package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/micromega_plugin/sos.ml.html
Source file sos.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
(* ========================================================================= *) (* - This code originates from John Harrison's HOL LIGHT 2.30 *) (* (see file LICENSE.sos for license, copyright and disclaimer) *) (* - Laurent Théry (thery@sophia.inria.fr) has isolated the HOL *) (* independent bits *) (* - Frédéric Besson (fbesson@irisa.fr) is using it to feed micromega *) (* ========================================================================= *) (* ========================================================================= *) (* Nonlinear universal reals procedure using SOS decomposition. *) (* ========================================================================= *) open NumCompat open Q.Notations open Sos_types open Sos_lib (* prioritize_real();; *) let debugging = ref false exception Sanity (* ------------------------------------------------------------------------- *) (* Turn a rational into a decimal string with d sig digits. *) (* ------------------------------------------------------------------------- *) let decimalize = let rec normalize y = if Q.abs y </ Q.one // Q.ten then normalize (Q.ten */ y) - 1 else if Q.abs y >=/ Q.one then normalize (y // Q.ten) + 1 else 0 in fun d x -> if x =/ Q.zero then "0.0" else let y = Q.abs x in let e = normalize y in let z = (Q.pow10 (-e) */ y) +/ Q.one in let k = Q.round (Q.pow10 d */ z) in (if x </ Q.zero then "-0." else "0.") ^ implode (List.tl (explode (Q.to_string k))) ^ if e = 0 then "" else "e" ^ string_of_int e (* ------------------------------------------------------------------------- *) (* Iterations over numbers, and lists indexed by numbers. *) (* ------------------------------------------------------------------------- *) let rec itern k l f a = match l with [] -> a | h :: t -> itern (k + 1) t f (f h k a) let rec iter (m, n) f a = if n < m then a else iter (m + 1, n) f (f m a) (* ------------------------------------------------------------------------- *) (* The main types. *) (* ------------------------------------------------------------------------- *) type vector = int * (int, Q.t) func type matrix = (int * int) * (int * int, Q.t) func type monomial = (vname, int) func type poly = (monomial, Q.t) func (* ------------------------------------------------------------------------- *) (* Assignment avoiding zeros. *) (* ------------------------------------------------------------------------- *) let ( |--> ) x y a = if y =/ Q.zero then a else (x |-> y) a (* ------------------------------------------------------------------------- *) (* This can be generic. *) (* ------------------------------------------------------------------------- *) let element (d, v) i = tryapplyd v i Q.zero let mapa f (d, v) = (d, foldl (fun a i c -> (i |--> f c) a) undefined v) let is_zero (d, v) = match v with Empty -> true | _ -> false (* ------------------------------------------------------------------------- *) (* Vectors. Conventionally indexed 1..n. *) (* ------------------------------------------------------------------------- *) let vector_0 n : vector = (n, undefined) let dim (v : vector) = fst v let vector_const c n = if c =/ Q.zero then vector_0 n else ((n, List.fold_right (fun k -> k |-> c) (1 -- n) undefined) : vector) let vector_cmul c (v : vector) = let n = dim v in if c =/ Q.zero then vector_0 n else (n, mapf (fun x -> c */ x) (snd v)) let vector_of_list l = let n = List.length l in ((n, List.fold_right2 ( |-> ) (1 -- n) l undefined) : vector) (* ------------------------------------------------------------------------- *) (* Matrices; again rows and columns indexed from 1. *) (* ------------------------------------------------------------------------- *) let matrix_0 (m, n) : matrix = ((m, n), undefined) let dimensions (m : matrix) = fst m let matrix_cmul c (m : matrix) = let i, j = dimensions m in if c =/ Q.zero then matrix_0 (i, j) else ((i, j), mapf (fun x -> c */ x) (snd m)) let matrix_neg (m : matrix) : matrix = (dimensions m, mapf Q.neg (snd m)) let matrix_add (m1 : matrix) (m2 : matrix) = let d1 = dimensions m1 and d2 = dimensions m2 in if d1 <> d2 then failwith "matrix_add: incompatible dimensions" else ((d1, combine ( +/ ) (fun x -> x =/ Q.zero) (snd m1) (snd m2)) : matrix) let row k (m : matrix) = let i, j = dimensions m in ( ( j , foldl (fun a (i, j) c -> if i = k then (j |-> c) a else a) undefined (snd m) ) : vector ) let column k (m : matrix) = let i, j = dimensions m in ( ( i , foldl (fun a (i, j) c -> if j = k then (i |-> c) a else a) undefined (snd m) ) : vector ) let diagonal (v : vector) = let n = dim v in (((n, n), foldl (fun a i c -> ((i, i) |-> c) a) undefined (snd v)) : matrix) (* ------------------------------------------------------------------------- *) (* Monomials. *) (* ------------------------------------------------------------------------- *) let monomial_1 = (undefined : monomial) let monomial_var x : monomial = x |=> 1 let (monomial_mul : monomial -> monomial -> monomial) = combine ( + ) (fun x -> false) let monomial_degree x (m : monomial) = tryapplyd m x 0 let monomial_multidegree (m : monomial) = foldl (fun a x k -> k + a) 0 m let monomial_variables m = dom m (* ------------------------------------------------------------------------- *) (* Polynomials. *) (* ------------------------------------------------------------------------- *) let poly_0 = (undefined : poly) let poly_isconst (p : poly) = foldl (fun a m c -> m = monomial_1 && a) true p let poly_var x : poly = monomial_var x |=> Q.one let poly_const c = if c =/ Q.zero then poly_0 else monomial_1 |=> c let poly_cmul c (p : poly) = if c =/ Q.zero then poly_0 else mapf (fun x -> c */ x) p let poly_neg (p : poly) : poly = mapf Q.neg p let poly_add (p1 : poly) (p2 : poly) : poly = combine ( +/ ) (fun x -> x =/ Q.zero) p1 p2 let poly_sub p1 p2 = poly_add p1 (poly_neg p2) let poly_cmmul (c, m) (p : poly) = if c =/ Q.zero then poly_0 else if m = monomial_1 then mapf (fun d -> c */ d) p else foldl (fun a m' d -> (monomial_mul m m' |-> c */ d) a) poly_0 p let poly_mul (p1 : poly) (p2 : poly) = foldl (fun a m c -> poly_add (poly_cmmul (c, m) p2) a) poly_0 p1 let poly_square p = poly_mul p p let rec poly_pow p k = if k = 0 then poly_const Q.one else if k = 1 then p else let q = poly_square (poly_pow p (k / 2)) in if k mod 2 = 1 then poly_mul p q else q let degree x (p : poly) = foldl (fun a m c -> max (monomial_degree x m) a) 0 p let multidegree (p : poly) = foldl (fun a m c -> max (monomial_multidegree m) a) 0 p let poly_variables (p : poly) = foldr (fun m c -> union (monomial_variables m)) p [] (* ------------------------------------------------------------------------- *) (* Order monomials for human presentation. *) (* ------------------------------------------------------------------------- *) let humanorder_varpow (x1, k1) (x2, k2) = x1 < x2 || (x1 = x2 && k1 > k2) let humanorder_monomial = let rec ord l1 l2 = match (l1, l2) with | _, [] -> true | [], _ -> false | h1 :: t1, h2 :: t2 -> humanorder_varpow h1 h2 || (h1 = h2 && ord t1 t2) in fun m1 m2 -> m1 = m2 || ord (sort humanorder_varpow (graph m1)) (sort humanorder_varpow (graph m2)) (* ------------------------------------------------------------------------- *) (* Conversions to strings. *) (* ------------------------------------------------------------------------- *) let string_of_vname (v : vname) : string = (v : string) let string_of_varpow x k = if k = 1 then string_of_vname x else string_of_vname x ^ "^" ^ string_of_int k let string_of_monomial m = if m = monomial_1 then "1" else let vps = List.fold_right (fun (x, k) a -> string_of_varpow x k :: a) (sort humanorder_varpow (graph m)) [] in String.concat "*" vps let string_of_cmonomial (c, m) = if m = monomial_1 then Q.to_string c else if c =/ Q.one then string_of_monomial m else Q.to_string c ^ "*" ^ string_of_monomial m let string_of_poly (p : poly) = if p = poly_0 then "<<0>>" else let cms = sort (fun (m1, _) (m2, _) -> humanorder_monomial m1 m2) (graph p) in let s = List.fold_left (fun a (m, c) -> if c </ Q.zero then a ^ " - " ^ string_of_cmonomial (Q.neg c, m) else a ^ " + " ^ string_of_cmonomial (c, m)) "" cms in let s1 = String.sub s 0 3 and s2 = String.sub s 3 (String.length s - 3) in "<<" ^ (if s1 = " + " then s2 else "-" ^ s2) ^ ">>" (* ------------------------------------------------------------------------- *) (* Printers. *) (* ------------------------------------------------------------------------- *) (* let print_vector v = Format.print_string(string_of_vector 0 20 v);; let print_matrix m = Format.print_string(string_of_matrix 20 m);; let print_monomial m = Format.print_string(string_of_monomial m);; let print_poly m = Format.print_string(string_of_poly m);; #install_printer print_vector;; #install_printer print_matrix;; #install_printer print_monomial;; #install_printer print_poly;; *) (* ------------------------------------------------------------------------- *) (* Conversion from term. *) (* ------------------------------------------------------------------------- *) let rec poly_of_term t = match t with | Zero -> poly_0 | Const n -> poly_const n | Var x -> poly_var x | Opp t1 -> poly_neg (poly_of_term t1) | Add (l, r) -> poly_add (poly_of_term l) (poly_of_term r) | Sub (l, r) -> poly_sub (poly_of_term l) (poly_of_term r) | Mul (l, r) -> poly_mul (poly_of_term l) (poly_of_term r) | Pow (t, n) -> poly_pow (poly_of_term t) n (* ------------------------------------------------------------------------- *) (* String of vector (just a list of space-separated numbers). *) (* ------------------------------------------------------------------------- *) let sdpa_of_vector (v : vector) = let n = dim v in let strs = List.map (o (decimalize 20) (element v)) (1 -- n) in String.concat " " strs ^ "\n" (* ------------------------------------------------------------------------- *) (* String for a matrix numbered k, in SDPA sparse