package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.vernac/auto_ind_decl.ml.html
Source file auto_ind_decl.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* This file is about the automatic generation of schemes about decidable equality, created by Vincent Siles, Oct 2007 *) open CErrors open Util open Pp open Term open Constr open Context open Vars open Termops open Declarations open Names open Inductiveops open Tactics open Ind_tables open Namegen open Tactypes open Proofview.Notations module RelDecl = Context.Rel.Declaration (**********************************************************************) (* Generic synthesis of boolean equality *) exception EqNotFound of inductive exception EqUnknown of string exception UndefinedCst of string exception InductiveWithProduct exception InductiveWithSort exception ParameterWithoutEquality of GlobRef.t exception NonSingletonProp of inductive exception DecidabilityMutualNotSupported exception NoDecidabilityCoInductive exception ConstructorWithNonParametricInductiveType of inductive exception DecidabilityIndicesNotSupported exception InternalDependencies let named_hd env t na = named_hd env (Evd.from_env env) (EConstr.of_constr t) na let name_assumption env = function | RelDecl.LocalAssum (na,t) -> RelDecl.LocalAssum (map_annot (named_hd env t) na, t) | RelDecl.LocalDef (na,c,t) -> RelDecl.LocalDef (map_annot (named_hd env c) na, c, t) let name_context env ctxt = snd (List.fold_left (fun (env,hyps) d -> let d' = name_assumption env d in (Environ.push_rel d' env, d' :: hyps)) (env,[]) (List.rev ctxt)) (* Some pre declaration of constant we are going to use *) let andb_prop = fun _ -> UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.bool.andb_prop") let andb_true_intro = fun _ -> UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.bool.andb_true_intro") (* We avoid to use lazy as the binding of constants can change *) let bb () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.bool.type") let tt () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.bool.true") let ff () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.bool.false") let eq () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.eq.type") let int63_eqb () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "num.int63.eqb") let float64_eqb () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "num.float.leibniz.eqb") let sumbool () = UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.sumbool.type") let andb = fun _ -> UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref "core.bool.andb") let induct_on c = induction false None c None None let destruct_on c = destruct false None c None None let destruct_on_using c id = destruct false None c (Some (CAst.make @@ IntroOrPattern [[CAst.make @@ IntroNaming IntroAnonymous]; [CAst.make @@ IntroNaming (IntroIdentifier id)]])) None let destruct_on_as c l = destruct false None c (Some (CAst.make l)) None let inj_flags = Some { Equality.keep_proof_equalities = true; (* necessary *) Equality.injection_pattern_l2r_order = true; (* does not matter here *) } let my_discr_tac = Equality.discr_tac false None let my_inj_tac x = Equality.inj inj_flags None false None (EConstr.mkVar x,NoBindings) (* reconstruct the inductive with the correct de Bruijn indexes *) let mkFullInd env (ind,u) n = let mib = Environ.lookup_mind (fst ind) env in mkApp (mkIndU (ind,u), Context.Rel.instance mkRel n mib.mind_params_ctxt) let mkPartialInd env (ind,u) n = let mib = Environ.lookup_mind (fst ind) env in let _, recparams_ctx = Inductive.inductive_nonrec_rec_paramdecls (mib,u) in mkApp (mkIndU (ind,u), Context.Rel.instance mkRel n recparams_ctx) let name_X = make_annot (Name (Id.of_string "X")) Sorts.Relevant let name_Y = make_annot (Name (Id.of_string "Y")) Sorts.Relevant let mk_eqb_over u = mkProd (name_X, u, (mkProd (name_Y, lift 1 u, bb ()))) let check_bool_is_defined () = if not (Coqlib.has_ref "core.bool.type") then raise (UndefinedCst "bool") let check_no_indices mib = if Array.exists (fun mip -> mip.mind_nrealargs <> 0) mib.mind_packets then raise DecidabilityIndicesNotSupported let is_irrelevant env c = match kind (EConstr.Unsafe.to_constr (Retyping.get_type_of env (Evd.from_env env) (EConstr.of_constr c))) with | Sort SProp -> true | _ -> false let get_scheme handle k ind = match local_lookup_scheme handle k ind with | None -> assert false | Some c -> c let beq_scheme_kind_aux = ref (fun _ -> failwith "Undefined") let get_inductive_deps ~noprop env kn = (* fetching the mutual inductive body *) let mib = Environ.lookup_mind kn env in (* number of params in the type *) check_no_indices mib; let env = Environ.push_rel_context mib.mind_params_ctxt env in let sigma = Evd.from_env env in let get_deps_one accu i mip = (* This function is only trying to recursively compute the inductive types appearing as arguments of the constructors. This is done to support equality decision over