package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/ltac_plugin/comRewrite.ml.html
Source file comRewrite.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Nameops open Constr open Constrexpr open EConstr open Libnames let () = CErrors.register_handler begin function | Rewrite.RewriteFailure (env, sigma, e) -> let e = Himsg.explain_pretype_error env sigma e in Some Pp.(str"setoid rewrite failed: " ++ e) | _ -> None end module TC = Typeclasses let classes_dirpath = Names.DirPath.make (List.map Id.of_string ["Classes";"Coq"]) let init_setoid () = if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then () else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"] type rewrite_attributes = { polymorphic : bool; global : bool } let rewrite_attributes = let open Attributes.Notations in Attributes.(polymorphic ++ program ++ locality) >>= fun ((polymorphic, program), locality) -> let global = not (Locality.make_section_locality locality) in Attributes.Notations.return { polymorphic; global } (** Utility functions *) let find_reference dir s = Coqlib.find_reference "generalized rewriting" dir s [@@warning "-3"] let lazy_find_reference dir s = let gr = lazy (find_reference dir s) in fun () -> Lazy.force gr module PropGlobal = struct let morphisms = ["Coq"; "Classes"; "Morphisms"] let respectful_ref = lazy_find_reference morphisms "respectful" let proper_class = let r = lazy (find_reference morphisms "Proper") in fun env sigma -> TC.class_info env sigma (Lazy.force r) let proper_proj env sigma = mkConst (Option.get (List.hd (proper_class env sigma).TC.cl_projs).TC.meth_const) end (* By default the strategy for "rewrite_db" is top-down *) let mkappc s l = CAst.make @@ CAppExpl ((qualid_of_ident (Id.of_string s),None),l) let declare_an_instance n s args = (((CAst.make @@ Name n),None), CAst.make @@ CAppExpl ((qualid_of_string s,None), args)) let declare_instance a aeq n s = declare_an_instance n s [a;aeq] let get_locality b = if b then Hints.SuperGlobal else Hints.Local let anew_instance atts binders (name,t) fields = let locality = get_locality atts.global in let _id = Classes.new_instance ~poly:atts.polymorphic name binders t (true, CAst.make @@ CRecord (fields)) ~locality Hints.empty_hint_info in () let declare_instance_refl atts binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "reflexivity"),lemma)] let declare_instance_sym atts binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "symmetry"),lemma)] let declare_instance_trans atts binders a aeq n lemma = let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "transitivity"),lemma)] let declare_relation atts ?(binders=[]) a aeq n refl symm trans = init_setoid (); let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation" in let () = anew_instance atts binders instance [] in match (refl,symm,trans) with (None, None, None) -> () | (Some lemma1, None, None) -> declare_instance_refl atts binders a aeq n lemma1 | (None, Some lemma2, None) -> declare_instance_sym atts binders a aeq n lemma2 | (None, None, Some lemma3) -> declare_instance_trans atts binders a aeq n lemma3 | (Some lemma1, Some lemma2, None) -> let () = declare_instance_refl atts binders a aeq n lemma1 in declare_instance_sym atts binders a aeq n lemma2 | (Some lemma1, None, Some lemma3) -> let () = declare_instance_refl atts binders a aeq n lemma1 in let () = declare_instance_trans atts binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "PreOrder_Reflexive"), lemma1); (qualid_of_ident (Id.of_string "PreOrder_Transitive"),lemma3)] | (None, Some lemma2, Some lemma3) -> let () = declare_instance_sym atts binders a aeq n lemma2 in let () = declare_instance_trans atts binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "PER_Symmetric"), lemma2); (qualid_of_ident (Id.of_string "PER_Transitive"),lemma3)] | (Some lemma1, Some lemma2, Some lemma3) -> let () = declare_instance_refl atts binders a aeq n lemma1 in let () = declare_instance_sym atts binders a aeq n lemma2 in let () = declare_instance_trans atts binders a aeq n lemma3 in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), lemma1); (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), lemma2); (qualid_of_ident (Id.of_string "Equivalence_Transitive"), lemma3)] let cHole = CAst.make @@ CHole (None, Namegen.IntroAnonymous, None) let proper_projection env sigma r ty = let rel_vect