format. *) (* ------------------------------------------------------------------------- *) let sdpa_of_matrix k (m : matrix) = let pfx = string_of_int k ^ " 1 " in let ms = foldr (fun (i, j) c a -> if i > j then a else ((i, j), c) :: a) (snd m) [] in let mss = sort (increasing fst) ms in List.fold_right (fun ((i, j), c) a -> pfx ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) mss "" (* ------------------------------------------------------------------------- *) (* String in SDPA sparse format for standard SDP problem: *) (* *) (* X = v_1 * [M_1] + ... + v_m * [M_m] - [M_0] must be PSD *) (* Minimize obj_1 * v_1 + ... obj_m * v_m *) (* ------------------------------------------------------------------------- *) let sdpa_of_problem comment obj mats = let m = List.length mats - 1 and n, _ = dimensions (List.hd mats) in "\"" ^ comment ^ "\"\n" ^ string_of_int m ^ "\n" ^ "1\n" ^ string_of_int n ^ "\n" ^ sdpa_of_vector obj ^ List.fold_right2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a) (1 -- List.length mats) mats "" (* ------------------------------------------------------------------------- *) (* More parser basics. *) (* ------------------------------------------------------------------------- *) let word s = end_itlist (fun p1 p2 -> p1 ++ p2 >> fun (s, t) -> s ^ t) (List.map a (explode s)) let token s = many (some isspace) ++ word s ++ many (some isspace) >> fun ((_, t), _) -> t let decimal = let ( || ) = parser_or in let numeral = some isnum in let decimalint = atleast 1 numeral >> o Q.of_string implode in let decimalfrac = atleast 1 numeral >> fun s -> Q.of_string (implode s) // Q.pow10 (List.length s) in let decimalsig = decimalint ++ possibly (a "." ++ decimalfrac >> snd) >> function h, [x] -> h +/ x | h, _ -> h in let signed prs = a "-" ++ prs >> o Q.neg snd || a "+" ++ prs >> snd || prs in let exponent = (a "e" || a "E") ++ signed decimalint >> snd in signed decimalsig ++ possibly exponent >> function h, [x] -> h */ Q.power 10 x | h, _ -> h let mkparser p s = let x, rst = p (explode s) in if rst = [] then x else failwith "mkparser: unparsed input" (* ------------------------------------------------------------------------- *) (* Parse back a vector. *) (* ------------------------------------------------------------------------- *) let _parse_sdpaoutput, parse_csdpoutput = let ( || ) = parser_or in let vector = token "{" ++ listof decimal (token ",") "decimal" ++ token "}" >> fun ((_, v), _) -> vector_of_list v in let rec skipupto dscr prs inp = (dscr ++ prs >> snd || some (fun c -> true) ++ skipupto dscr prs >> snd) inp in let ignore inp = ((), []) in let sdpaoutput = skipupto (word "xVec" ++ token "=") (vector ++ ignore >> fst) in let csdpoutput = (decimal ++ many (a " " ++ decimal >> snd) >> fun (h, t) -> h :: t) ++ (a " " ++ a "\n" ++ ignore) >> o vector_of_list fst in (mkparser sdpaoutput, mkparser csdpoutput) (* ------------------------------------------------------------------------- *) (* The default parameters. Unfortunately this goes to a fixed file. *) (* ------------------------------------------------------------------------- *) let _sdpa_default_parameters = "100 unsigned int maxIteration;\n\ 1.0E-7 double 0.0 < epsilonStar;\n\ 1.0E2 double 0.0 < lambdaStar;\n\ 2.0 double 1.0 < omegaStar;\n\ -1.0E5 double lowerBound;\n\ 1.0E5 double upperBound;\n\ 0.1 double 0.0 <= betaStar < 1.0;\n\ 0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\n\ 0.9 double 0.0 < gammaStar < 1.0;\n\ 1.0E-7 double 0.0 < epsilonDash;\n" (* ------------------------------------------------------------------------- *) (* These were suggested by Makoto Yamashita for problems where we are *) (* right at the edge of the semidefinite cone, as sometimes happens. *) (* ------------------------------------------------------------------------- *) let sdpa_alt_parameters = "1000 unsigned int maxIteration;\n\ 1.0E-7 double 0.0 < epsilonStar;\n\ 1.0E4 double 0.0 < lambdaStar;\n\ 2.0 double 1.0 < omegaStar;\n\ -1.0E5 double lowerBound;\n\ 1.0E5 double upperBound;\n\ 0.1 double 0.0 <= betaStar < 1.0;\n\ 0.2 double 0.0 <= betaBar < 1.0, betaStar <= betaBar;\n\ 0.9 double 0.0 < gammaStar < 1.0;\n\ 1.0E-7 double 0.0 < epsilonDash;\n" let _sdpa_params = sdpa_alt_parameters (* ------------------------------------------------------------------------- *) (* CSDP parameters; so far I'm sticking with the defaults. *) (* ------------------------------------------------------------------------- *) let csdp_default_parameters = "axtol=1.0e-8\n\ atytol=1.0e-8\n\ objtol=1.0e-8\n\ pinftol=1.0e8\n\ dinftol=1.0e8\n\ maxiter=100\n\ minstepfrac=0.9\n\ maxstepfrac=0.97\n\ minstepp=1.0e-8\n\ minstepd=1.0e-8\n\ usexzgap=1\n\ tweakgap=0\n\ affine=0\n\ printlevel=1\n" let csdp_params = csdp_default_parameters (* ------------------------------------------------------------------------- *) (* Now call CSDP on a problem and parse back the output. *) (* ------------------------------------------------------------------------- *) let run_csdp dbg obj mats = let input_file = Filename.temp_file "sos" ".dat-s" in let