hereditarily first-order types. It could be performed in a much cleaner way, e.g. using the kernel normal form of constructor types and kernel whd_all for the argument types. *) let rec aux env accu c = let (c,a) = Reductionops.whd_all_stack env sigma c in match EConstr.kind sigma c with | Cast (x,_,_) -> aux env accu (EConstr.applist (x,a)) | App _ -> assert false | Ind ((kn', _ as ind), _) -> if Environ.QMutInd.equal env kn kn' then (* Example: Inductive T A := C : T (option A) -> T A. *) List.fold_left (aux env) accu a else let _,mip = Inductive.lookup_mind_specif env ind in (* Types in SProp have trivial equality and are skipped *) if match mip.mind_arity with RegularArity {mind_sort = SProp} -> true | _ -> false then List.fold_left (aux env) accu a else List.fold_left (aux env) (kn' :: accu) a | Const (kn, u) -> (match Environ.constant_opt_value_in env (kn, EConstr.EInstance.kind sigma u) with | Some c -> aux env accu (EConstr.applist (EConstr.of_constr c,a)) | None -> accu) | Rel _ | Var _ | Sort _ | Prod _ | Lambda _ | LetIn _ | Proj _ | Construct _ | Case _ | CoFix _ | Fix _ | Meta _ | Evar _ | Int _ | Float _ | Array _ -> Termops.fold_constr_with_full_binders env sigma EConstr.push_rel aux env (List.fold_left (aux env) accu a) c in let fold i accu (constr_ctx,_) = let constr_ctx, _ = List.chop mip.mind_consnrealdecls.(i) constr_ctx in let rec fold env accu = function | [] -> env, accu | decl::ctx -> let env, accu = fold env accu ctx in let t = Context.Rel.Declaration.get_type decl in Environ.push_rel decl env, (if noprop && is_irrelevant env t then accu else aux env accu (EConstr.of_constr t)) in snd (fold env accu constr_ctx) in Array.fold_left_i fold accu mip.mind_nf_lc in Array.fold_left_i (fun i accu mip -> get_deps_one accu i mip) [] mib.mind_packets (** A compact data structure to remember for each declaration of the context if it is a type and comes with a Boolean equality; if it comes with an equality we remember the integer to subtract to the de Bruijn indices of the binder to get the equality *) type eq_status = | End (* int is the number of consecutive declarations without an equality *) | WithoutEq of int * eq_status (* list is the list of shifts for consecutive declarations with an equality *) | WithEq of int list * eq_status let add_eq_status_no = function | WithEq _ | End as s -> WithoutEq (1, s) | WithoutEq (n, s) -> WithoutEq (n+1, s) let set_eq_status_yes n q s = let rec aux n = function | WithoutEq (p,End) when Int.equal n p -> WithoutEq (p-1, WithEq ([q],End)) | WithoutEq (p,WithEq (l,s)) when Int.equal n p -> WithoutEq (p-1, WithEq (q::l,s)) | WithoutEq (p,s) when n < p -> WithoutEq (n-1, WithEq ([q], WithoutEq (p-n, s))) | WithoutEq (p,s) when Int.equal n 1 -> WithEq ([q], WithoutEq (p-1, s)) | WithoutEq (p,s) -> WithoutEq (p, aux (n-p) s) | WithEq (l,s) -> WithEq (l,aux (n-List.length l) s) | End -> assert false in aux n s let rec has_decl_equality n status = match n, status with | p, WithEq (l,s) when p <= List.length l -> Some (List.nth l (p-1)) | p, WithEq (l,s) -> has_decl_equality (p-List.length l) s | p, WithoutEq (n,s) when p <= n -> None | p, WithoutEq (n,s) -> has_decl_equality (p-n) s | _, End -> assert false (** The reallocation of variables to be done during the translation: [env] is the current env at the corresponding step of the translation [lift] is the lift for the original variables [eq_status] tells how to get the equality associated with a variable if any [ind_pos] tells the position of recursive calls (it could have been avoided by replacing the recursive occurrences of ind in an inductive definition by variables *) type env_lift = { env : Environ.env; (* Gamma *) lift : Esubst.lift; (* lift : Gamma + Gamma_eq |- Gamma *) eq_status : eq_status; ind_pos : ((MutInd.t * int * rel_context * int) * int) option; } let lift_ind_pos n = Option.map (fun (ind,k) -> (ind,k+n)) let empty_env_lift env = { env = env; lift = Esubst.el_id; eq_status = End; ind_pos = None; } let push_env_lift decl env_lift = { env = Environ.push_rel decl env_lift.env; lift = Esubst.el_lift env_lift.lift; eq_status = add_eq_status_no env_lift.eq_status; ind_pos = lift_ind_pos 1 env_lift.ind_pos; } let set_replicate n q env_lift = { env = env_lift.env; lift = env_lift.lift; eq_status = set_eq_status_yes n q env_lift.eq_status; ind_pos = env_lift.ind_pos; } let shiftn_env_lift n env_lift = { env_lift with lift = Esubst.el_shft n (Esubst.el_liftn n env_lift.lift); ind_pos = lift_ind_pos n env_lift.ind_pos; } let find_ind_env_lift env_lift (mind,i) = match env_lift.ind_pos with | Some ((mind',nrecparams,recparamsctx,nb_ind),n) when Environ.QMutInd.equal env_lift.env mind mind' -> Some (nrecparams,recparamsctx,n+nb_ind-i) | _ -> None let shift_fix_env_lift ind nrecparams recparamsctx nb_ind env_lift = { env = env_lift.env; lift = Esubst.el_shft nb_ind env_lift.lift; eq_status = env_lift.eq_status; ind_pos = Some ((ind,nrecparams,recparamsctx,nb_ind),0) } let push_rec_env_lift recdef env_lift = let n = Array.length (pi1 recdef) in { env = Environ.push_rec_types recdef env_lift.env; lift = Esubst.el_liftn n env_lift.lift; eq_status = add_eq_status_no env_lift.eq_status; ind_pos = lift_ind_pos n env_lift.ind_pos; } let dest_lam_assum_expand env c = let ctx, c = Reduction.dest_lam_assum env c in if List.is_empty ctx then ctx, c else let t = EConstr.Unsafe.to_constr (Retyping.get_type_of (Environ.push_rel_context ctx env) (Evd.from_env env) (EConstr.of_constr c)) in let ctx', _ = Reduction.dest_prod_assum env t in ctx'@ctx, mkApp (lift (Context.Rel.length ctx') c, Context.Rel.instance mkRel 0 ctx') let pred_context env ci params u nas = let mib, mip = Inductive.lookup_mind_specif env ci.ci_ind in let paramdecl = Vars.subst_instance_context u mib.mind_params_ctxt in let paramsubst = Vars.subst_of_rel_context_instance paramdecl params in let realdecls, _ = List.chop mip.mind_nrealdecls mip.mind_arity_ctxt in let self = let args = Context.Rel.instance mkRel 0 mip.mind_arity_ctxt in let inst = Univ.(Instance.of_array (Array.init (Instance.length u) Level.var)) in mkApp (mkIndU (ci.ci_ind, inst), args) in let realdecls = RelDecl.LocalAssum (Context.anonR, self) :: realdecls in Inductive.instantiate_context u paramsubst nas realdecls let branch_context env ci params u nas i = let mib, mip = Inductive.lookup_mind_specif env ci.ci_ind in let paramdecl = Vars.subst_instance_context u mib.mind_params_ctxt in let paramsubst = Vars.subst_of_rel_context_instance paramdecl params in let ctx, _ = List.chop mip.mind_consnrealdecls.(i) (fst mip.mind_nf_lc.(i)) in Inductive.instantiate_context u paramsubst nas ctx let build_beq_scheme_deps env kn = let inds = get_inductive_deps ~noprop:true env kn in List.map (fun ind -> SchemeMutualDep (ind, !beq_scheme_kind_aux ())) inds let build_beq_scheme env handle kn = check_bool_is_defined (); (* predef coq's boolean type *) (* here I leave the Naming thingy so that the type of the function is more readable for the user *) let eqName = map_annot (function | Name s -> Name (Id.of_string ("eq_"^(Id.to_string s))) | Anonymous -> Name (Id.of_string "eq_A")) in (* The Boolean equality translation is a parametricity translation where each type T is interpreted as the pair of: - a (possibly degenerate) predicate T_R in Type over T (i.e. T_R : T->Type) - when T is decidable, a Boolean equality T_E over (i.e. T_E : option (T->T->bool) where None means not decidable, that is, at worst, unknown to be decidable) This generalizes into an interpretation of each term M:T as: - an inhabitant [|M|] of T_R M by setting for sort s: - s_R := \T:s.{R:T->s ; E:option (T->T->bool)} and - s_E := None so that types T:s are indeed interpreted as a pair, namely by: - [|T|] := {R:=T_R; E:=T_E} : s_R T and, in particular: - [|Type(n)|] := {R:=Type(n)_R; E:=Type(n)_E) : Type(n+1)_R Type(n) In practice, to have simpler schemes, we won't support here the full hierarchy of sorts. That is, we assume that type parameters of a type will be instantiated only by small types (i.e. not containing sorts). This makes sense since equality on large types is anyway not decidable in the general case [*]. Now, it happens that several parts of the translation are degenerate. For instance, if T is a small type (not containing sorts), then T_R M, which expresses that M realizes T, is a singleton for all M (we assume functional extensionality to treat the case of dependent product types). Therefore, M_T does not need to be defined in this case. Conversely, if T is not small, it is not decidable and T_E will be None. This means that at least T_R is degenerate or T_E is None and this also means that for M:T with degenerate T_R, we don't need to compute [|M|].R This further means that when translating a variable x:T with T small, it can just be translated to x:T without requiring the trivial information that T_R x is inhabited. Similarly for types T of the form [forall X, (forall Y ...) ... Y args] based on the assumption [*] that Y is instantiated only by small functorial types for which (Y args)_R would be degenerate. Similarly, based on the restriction above [*] that parameters are instantiated by small types, when translating a variable x:T with T an arity, i.e. of the form [... -> Type] (or at worst [... -> Type*Type] etc.), we can assume x to be instantiated by a small functorial type whose R translation is degenerate. It remains the declarations of the form X:T for T of the form [forall X, ... X args] where X is in negative position of a dependent product. If such X is instantiated by a large type in the definition, as in [Inductive I (F:forall X:Type, X->X) (B:F Type nat) := C : B -> I F B], we give up. Otherwise said, we support only the case when `X`is instantiated by a small type. Eventually, we thus need two translations: - T_R when T is large and it does not need to go under applicative