n m = Array.init m (fun i -> mkRel(n+m-i)) in let ctx, inst = decompose_prod_assum sigma ty in let mor, args = destApp sigma inst in let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in let app = mkApp (PropGlobal.proper_proj env sigma, Array.append args [| instarg |]) in it_mkLambda_or_LetIn app ctx let declare_projection name instance_id r = let env = Global.env () in let poly = Environ.is_polymorphic env r in let sigma = Evd.from_env env in let sigma,c = Evd.fresh_global env sigma r in let ty = Retyping.get_type_of env sigma c in let body = proper_projection env sigma c ty in let sigma, typ = Typing.type_of env sigma body in let ctx, typ = decompose_prod_assum sigma typ in let typ = let n = let rec aux t = match EConstr.kind sigma t with | App (f, [| a ; a' ; rel; rel' |]) when isRefX sigma (PropGlobal.respectful_ref ()) f -> succ (aux rel') | _ -> 0 in let init = match EConstr.kind sigma typ with App (f, args) when isRefX sigma (PropGlobal.respectful_ref ()) f -> mkApp (f, fst (Array.chop (Array.length args - 2) args)) | _ -> typ in aux init in let ctx,ccl = Reductionops.splay_prod_n env sigma (3 * n) typ in it_mkProd_or_LetIn ccl ctx in let types = Some (it_mkProd_or_LetIn typ ctx) in let kind = Decls.(IsDefinition Definition) in let impargs, udecl = [], UState.default_univ_decl in let cinfo = Declare.CInfo.make ~name ~impargs ~typ:types () in let info = Declare.Info.make ~kind ~udecl ~poly () in let _r : GlobRef.t = Declare.declare_definition ~cinfo ~info ~opaque:false ~body sigma in () let add_setoid atts binders a aeq t n = init_setoid (); let () = declare_instance_refl atts binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in let () = declare_instance_sym atts binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in let () = declare_instance_trans atts binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence" in anew_instance atts binders instance [(qualid_of_ident (Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]); (qualid_of_ident (Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]); (qualid_of_ident (Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])] let add_morphism_as_parameter atts m n : unit = init_setoid (); let instance_id = add_suffix n "_Proper" in let env = Global.env () in let evd = Evd.from_env env in let poly = atts.polymorphic in let kind = Decls.(IsAssumption Logical) in let impargs, udecl = [], UState.default_univ_decl in let evd, types = Rewrite.Internal.build_morphism_signature env evd m in let evd, pe = Declare.prepare_parameter ~poly ~udecl ~types evd in let cst = Declare.declare_constant ~name:instance_id ~kind (Declare.ParameterEntry pe) in let cst = GlobRef.ConstRef cst in Classes.Internal.add_instance (PropGlobal.proper_class env evd) Hints.empty_hint_info atts.global cst; declare_projection n instance_id cst let add_morphism_interactive atts ~tactic m n : Declare.Proof.t = init_setoid (); let instance_id = add_suffix n "_Proper" in let env = Global.env () in let evd = Evd.from_env env in let evd, morph = Rewrite.Internal.build_morphism_signature env evd m in let poly = atts.polymorphic in let kind = Decls.(IsDefinition Instance) in let hook { Declare.Hook.S.dref; _ } = dref |> function | GlobRef.ConstRef cst -> Classes.Internal.add_instance (PropGlobal.proper_class env evd) Hints.empty_hint_info atts.global (GlobRef.ConstRef cst); declare_projection n instance_id (GlobRef.ConstRef cst) | _ -> assert false in let hook = Declare.Hook.make hook in Flags.silently (fun () -> let cinfo = Declare.CInfo.make ~name:instance_id ~typ:morph () in let info = Declare.Info.make ~poly ~hook ~kind () in let lemma = Declare.Proof.start ~cinfo ~info evd in fst (Declare.Proof.by tactic lemma)) () let add_morphism atts ~tactic binders m s n = init_setoid (); let instance_id = add_suffix n "_Proper" in let instance_name = (CAst.make @@ Name instance_id),None in let instance_t = CAst.make @@ CAppExpl ((Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper",None), [cHole; s; m]) in let locality = get_locality atts.global in let _id, lemma = Classes.new_instance_interactive ~locality ~poly:atts.polymorphic instance_name binders instance_t ~tac:tactic ~hook:(declare_projection n instance_id) Hints.empty_hint_info None in lemma (* no instance body -> always open proof *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>