output_file = String.sub input_file 0 (String.length input_file - 6) ^ ".out" and params_file = Filename.concat temp_path "param.csdp" in file_of_string input_file (sdpa_of_problem "" obj mats); file_of_string params_file csdp_params; let rv = Sys.command ( "cd " ^ temp_path ^ "; csdp " ^ input_file ^ " " ^ output_file ^ if dbg then "" else "> /dev/null" ) in let op = string_of_file output_file in let res = parse_csdpoutput op in if dbg then () else (Sys.remove input_file; Sys.remove output_file); (rv, res) (* ------------------------------------------------------------------------- *) (* Try some apparently sensible scaling first. Note that this is purely to *) (* get a cleaner translation to floating-point, and doesn't affect any of *) (* the results, in principle. In practice it seems a lot better when there *) (* are extreme numbers in the original problem. *) (* ------------------------------------------------------------------------- *) let scale_then = let common_denominator amat acc = foldl (fun a m c -> Z.lcm (Q.den c) a) acc amat and maximal_element amat acc = foldl (fun maxa m c -> Q.max maxa (Q.abs c)) acc amat in fun solver obj mats -> let cd1 = Q.of_bigint @@ List.fold_right common_denominator mats Z.one and cd2 = Q.of_bigint @@ common_denominator (snd obj) Z.one in let mats' = List.map (mapf (fun x -> cd1 */ x)) mats and obj' = vector_cmul cd2 obj in let max1 = List.fold_right maximal_element mats' Q.zero and max2 = maximal_element (snd obj') Q.zero in let scal1 = Q.pow2 (20 - int_of_float (log (Q.to_float max1) /. log 2.0)) and scal2 = Q.pow2 (20 - int_of_float (log (Q.to_float max2) /. log 2.0)) in let mats'' = List.map (mapf (fun x -> x */ scal1)) mats' and obj'' = vector_cmul scal2 obj' in solver obj'' mats'' (* ------------------------------------------------------------------------- *) (* Round a vector to "nice" rationals. *) (* ------------------------------------------------------------------------- *) let nice_rational n x = Q.round (n */ x) // n let nice_vector n = mapa (nice_rational n) (* ------------------------------------------------------------------------- *) (* Reduce linear program to SDP (diagonal matrices) and test with CSDP. This *) (* one tests A [-1;x1;..;xn] >= 0 (i.e. left column is negated constants). *) (* ------------------------------------------------------------------------- *) let linear_program_basic a = let m, n = dimensions a in let mats = List.map (fun j -> diagonal (column j a)) (1 -- n) and obj = vector_const Q.one m in let rv, res = run_csdp false obj mats in if rv = 1 || rv = 2 then false else if rv = 0 then true else failwith "linear_program: An error occurred in the SDP solver" (* ------------------------------------------------------------------------- *) (* Test whether a point is in the convex hull of others. Rather than use *) (* computational geometry, express as linear inequalities and call CSDP. *) (* This is a bit lazy of me, but it's easy and not such a bottleneck so far. *) (* ------------------------------------------------------------------------- *) let in_convex_hull pts pt = let pts1 = (1 :: pt) :: List.map (fun x -> 1 :: x) pts in let pts2 = List.map (fun p -> List.map (fun x -> -x) p @ p) pts1 in let n = List.length pts + 1 and v = 2 * (List.length pt + 1) in let m = v + n - 1 in let mat = ( (m, n) , itern 1 pts2 (fun pts j -> itern 1 pts (fun x i -> (i, j) |-> Q.of_int x)) (iter (1, n) (fun i -> (v + i, i + 1) |-> Q.one) undefined) ) in linear_program_basic mat (* ------------------------------------------------------------------------- *) (* Filter down a set of points to a minimal set with the same convex hull. *) (* ------------------------------------------------------------------------- *) let minimal_convex_hull = let augment1 = function | [] -> assert false | m :: ms -> if in_convex_hull ms m then ms else ms @ [m] in let augment m ms = funpow 3 augment1 (m :: ms) in fun mons -> let mons' = List.fold_right augment (List.tl mons) [List.hd mons] in funpow (List.length mons') augment1 mons' (* ------------------------------------------------------------------------- *) (* Stuff for "equations" (generic A->num functions). *) (* ------------------------------------------------------------------------- *) let equation_cmul c eq = if c =/ Q.zero then Empty else mapf (fun d -> c */ d) eq let equation_add eq1 eq2 = combine ( +/ ) (fun x -> x =/ Q.zero) eq1 eq2 let equation_eval assig eq = let value v = apply assig v in foldl (fun a v c -> a +/ (value v */ c)) Q.zero eq (* ------------------------------------------------------------------------- *) (* Eliminate all variables, in an essentially arbitrary order. *) (* ------------------------------------------------------------------------- *) let eliminate_all_equations one = let choose_variable eq = let v, _ = choose eq in if v = one then let eq' = undefine v eq in if is_undefined eq' then failwith "choose_variable" else let w, _ = choose eq' in w else v in let rec eliminate dun eqs = match eqs with | [] -> dun | eq :: oeqs -> if is_undefined eq then eliminate dun oeqs else let v = choose_variable eq in let a = apply eq v in let eq' = equation_cmul (Q.minus_one // a) (undefine v eq) in let elim e = let b = tryapplyd e v Q.zero in if b =/ Q.zero then e else equation_add e (equation_cmul (Q.neg b // a) eq) in eliminate ((v |-> eq') (mapf elim dun)) (List.map elim oeqs) in fun eqs -> let assig = eliminate undefined eqs in let vs = foldl (fun a x f -> subtract (dom f) [one] @ a) [] assig in (setify vs, assig) (* ------------------------------------------------------------------------- *) (* Hence produce the "relevant" monomials: those whose squares lie in the *) (* Newton polytope of the monomials in the input. (This is enough according *) (* to Reznik: "Extremal PSD forms with few terms", Duke Math. Journal, *) (* vol 45, pp. 363--374, 1978. *) (* *) (* These are ordered in sort of decreasing degree. In particular the *) (* constant monomial is last; this gives an order in diagonalization of the *) (* quadratic form that will tend to display constants. *) (* ------------------------------------------------------------------------- *) let newton_polytope pol = let vars = poly_variables pol in let mons = List.map (fun m -> List.map (fun x -> monomial_degree x m) vars) (dom pol) and ds = List.map (fun x -> (degree x pol + 1) / 2) vars in let all = List.fold_right (fun n -> allpairs (fun h t -> h :: t) (0 -- n)) ds [[]] and mons' = minimal_convex_hull mons in let all' = List.filter (fun m -> in_convex_hull mons' (List.map (fun x -> 2 * x) m)) all in List.map (fun m -> List.fold_right2 (fun v i a -> if i = 0 then a else (v |-> i) a) vars m monomial_1) (List.rev all') (* ------------------------------------------------------------------------- *) (* Diagonalize (Cholesky/LDU) the matrix corresponding to a quadratic form. *) (* ------------------------------------------------------------------------- *) let diag m = let nn = dimensions m in let n = fst nn in if snd nn <> n then failwith "diagonalize: non-square matrix" else let rec diagonalize i m = if is_zero m then [] else let a11 = element m (i, i) in if a11 </ Q.zero then failwith "diagonalize: not PSD" else if a11 =/ Q.zero then if is_zero (row i m) then diagonalize (i + 1) m else failwith "diagonalize: not PSD" else let v = row i m in let v' = mapa (fun a1k -> a1k // a11) v in let m' = ( (n, n) , iter (i + 1, n) (fun j -> iter (i + 1, n) (fun k -> (j, k) |--> element m (j, k) -/ (element v j */ element v' k))) undefined ) in (a11, v') :: diagonalize (i + 1) m' in diagonalize 1 m (* ------------------------------------------------------------------------- *) (* Adjust a diagonalization to collect rationals at the start. *) (* ------------------------------------------------------------------------- *) let deration d = if d = [] then (Q.zero, d) else let adj (c, l) = let a = Q.make (foldl (fun a i c -> Z.lcm a (Q.den c)) Z.one (snd l)) (foldl (fun a i c -> Z.gcd a (Q.num c)) Z.zero (snd l)) in (c // (a */ a), mapa (fun x -> a */ x) l) in let d' = List.map adj d in let a = Q.make (List.fold_right (o Z.lcm (o Q.den fst)) d' Z.one) (List.fold_right (o Z.gcd (o Q.num fst)) d' Z.zero) in (Q.one // a, List.map (fun (c, l) -> (a */ c, l)) d') (* ------------------------------------------------------------------------- *) (* Enumeration of monomials with given multidegree bound. *) (* ------------------------------------------------------------------------- *) let rec enumerate_monomials d vars = if d < 0 then [] else if d = 0 then [undefined] else if vars = [] then [monomial_1] else let alts = List.map (fun k -> let oths = enumerate_monomials (d - k) (List.tl vars) in List.map (fun ks -> if k = 0 then ks else (List.hd vars |-> k) ks) oths) (0 -- d) in end_itlist ( @ ) alts (* ------------------------------------------------------------------------- *) (* Enumerate products of distinct input polys with degree <= d. *) (* We ignore any constant input polynomials. *) (* Give the output polynomial and a record of how it was derived. *) (* ------------------------------------------------------------------------- *) let rec enumerate_products d pols = if d = 0 then [(poly_const Q.one, Rational_lt Q.one)] else if d < 0 then [] else match pols with | [] -> [(poly_const Q.one, Rational_lt Q.one)] | (p, b) :: ps -> let e = multidegree p in if e = 0 then enumerate_products d ps else enumerate_products d ps @ List.map (fun (q, c) -> (poly_mul p q, Product (b, c))) (enumerate_products (d - e) ps) (* ------------------------------------------------------------------------- *) (* Multiply equation-parametrized poly by regular poly and add accumulator. *) (* ------------------------------------------------------------------------- *) let epoly_pmul p q acc = foldl (fun a m1 c -> foldl (fun b m2 e -> let m = monomial_mul m1 m2 in let es = tryapplyd b m undefined in (m |-> equation_add (equation_cmul c e) es) b) a q) acc p (* ------------------------------------------------------------------------- *) (* Convert regular polynomial. Note