state custom isforpat assoc level in let empty_rules = List.map (prepare_empty_levels forpat) needed_levels in let empty = { constrs = []; constrlists = []; binders = []; binderlists = [] } in let act = ty_eval r (make_act forpat ng.notgram_notation) empty in let rule = let r = match ty_erase r with | MayRecRNo symbs -> Pcoq.Production.make symbs act | MayRecRMay symbs -> Pcoq.Production.make symbs act in let rule = name, p4assoc, [r] in match pos with | NewFirst -> Pcoq.Fresh (Gramlib.Gramext.First, [rule]) | NewAfter n -> Pcoq.Fresh (Gramlib.Gramext.After (constr_level n), [rule]) | ReuseFirst -> Pcoq.Reuse (None, [r]) | ReuseLevel n -> Pcoq.Reuse (Some (constr_level n), [r]) in let r = match reinit with | None -> ExtendRule (entry, rule) | Some (assoc, pos) -> let pos = match pos with None -> Gramlib.Gramext.First | Some n -> Gramlib.Gramext.After (constr_level n) in let reinit = (assoc, pos) in ExtendRuleReinit (entry, reinit, rule) in (accu @ empty_rules @ [r], state) in List.fold_left fold ([], state) ng.notgram_prods let constr_levels = GramState.field () let is_disjunctive_pattern_rule ng = String.is_sub "( _ | " (snd ng.notgram_notation) 0 let warn_disj_pattern_notation = let open Pp in let pp ng = str "Use of " ++ Notation.pr_notation ng.notgram_notation ++ str " Notation is deprecated as it is inconsistent with pattern syntax." in CWarnings.create ~name:"disj-pattern-notation" ~category:"notation" ~default:CWarnings.Disabled pp let extend_constr_notation ng state = let levels = match GramState.get state constr_levels with | None -> String.Map.add "constr" default_constr_levels String.Map.empty | Some lev -> lev in (* Add the notation in constr *) let (r, levels) = extend_constr levels ForConstr ng in (* Add the notation in cases_pattern, unless it would disrupt *) (* parsing nested disjunctive patterns. *) let (r', levels) = if is_disjunctive_pattern_rule ng then begin warn_disj_pattern_notation ng; ([], levels) end else extend_constr levels ForPattern ng in let state = GramState.set state constr_levels levels in (r @ r', state) let constr_grammar : one_notation_grammar grammar_command = create_grammar_command "Notation" extend_constr_notation let extend_constr_grammar ntn = extend_grammar_command constr_grammar ntn
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>