subterms since subterms [X args] are considered small by assumption [*] - T_E when T is small which needs to go under subterms and which thus needs to be generalized into a translation M_E : T_R.E whenever T is detected as decidable (in which case, T_R.E is typically of the form T->T->bool or of the form (T.1->T.1->bool)*(T.2->T.2->bool), etc.) Below, the first translation is called [translate_type_eq] and the second [translate_term_eq]. Additionally, there is a copy-cat translation called "translate_term" that lifts M in the typing context of M_R. The function [translate_type_eq] takes as input a type T and a term M of type T and it returns T_R M. For M of type T, the function [translate_term_eq M] returns an object of type term T_R M, that is, when M is itself some type U, an object of type U->U->bool. Note that we don't use an option type for non-decidable types but instead raises an exception whenever a type is not detected as decidable. Future work might support: - exotic types such as [Inductive I (F:forall X:Type, X->X) (B:F Type nat) := C : B -> I F B] - types with invertible indices like listn - dependent products over finite types (e.g. over bool->bool), and more generally compact types whose equality is decidable (see Escardo-Oliva) *) let rec translate_type_eq env_lift na c t = let ctx, t = Reduction.dest_prod_assum env t in let env_lift', ctx_eq = translate_context_eq env_lift ctx in let inst = Array.map (translate_term env_lift') (Context.Rel.instance mkRel 0 ctx) in let env_lift'' = shiftn_env_lift (Context.Rel.length ctx_eq) env_lift in let c = mkApp (translate_term env_lift'' c, inst) in let c = match kind t with | Sort _ -> Some (mk_eqb_over c) | Prod _ | LetIn _ -> assert false (* [s] is necessaritly a sort *) | Cast (t,k,s) -> begin match translate_type_eq env_lift' na c t with | None -> None | Some t -> Some (mkCast (t, k, mkProd (na, t, c))) end (* TODO: take into account situations like (P:Type * Type) which could be translated into (fst P->fst P>bool)*(snd P->snd P->bool); to be done in parallel with preserving the types in Proj/Construct/CoFix *) | Ind _ -> None | Array _ -> None (* We assume references to be references to small types and thus to types with singleton realizability predicate; to support references to large types, see comments above for the full translation *) | App _ | Rel _ | Var _ | Const _ -> None (* The restricted translation translates only types *) | Lambda _ | Construct _ -> assert false | Case (ci, u, pms, (pnames,p), iv, tm, lbr) -> let env_lift_pred = shiftn_env_lift (Array.length pnames) env_lift in let t = mkCase (ci, u, Array.map (translate_term env_lift_pred) pms, translate_term_with_binders env_lift_pred (pnames,p), Constr.map_invert (translate_term env_lift_pred) iv, mkRel 1, Array.map (translate_term_with_binders env_lift_pred) lbr) in (* in the restricted translation, only types are translated and the return predicate is necessarily a type *) let p = mkProd (anonR, t, p) in let lbr = Array.mapi (fun i (names, t) -> let ctx = branch_context env ci pms u names i in let env_lift' = List.fold_right push_env_lift ctx env_lift in match translate_type_eq env_lift' na (mkRel 1) t with | None -> None | Some t_eq -> Some (names, mkLambda (na, t, t_eq))) lbr in if Array.for_all Option.has_some lbr then let lbr = Array.map Option.get lbr in let case = mkCase (ci, u, pms, (pnames, p), iv, translate_term env_lift tm, lbr) in Some (mkApp (case, [|c|])) else None (* TODO: in parallel with traversing Fix in translate_term_eq to look for types, traverse Fix to look for Type here *) | Fix _ -> None (* Not building a type *) | Proj _ | CoFix _ | Int _ | Float _ -> None | Meta _ | Evar _ -> assert false (* kernel terms *) in Option.map (fun c -> Term.it_mkProd_or_LetIn c ctx_eq) c and translate_term_eq env_lift c = let ctx, c = dest_lam_assum_expand env_lift.env c in let env_lift, ctx = translate_context_eq env_lift ctx in let c = match Constr.kind c with | Rel x -> (match has_decl_equality x env_lift.eq_status with | Some n -> Some (mkRel (Esubst.reloc_rel x env_lift.lift - n)) | None -> None) | Var x -> if Reduction.is_arity env (Typeops.type_of_variable env x) then (* Support for working in a context with "eq_x : x -> x -> bool" *) let eid = Id.of_string ("eq_"^(Id.to_string x)) in let () = try ignore (Environ.lookup_named eid env) with Not_found -> raise (ParameterWithoutEquality (GlobRef.VarRef x)) in Some (mkVar eid) else None | Cast (c,k,t) -> begin match translate_term_eq env_lift c, translate_type_eq env_lift anonR c t with | Some c, Some t -> Some (mkCast (c,k,t)) | None, None -> None | (None | Some _), _ -> assert false end | Lambda _ | LetIn _ -> assert false | App (f,args) -> begin let f, args = match kind f with | Ind (ind',_) -> (match find_ind_env_lift env_lift ind' with | Some (nrecparams,_,n) when Array.length args >= nrecparams -> Some (mkRel n), Array.sub args nrecparams (Array.length args - nrecparams) | _ -> translate_term_eq env_lift f, args) | Const (kn,u) -> (match Environ.constant_opt_value_in env (kn, u) with | Some c -> translate_term_eq env_lift (mkApp (c,args)), [||] | None -> translate_term_eq env_lift f, args) | _ -> translate_term_eq env_lift f, args in match f with | Some f -> Some (mkApp (f, translate_arguments_eq env_lift args)) | None -> None end | Ind (ind',u) -> begin match find_ind_env_lift env_lift ind' with | Some (_,recparamsctx,n) -> Some (it_mkLambda_or_LetIn (mkRel n) (translate_context env_lift recparamsctx)) | None -> try Some (mkConstU (get_scheme handle (!beq_scheme_kind_aux()) ind',u)) with Not_found -> raise(EqNotFound ind') end | Const (kn,u as cst) -> if Environ.is_int63_type env kn then Some (int63_eqb ()) else if Environ.is_float64_type env kn then Some (float64_eqb ()) else if Environ.is_array_type env kn then (* TODO *) raise (ParameterWithoutEquality (GlobRef.ConstRef kn)) else (match Environ.constant_opt_value_in env (kn, u) with | Some c -> translate_term_eq env_lift c | None -> if Reduction.is_arity env (Typeops.type_of_constant_in env cst) then (* Support for working in a context with "eq_x : x -> x -> bool" *) (* Needs Hints, see test suite *) let eq_lbl = Label.make ("eq_" ^ Label.to_string (Constant.label kn)) in let kneq = Constant.change_label kn eq_lbl in if Environ.mem_constant kneq env then let _ = Environ.constant_opt_value_in env (kneq, u) in Some (mkConstU (kneq,u)) else raise (ParameterWithoutEquality (GlobRef.ConstRef kn)) else None) (* TODO: in parallel with preserving Type for Ind in translate_type_eq, preserve the types in Construct/CoFix *) | Proj _ | Construct _ | CoFix _ -> None | Case (ci, u, pms, (pnames,p), iv, tm, lbr) -> let pctx = pred_context env ci pms u pnames in let env_lift_pred = List.fold_right push_env_lift pctx env_lift in let n = Array.length pnames in let c = mkCase (ci, u, Array.map (lift n) pms, (pnames, liftn n (n+1) p), Constr.map_invert (lift n) iv, mkRel 1, Array.map (fun (names, br) -> (names, let q = Array.length names in liftn n (n+q+1) br)) lbr) in let p = translate_type_eq env_lift_pred anonR c p in let lbr = Array.mapi (fun i (names, t) -> let ctx = branch_context env ci pms u names i in let env_lift' = List.fold_right push_env_lift ctx env_lift in match translate_term_eq env_lift' t with | None -> None | Some t_eq -> Some (names, t_eq)) lbr in if Array.for_all Option.has_some lbr && Option.has_some p then let lbr = Array.map Option.get lbr in Some (mkCase (ci, u, pms, (pnames, Option.get p), iv, translate_term env_lift tm, lbr)) else None | Fix ((recindxs,i),(names,typarray,bodies as recdef)) -> let _ = (* Almost work: would need: 1. that the generated fix has an eq_status registration telling that an original recursive call should be interpreted as the pair of the whole fix and of the translated recursive call building the equality 2. something to do around either packaging the type with its equality, or begin able for a match to have a return predicate different though convertible to itself, namely here a fix of match (see test-suite) *) let mkfix j = mkFix ((recindxs,j),recdef) in let typarray = Array.mapi (fun i -> translate_type_eq env_lift anonR (mkfix i)) typarray in let env_lift_types = push_rec_env_lift recdef env_lift in let bodies = Array.map (translate_term_eq env_lift_types) bodies in if Array.for_all Option.has_some bodies && Array.for_all Option.has_some typarray then let bodies = Array.map Option.get bodies in let typarray = Array.map Option.get typarray in Some (mkFix ((recindxs,i),(names,typarray,bodies))) else None in None | Sort _ -> raise InductiveWithSort (* would require a more sophisticated translation *) | Prod _ -> raise InductiveWithProduct (* loss of decidable if uncountable domain *) | Meta _ | Evar _ -> None (* assert false! *) | Int _ | Float _ | Array _ -> None in Option.map (fun c -> Term.it_mkLambda_or_LetIn c ctx) c (* Translate context by adding a context of Boolean equalities for each type argument Example of translated context: (F : (U -> U) -> nat -> U) (eq_F : forall G, (forall A, eq A -> eq (G A)) -> nat -> eq (F G)) *) and translate_context_eq env_lift ctx = let ctx = name_context env_lift.env ctx in let (env_lift_ctx,nctx_eq,ctx_with_eq) = List.fold_right (fun decl (env_lift,n,ctx) -> let env_lift = push_env_lift decl env_lift in let env_lift' = shiftn_env_lift (n-1) env_lift in match decl with | RelDecl.LocalDef (na,c,t) -> (match translate_term_eq env_lift' (lift 1 c), translate_type_eq env_lift' na (mkRel 1) (lift 1 t) with | Some eq_c, Some eq_typ -> (set_replicate 1 n env_lift, n, RelDecl.LocalDef (eqName na,eq_c,eq_typ) :: ctx) | None, None -> (env_lift, n-1, ctx) | (None | Some _), _ -> assert false) | RelDecl.LocalAssum (na,t) -> match translate_type_eq env_lift' na (mkRel 1) (lift 1 t) with | Some eq_typ -> (set_replicate 1 n env_lift, n, RelDecl.LocalAssum (eqName