that we treat (0,0,0) as -1. *) (* ------------------------------------------------------------------------- *) let epoly_of_poly p = foldl (fun a m c -> (m |-> ((0, 0, 0) |=> Q.neg c)) a) undefined p (* ------------------------------------------------------------------------- *) (* String for block diagonal matrix numbered k. *) (* ------------------------------------------------------------------------- *) let sdpa_of_blockdiagonal k m = let pfx = string_of_int k ^ " " in let ents = foldl (fun a (b, i, j) c -> if i > j then a else ((b, i, j), c) :: a) [] m in let entss = sort (increasing fst) ents in List.fold_right (fun ((b, i, j), c) a -> pfx ^ string_of_int b ^ " " ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) entss "" (* ------------------------------------------------------------------------- *) (* SDPA for problem using block diagonal (i.e. multiple SDPs) *) (* ------------------------------------------------------------------------- *) let sdpa_of_blockproblem comment nblocks blocksizes obj mats = let m = List.length mats - 1 in "\"" ^ comment ^ "\"\n" ^ string_of_int m ^ "\n" ^ string_of_int nblocks ^ "\n" ^ String.concat " " (List.map string_of_int blocksizes) ^ "\n" ^ sdpa_of_vector obj ^ List.fold_right2 (fun k m a -> sdpa_of_blockdiagonal (k - 1) m ^ a) (1 -- List.length mats) mats "" (* ------------------------------------------------------------------------- *) (* Hence run CSDP on a problem in block diagonal form. *) (* ------------------------------------------------------------------------- *) let run_csdp dbg nblocks blocksizes obj mats = let input_file = Filename.temp_file "sos" ".dat-s" in let output_file = String.sub input_file 0 (String.length input_file - 6) ^ ".out" and params_file = Filename.concat temp_path "param.csdp" in file_of_string input_file (sdpa_of_blockproblem "" nblocks blocksizes obj mats); file_of_string params_file csdp_params; let rv = Sys.command ( "cd " ^ temp_path ^ "; csdp " ^ input_file ^ " " ^ output_file ^ if dbg then "" else "> /dev/null" ) in let op = string_of_file output_file in let res = parse_csdpoutput op in if dbg then () else (Sys.remove input_file; Sys.remove output_file); (rv, res) let csdp nblocks blocksizes obj mats = let rv, res = run_csdp !debugging nblocks blocksizes obj mats in if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible" else if rv = 3 then () (*Format.print_string "csdp warning: Reduced accuracy"; Format.print_newline() *) else if rv <> 0 then failwith ("csdp: error " ^ string_of_int rv) else (); res (* ------------------------------------------------------------------------- *) (* 3D versions of matrix operations to consider blocks separately. *) (* ------------------------------------------------------------------------- *) let bmatrix_add = combine ( +/ ) (fun x -> x =/ Q.zero) let bmatrix_cmul c bm = if c =/ Q.zero then undefined else mapf (fun x -> c */ x) bm let bmatrix_neg = bmatrix_cmul Q.minus_one (* ------------------------------------------------------------------------- *) (* Smash a block matrix into components. *) (* ------------------------------------------------------------------------- *) let blocks blocksizes bm = List.map (fun (bs, b0) -> let m = foldl (fun a (b, i, j) c -> if b = b0 then ((i, j) |-> c) a else a) undefined bm in (((bs, bs), m) : matrix)) (List.combine blocksizes (1 -- List.length blocksizes)) (* ------------------------------------------------------------------------- *) (* Positiv- and Nullstellensatz. Flag "linf" forces a linear representation. *) (* ------------------------------------------------------------------------- *) let real_positivnullstellensatz_general linf d eqs leqs pol = let vars = List.fold_right (o union poly_variables) ((pol :: eqs) @ List.map fst leqs) [] in let monoid = if linf then (poly_const Q.one, Rational_lt Q.one) :: List.filter (fun (p, c) -> multidegree p <= d) leqs else enumerate_products d leqs in let nblocks = List.length monoid in let mk_idmultiplier k p = let e = d - multidegree p in let mons = enumerate_monomials e vars in let nons = List.combine mons (1 -- List.length mons) in ( mons , List.fold_right (fun (m, n) -> m |-> ((-k, -n, n) |=> Q.one)) nons undefined ) in let mk_sqmultiplier k (p, c) = let e = (d - multidegree p) / 2 in let mons = enumerate_monomials e vars in let nons = List.combine mons (1 -- List.length mons) in ( mons , List.fold_right (fun (m1, n1) -> List.fold_right (fun (m2, n2) a -> let m = monomial_mul m1 m2 in if n1 > n2 then a else let c = if n1 = n2 then Q.one else Q.two in let e = tryapplyd a m undefined in (m |-> equation_add ((k, n1, n2) |=> c) e) a) nons) nons undefined ) in let sqmonlist, sqs = List.split (List.map2 mk_sqmultiplier (1 -- List.length monoid) monoid) and idmonlist, ids = List.split (List.map2 mk_idmultiplier (1 -- List.length eqs) eqs) in let blocksizes = List.map List.length sqmonlist in let bigsum = List.fold_right2 (fun p q a -> epoly_pmul p q a) eqs ids (List.fold_right2 (fun (p, c) s a -> epoly_pmul p s a) monoid sqs (epoly_of_poly (poly_neg pol))) in let eqns = foldl (fun a m e -> e :: a) [] bigsum in let pvs, assig = eliminate_all_equations (0, 0, 0) eqns in let qvars = (0, 0, 0) :: pvs in let allassig = List.fold_right (fun v -> v |-> (v |=> Q.one)) pvs assig in let mk_matrix v = foldl (fun m (b, i, j) ass -> if b < 0 then m else let c = tryapplyd ass v Q.zero in if c =/ Q.zero then m else ((b, j, i) |-> c) (((b, i, j) |-> c) m)) undefined allassig in let diagents = foldl (fun a (b, i, j) e -> if b > 0 && i = j then equation_add e a else a) undefined allassig in let mats = List.map mk_matrix qvars and obj = ( List.length pvs , itern 1 pvs (fun v i -> i |--> tryapplyd diagents v Q.zero) undefined ) in let raw_vec = if pvs = [] then vector_0 0 else scale_then (csdp nblocks blocksizes) obj mats in let find_rounding d = if !debugging then ( Format.print_string ("Trying rounding with limit " ^ Q.to_string d); Format.print_newline () ) else (); let vec = nice_vector d raw_vec in let blockmat = iter (1, dim vec) (fun i a -> bmatrix_add (bmatrix_cmul (element vec i) (List.nth mats i)) a) (bmatrix_neg (List.nth mats 0)) in let allmats = blocks blocksizes blockmat in (vec, List.map diag allmats) in let vec, ratdias = if pvs = [] then find_rounding Q.one else tryfind find_rounding (List.map Q.of_int (1 -- 31) @ List.map Q.pow2 (5 -- 66)) in let newassigs = List.fold_right (fun k -> List.nth pvs (k - 1) |-> element vec k) (1 -- dim vec) ((0, 0, 0) |=> Q.minus_one) in let finalassigs = foldl (fun a v e -> (v |-> equation_eval newassigs e) a) newassigs allassig in let poly_of_epoly p = foldl (fun a v e -> (v |--> equation_eval finalassigs e) a) undefined p in let mk_sos mons = let mk_sq (c, m) = ( c , List.fold_right (fun k a -> (List.nth mons (k - 1) |--> element m k) a) (1 -- List.length mons) undefined ) in List.map mk_sq in let sqs = List.map2 mk_sos sqmonlist ratdias and cfs = List.map poly_of_epoly ids in let msq = List.filter (fun (a, b) -> b <> []) (List.map2 (fun a b -> (a, b)) monoid sqs) in let eval_sq sqs = List.fold_right (fun (c, q) -> poly_add (poly_cmul c (poly_mul q q))) sqs poly_0 in let sanity = List.fold_right (fun ((p, c), s) -> poly_add (poly_mul p (eval_sq s))) msq (List.fold_right2 (fun p q -> poly_add (poly_mul p q)) cfs eqs (poly_neg pol)) in if not (is_undefined sanity) then raise Sanity else (cfs, List.map (fun (a, b) -> (snd a, b)) msq) (* ------------------------------------------------------------------------- *) (* The ordering so we can create canonical HOL polynomials. *) (* ------------------------------------------------------------------------- *) let dest_monomial mon = sort (increasing fst) (graph mon) let monomial_order = let rec lexorder l1 l2 = match (l1, l2) with | [], [] -> true | vps, [] -> false | [], vps -> true | (x1, n1) :: vs1, (x2, n2) :: vs2 -> if x1 < x2 then true else if x2 < x1 then false else if n1 < n2 then false else if n2 < n1 then true else lexorder vs1 vs2 in fun m1 m2 -> if m2 = monomial_1 then true else if m1 = monomial_1 then false else let mon1 = dest_monomial m1 and mon2 = dest_monomial m2 in let deg1 = List.fold_right (o ( + ) snd) mon1 0 and deg2 = List.fold_right (o ( + ) snd) mon2 0 in if deg1 < deg2 then false else if deg1 > deg2 then true else lexorder mon1 mon2 (* ------------------------------------------------------------------------- *) (* Map back polynomials and their composites to HOL. *) (* ------------------------------------------------------------------------- *) let term_of_varpow x k = if k = 1 then Var x else Pow (Var x, k) let term_of_monomial m = if m = monomial_1 then Const Q.one else let m' = dest_monomial m in let vps = List.fold_right (fun (x, k) a -> term_of_varpow x k :: a) m' [] in end_itlist (fun s t -> Mul (s, t)) vps let term_of_cmonomial (m, c) = if m = monomial_1 then Const c else if c =/ Q.one then term_of_monomial m else Mul (Const c, term_of_monomial m) let term_of_poly p = if p = poly_0 then Zero else let cms = List.map term_of_cmonomial (sort (fun (m1, _) (m2, _) -> monomial_order m1 m2) (graph p)) in end_itlist (fun t1 t2 -> Add (t1, t2)) cms let term_of_sqterm (c, p) = Product (Rational_lt c, Square (term_of_poly p)) let term_of_sos (pr, sqs) = if sqs = [] then pr else Product (pr, end_itlist (fun a b -> Sum (a, b)) (List.map term_of_sqterm sqs)) (* ------------------------------------------------------------------------- *) (* Some combinatorial helper functions. *) (* ------------------------------------------------------------------------- *) let rec allpermutations l = if l = [] then [[]] else List.fold_right (fun h acc -> List.map (fun t -> h :: t) (allpermutations (subtract l [h])) @ acc) l [] let changevariables_monomial zoln (m : monomial) = foldl (fun a x k -> (List.assoc x zoln |-> k) a) monomial_1 m let changevariables zoln pol = foldl (fun a m c -> (changevariables_monomial zoln m |-> c) a) poly_0 pol (* ------------------------------------------------------------------------- *) (* Return to original non-block