na,eq_typ) :: ctx) | None -> (env_lift, n-1, ctx) ) ctx (env_lift, Context.Rel.length ctx, ctx) in shiftn_env_lift nctx_eq env_lift_ctx, ctx_with_eq (* Translate arguments by adding Boolean equality when relevant Examples of translated applications: F (fun A => A) 0 eq_F (fun A => A) (fun A eq_A => eq_A) 0 F (fun A => list A) 0 eq_F (fun A => list A) (fun A eq_A => eq_list A eq_A) 0 *) and translate_arguments_eq env_lift args = let args' = Array.map (translate_term env_lift) args in let eq_args = Array.of_list (List.map_filter (translate_term_eq env_lift) (Array.to_list args)) in Array.append args' eq_args (* Copy-cat translation with relocation *) and translate_term env_lift c = exliftn env_lift.lift c and translate_context env_lift ctx = Context.Rel.map_with_binders (fun i -> translate_term (shiftn_env_lift i env_lift)) ctx and translate_term_with_binders env_lift (names,c) = (names, translate_term (shiftn_env_lift (Array.length names) env_lift) c) in (* Starting translating the inductive block to Boolean equalities; Morally corresponds to the Ind case of translate_term_eq *) (* fetching the mutual inductive body *) let mib = Environ.lookup_mind kn env in (* Setting universes *) let auctx = Declareops.universes_context mib.mind_universes in let u, uctx = UnivGen.fresh_instance_from auctx None in let uctx = UState.of_context_set uctx in (* number of inductives in the mutual *) let nb_ind = Array.length mib.mind_packets in let truly_recursive = let open Declarations in let is_rec ra = match Declareops.dest_recarg ra with Mrec _ | Nested _ -> true | Norec -> false in Array.exists (fun mip -> Array.exists (List.exists is_rec) (Declareops.dest_subterms mip.mind_recargs)) mib.mind_packets in (* params context divided *) let nonrecparams_ctx,recparams_ctx = Inductive.inductive_nonrec_rec_paramdecls (mib,u) in let params_ctx = nonrecparams_ctx @ recparams_ctx in let nparamsdecls = Context.Rel.length params_ctx in check_no_indices mib; let env_lift_recparams, recparams_ctx_with_eqs = translate_context_eq (empty_env_lift env) recparams_ctx in let env_lift_recparams_fix, fix_ctx, names, types = match mib.mind_finite with | CoFinite -> raise NoDecidabilityCoInductive | Finite when truly_recursive || nb_ind > 1 (* Hum, there exist non-recursive mutual types... *) -> (* rec name *) let rec_name i = (Id.to_string (Array.get mib.mind_packets i).mind_typename)^"_eqrec" in let names = Array.init nb_ind (fun i -> make_annot (Name (Id.of_string (rec_name i))) Sorts.Relevant) in let types = Array.init nb_ind (fun i -> Option.get (translate_type_eq env_lift_recparams anonR (mkPartialInd env ((kn,i),u) 0) (Term.it_mkProd_or_LetIn (*any sort:*) mkSet nonrecparams_ctx))) in let fix_ctx = List.rev (Array.to_list (Array.map2 (fun na t -> RelDecl.LocalAssum (na,t)) names types)) in shift_fix_env_lift kn mib.mind_nparams_rec recparams_ctx nb_ind env_lift_recparams, fix_ctx, names, types | Finite | BiFinite -> env_lift_recparams, [], [||], [||] in let env_lift_recparams_fix_nonrecparams, nonrecparams_ctx_with_eqs = translate_context_eq env_lift_recparams_fix nonrecparams_ctx in let make_one_eq cur = (* construct the "fun A B ... N, eqA eqB eqC ... N => fixpoint" part *) let ind = (kn,cur) in let indu = (ind,u) in let tomatch_ctx = RelDecl.[ LocalAssum (name_Y, translate_term (shiftn_env_lift 1 env_lift_recparams_fix_nonrecparams) (mkFullInd env indu 0)); LocalAssum (name_X, translate_term env_lift_recparams_fix_nonrecparams (mkFullInd env indu 0)) ] in let env_lift_recparams_fix_nonrecparams_tomatch = shiftn_env_lift 2 env_lift_recparams_fix_nonrecparams in (* current inductive we are working on *) let pred = let cur_packet = mib.mind_packets.(cur) in (* Inductive toto : [rettyp] := *) let rettyp = Inductive.type_of_inductive ((mib,cur_packet),u) in (* split rettyp in a list without the non rec params and the last -> e.g. Inductive vec (A:Set) : nat -> Set := ... will do [nat] *) let _, rettyp = decompose_prod_n_assum nparamsdecls rettyp in let rettyp_l, _ = decompose_prod_assum rettyp in (* construct the predicate for the Case part*) it_mkLambda_or_LetIn (mkLambda (make_annot Anonymous Sorts.Relevant, mkFullInd env indu (List.length rettyp_l), (bb ()))) rettyp_l in (* make_one_eq *) (* do the [| C1 ... => match Y with ... end ... Cn => match Y with ... end |] part *) let rci = Sorts.Relevant in (* returning a boolean, hence relevant *) let constrs = let params = Context.Rel.instance_list mkRel 0 params_ctx in get_constructors env (make_ind_family (indu, params)) in let make_andb_list = function | [] -> tt () | eq :: eqs -> List.fold_left (fun eqs eq -> mkApp (andb(),[|eq;eqs|])) eq eqs in let body = match Environ.get_projections env ind with | Some projs -> (* A primitive record *) let nb_cstr_args = List.length constrs.