matrices. *) (* ------------------------------------------------------------------------- *) let sdpa_of_vector (v : vector) = let n = dim v in let strs = List.map (o (decimalize 20) (element v)) (1 -- n) in String.concat " " strs ^ "\n" let sdpa_of_matrix k (m : matrix) = let pfx = string_of_int k ^ " 1 " in let ms = foldr (fun (i, j) c a -> if i > j then a else ((i, j), c) :: a) (snd m) [] in let mss = sort (increasing fst) ms in List.fold_right (fun ((i, j), c) a -> pfx ^ string_of_int i ^ " " ^ string_of_int j ^ " " ^ decimalize 20 c ^ "\n" ^ a) mss "" let sdpa_of_problem comment obj mats = let m = List.length mats - 1 and n, _ = dimensions (List.hd mats) in "\"" ^ comment ^ "\"\n" ^ string_of_int m ^ "\n" ^ "1\n" ^ string_of_int n ^ "\n" ^ sdpa_of_vector obj ^ List.fold_right2 (fun k m a -> sdpa_of_matrix (k - 1) m ^ a) (1 -- List.length mats) mats "" let run_csdp dbg obj mats = let input_file = Filename.temp_file "sos" ".dat-s" in let output_file = String.sub input_file 0 (String.length input_file - 6) ^ ".out" and params_file = Filename.concat temp_path "param.csdp" in file_of_string input_file (sdpa_of_problem "" obj mats); file_of_string params_file csdp_params; let rv = Sys.command ( "cd " ^ temp_path ^ "; csdp " ^ input_file ^ " " ^ output_file ^ if dbg then "" else "> /dev/null" ) in let op = string_of_file output_file in let res = parse_csdpoutput op in if dbg then () else (Sys.remove input_file; Sys.remove output_file); (rv, res) let csdp obj mats = let rv, res = run_csdp !debugging obj mats in if rv = 1 || rv = 2 then failwith "csdp: Problem is infeasible" else if rv = 3 then () (* (Format.print_string "csdp warning: Reduced accuracy"; Format.print_newline()) *) else if rv <> 0 then failwith ("csdp: error " ^ string_of_int rv) else (); res (* ------------------------------------------------------------------------- *) (* Sum-of-squares function with some lowbrow symmetry reductions. *) (* ------------------------------------------------------------------------- *) let sumofsquares_general_symmetry tool pol = let vars = poly_variables pol and lpps = newton_polytope pol in let n = List.length lpps in let sym_eqs = let invariants = List.filter (fun vars' -> is_undefined (poly_sub pol (changevariables (List.combine vars vars') pol))) (allpermutations vars) in let lpns = List.combine lpps (1 -- List.length lpps) in let lppcs = List.filter (fun (m, (n1, n2)) -> n1 <= n2) (allpairs (fun (m1, n1) (m2, n2) -> ((m1, m2), (n1, n2))) lpns lpns) in let clppcs = end_itlist ( @ ) (List.map (fun ((m1, m2), (n1, n2)) -> List.map (fun vars' -> ( ( changevariables_monomial (List.combine vars vars') m1 , changevariables_monomial (List.combine vars vars') m2 ) , (n1, n2) )) invariants) lppcs) in let clppcs_dom = setify (List.map fst clppcs) in let clppcs_cls = List.map (fun d -> List.filter (fun (e, _) -> e = d) clppcs) clppcs_dom in let eqvcls = List.map (o setify (List.map snd)) clppcs_cls in let mk_eq cls acc = match cls with | [] -> raise Sanity | [h] -> acc | h :: t -> List.map (fun k -> (k |-> Q.minus_one) (h |=> Q.one)) t @ acc in List.fold_right mk_eq eqvcls [] in let eqs = foldl (fun a x y -> y :: a) [] (itern 1 lpps (fun m1 n1 -> itern 1 lpps (fun m2 n2 f -> let m = monomial_mul m1 m2 in if n1 > n2 then f else let c = if n1 = n2 then Q.one else Q.two in (m |-> ((n1, n2) |-> c) (tryapplyd f m undefined)) f)) (foldl (fun a m c -> (m |-> ((0, 0) |=> c)) a) undefined pol)) @ sym_eqs in let pvs, assig = eliminate_all_equations (0, 0) eqs in let allassig = List.fold_right (fun v -> v |-> (v |=> Q.one)) pvs assig in let qvars = (0, 0) :: pvs in let diagents = end_itlist equation_add (List.map (fun i -> apply allassig (i, i)) (1 -- n)) in let mk_matrix v : matrix = ( (n, n) , foldl (fun m (i, j) ass -> let c = tryapplyd ass v Q.zero in if c =/ Q.zero then m else ((j, i) |-> c) (((i, j) |-> c) m)) undefined allassig ) in let mats = List.map mk_matrix qvars and obj = ( List.length pvs , itern 1 pvs (fun v i -> i |--> tryapplyd diagents v Q.zero) undefined ) in let raw_vec = if pvs = [] then vector_0 0 else tool obj mats in let find_rounding d = if !debugging then ( Format.print_string ("Trying rounding with limit " ^ Q.to_string d); Format.print_newline () ) else (); let vec = nice_vector d raw_vec in let mat = iter (1, dim vec) (fun i a -> matrix_add (matrix_cmul (element vec i) (List.nth mats i)) a) (matrix_neg (List.nth mats 0)) in deration (diag mat) in let rat, dia = if pvs = [] then let mat = matrix_neg (List.nth mats 0) in deration (diag mat) else tryfind find_rounding (List.map Q.of_int (1 -- 31) @ List.map Q.pow2 (5 -- 66)) in let poly_of_lin (d, v) = (d, foldl (fun a i c -> (List.nth lpps (i - 1) |-> c) a) undefined (snd v)) in let lins = List.map poly_of_lin dia in let sqs = List.map (fun (d, l) -> poly_mul (poly_const d) (poly_pow l 2)) lins in let sos = poly_cmul rat (end_itlist poly_add sqs) in if is_undefined (poly_sub sos pol) then (rat, lins) else raise Sanity let sumofsquares = sumofsquares_general_symmetry csdp
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>