(0).cs_args in let _,_,eqs = List.fold_right (fun decl (ndx,env_lift,l) -> let env_lift' = push_env_lift decl env_lift in match decl with | RelDecl.LocalDef (na,b,t) -> (ndx-1,env_lift',l) | RelDecl.LocalAssum (na,cc) -> if is_irrelevant env_lift.env cc then (ndx-1,env_lift',l) else if noccur_between 1 (nb_cstr_args-ndx) cc then let cc = lift (ndx-nb_cstr_args) cc in match translate_term_eq env_lift_recparams_fix_nonrecparams_tomatch cc with | None -> raise (EqUnknown "type") (* A supported type should have an eq *) | Some eqA -> let proj = Projection.make projs.(nb_cstr_args-ndx) true in (ndx-1,env_lift',mkApp (eqA, [|mkProj (proj,mkRel 2);mkProj (proj,mkRel 1)|])::l) else raise InternalDependencies) constrs.(0).cs_args (nb_cstr_args,env_lift_recparams_fix_nonrecparams_tomatch,[]) in make_andb_list eqs | None -> (* An inductive type *) let ci = make_case_info env ind rci MatchStyle in let nconstr = Array.length constrs in let ar = Array.init nconstr (fun i -> let nb_cstr_args = List.length constrs.(i).cs_args in let env_lift_recparams_fix_nonrecparams_tomatch_csargsi = shiftn_env_lift nb_cstr_args env_lift_recparams_fix_nonrecparams_tomatch in let ar2 = Array.init nconstr (fun j -> let env_lift_recparams_fix_nonrecparams_tomatch_csargsij = shiftn_env_lift nb_cstr_args env_lift_recparams_fix_nonrecparams_tomatch_csargsi in let cc = if Int.equal i j then let _,_,eqs = List.fold_right (fun decl (ndx,env_lift,l) -> let env_lift' = push_env_lift decl env_lift in match decl with | RelDecl.LocalDef (na,b,t) -> (ndx-1,env_lift',l) | RelDecl.LocalAssum (na,cc) -> if is_irrelevant env_lift.env cc then (ndx-1,env_lift',l) else if noccur_between 1 (nb_cstr_args-ndx) cc then let cc = lift (ndx-nb_cstr_args) cc in match translate_term_eq env_lift_recparams_fix_nonrecparams_tomatch_csargsij cc with | None -> raise (EqUnknown "type") (* A supported type should have an eq *) | Some eqA -> (ndx-1,env_lift',mkApp (eqA, [|mkRel (ndx+nb_cstr_args);mkRel ndx|])::l) else raise InternalDependencies) constrs.(j).cs_args (nb_cstr_args,env_lift_recparams_fix_nonrecparams_tomatch_csargsij,[]) in make_andb_list eqs else ff () in let cs_argsj = translate_context env_lift_recparams_fix_nonrecparams_tomatch_csargsi constrs.(j).cs_args in it_mkLambda_or_LetIn cc cs_argsj) in let predj = EConstr.of_constr (translate_term env_lift_recparams_fix_nonrecparams_tomatch_csargsi pred) in let case = simple_make_case_or_project env (Evd.from_env env) ci predj NoInvert (EConstr.mkRel (nb_cstr_args + 1)) (EConstr.of_constr_array ar2) in let cs_argsi = translate_context env_lift_recparams_fix_nonrecparams_tomatch constrs.(i).cs_args in it_mkLambda_or_LetIn (EConstr.Unsafe.to_constr case) cs_argsi) in let predi = EConstr.of_constr (translate_term env_lift_recparams_fix_nonrecparams_tomatch pred) in let case = simple_make_case_or_project env (Evd.from_env env) ci predi NoInvert (EConstr.mkRel 2) (EConstr.of_constr_array ar) in EConstr.Unsafe.to_constr case in it_mkLambda_or_LetIn (it_mkLambda_or_LetIn body tomatch_ctx) nonrecparams_ctx_with_eqs in (* build_beq_scheme *) let res = match mib.mind_finite with | CoFinite -> raise NoDecidabilityCoInductive | Finite when truly_recursive || nb_ind > 1 (* Hum... *) -> let cores = Array.init nb_ind make_one_eq in Array.init nb_ind (fun i -> let kelim = Inductive.elim_sort (mib,mib.mind_packets.(i)) in if not (Sorts.family_leq InSet kelim) then raise (NonSingletonProp (kn,i)); let decrArg = Context.Rel.length nonrecparams_ctx_with_eqs in let fix = mkFix (((Array.make nb_ind decrArg),i),(names,types,cores)) in it_mkLambda_or_LetIn fix recparams_ctx_with_eqs) | Finite | BiFinite -> assert (Int.equal nb_ind 1); (* If the inductive type is not recursive, the fixpoint is not used, so let's replace it with garbage *) let kelim = Inductive.elim_sort (mib,mib.mind_packets.(0)) in if not (Sorts.family_leq InSet kelim) then raise (NonSingletonProp (kn,0)); [|it_mkLambda_or_LetIn (make_one_eq 0) recparams_ctx_with_eqs|] in res, uctx let beq_scheme_kind = declare_mutual_scheme_object "_beq" ~deps:build_beq_scheme_deps build_beq_scheme let _ = beq_scheme_kind_aux := fun () -> beq_scheme_kind (* This function tryies to get the [inductive] between a constr the constr should be Ind i or App(Ind i,[|args|]) *) let destruct_ind env sigma c = let open EConstr in let (c,v) = Reductionops.whd_all_stack env sigma c in destInd sigma c, Array.of_list v let bl_scheme_kind_aux = ref (fun () -> failwith "Undefined") let lb_scheme_kind_aux = ref (fun () -> failwith "Undefined") (* In the following, avoid is the list of names to avoid. If the args of the Inductive type are A1 ... An then avoid should be [| lb_An ... lb _A1 (resp. bl_An ... bl_A1) eq_An .... eq_A1 An ... A1 |] so from Ai we can find the correct eq_Ai bl_ai or lb_ai *) (* used in the leib -> bool side*) let do_replace_lb handle aavoid narg p q = let open EConstr in let avoid = Array.of_list aavoid in let do_arg env sigma hd v offset = match kind sigma v with | Var s -> let x = narg*offset in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i<n then find (i+1) else user_err (str "Var " ++ Id.print s ++ str " seems unknown.") ) in mkVar (find 1) | Const (cst,u) -> (* Works in specific situations where the args have to be already declared as a Parameter (see example "J" in test file SchemeEquality.v); We assume the parameter to have the same polymorphic arity as cst *) let lbl = Label.to_string (Constant.label cst) in let newlbl = if Int.equal offset 1 then ("eq_" ^ lbl) else (lbl ^ "_lb") in let newcst = Constant.change_label cst (Label.make newlbl) in if Environ.mem_constant newcst env then mkConstU (newcst,u) else raise (ConstructorWithNonParametricInductiveType (fst hd)) | _ -> raise (ConstructorWithNonParametricInductiveType (fst hd)) in Proofview.Goal.enter begin fun gl -> let type_of_pq = Tacmach.pf_get_type_of gl p in let sigma = Tacmach.project gl in let env = Tacmach.pf_env gl in let (ind,u as indu),v = destruct_ind env sigma type_of_pq in let c = get_scheme handle (!lb_scheme_kind_aux ()) ind in let lb_type_of_p = mkConstU (c,u) in Proofview.tclEVARMAP >>= fun sigma -> let lb_args = Array.append (Array.append v (Array.Smart.map (fun x -> do_arg env sigma indu x 1) v)) (Array.Smart.map (fun x -> do_arg env sigma indu x 2) v) in let app = if Array.is_empty lb_args then lb_type_of_p else mkApp (lb_type_of_p,lb_args) in Tacticals.tclTHENLIST [ Equality.replace p q ; apply app ; Auto.default_auto] end (* used in the bool -> leb side *) let do_replace_bl handle (ind,u as indu) aavoid narg lft rgt = let open EConstr in let avoid = Array.of_list aavoid in let do_arg env sigma hd v offset = match kind sigma v with | Var s -> let x = narg*offset in let n = Array.length avoid in let rec find i = if Id.equal avoid.(n-i) s then avoid.(n-i-x) else (if i<n then find (i+1) else user_err (str "Var " ++ Id.print s ++ str " seems unknown.") ) in mkVar (find 1) | Const (cst,u) -> (* Works in specific situations where the args have to be already declared as a Parameter (see example "J" in test file SchemeEquality.v) We assume the parameter to have the same polymorphic arith as cst *) let lbl = Label.to_string (Constant.label cst) in let newlbl = if Int.equal offset 1 then ("eq_" ^ lbl) else (lbl ^ "_bl") in let newcst = Constant.change_label cst (Label.make newlbl) in if Environ.mem_constant newcst env then mkConstU (newcst,u) else raise (ConstructorWithNonParametricInductiveType (fst hd)) | _ -> raise (ConstructorWithNonParametricInductiveType (fst hd)) in let rec aux l1 l2 = match (l1,l2) with | (t1::q1,t2::q2) -> Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.project gl in let env = Tacmach.pf_env gl in if EConstr.eq_constr sigma t1 t2 then aux q1 q2 else ( let tt1 = Tacmach.pf_get_type_of gl t1 in let (ind',u as indu),v = try destruct_ind env sigma tt1 (* trick so that the good sequence is returned*) with e when CErrors.noncritical e -> indu,[||] in if Ind.CanOrd.equal ind' ind then Tacticals.tclTHENLIST [Equality.replace t1 t2; Auto.default_auto ; aux q1 q2 ] else ( let c = get_scheme handle (!bl_scheme_kind_aux ()) ind' in let bl_t1 = mkConstU (c,u) in let bl_args = Array.append (Array.append v (Array.Smart.map (fun x -> do_arg env sigma indu x 1) v)) (Array.Smart.map (fun x -> do_arg env sigma indu x 2) v ) in let app = if Array.is_empty bl_args then bl_t1 else mkApp (bl_t1,bl_args) in Tacticals.tclTHENLIST [ Equality.replace_by t1 t2 (Tacticals.tclTHEN (apply app) (Auto.default_auto)) ; aux q1 q2 ] ) ) end | ([],[]) -> Proofview.tclUNIT () | _ -> Tacticals.tclZEROMSG (str "Both side of the equality must have the same arity.") in Proofview.tclEVARMAP >>= fun sigma -> begin try Proofview.tclUNIT (destApp sigma lft) with DestKO -> Tacticals.tclZEROMSG (str "replace failed.") end >>= fun (ind1,ca1) -> begin try Proofview.tclUNIT (destApp sigma rgt) with DestKO -> Tacticals.tclZEROMSG (str "replace failed.") end >>= fun (ind2,ca2) -> begin try Proofview.tclUNIT (fst (destInd sigma ind1)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind1))) with DestKO -> Tacticals.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp1,i1) -> begin try Proofview.tclUNIT (fst (destInd sigma ind2)) with DestKO -> begin try Proofview.tclUNIT (fst (fst (destConstruct sigma ind2))) with DestKO -> Tacticals.tclZEROMSG (str "The expected type is an inductive one.") end end >>= fun (sp2,i2) -> Proofview.tclENV >>= fun env -> if not (Environ.QMutInd.equal env sp1 sp2) || not (Int.equal i1 i2) then Tacticals.tclZEROMSG (str "Eq should be on the same type") else aux (Array.to_list ca1) (Array.to_list ca2) (* create, from a list of ids [i1,i2,...,in] the list [(in,eq_in,in_bl,in_al),,...,(i1,eq_i1,i1_bl_i1_al )] *) let list_id l = List.fold_left ( fun a decl -> let s' = match RelDecl.get_name decl with Name s -> Id.to_string s | Anonymous -> "A" in (Id.of_string s',Id.of_string ("eq_"^s'), Id.of_string (s'^"_bl"), Id.of_string (s'^"_lb")) ::a ) [] l let avoid_of_list_id list_id = List.fold_left (fun avoid (s,seq,sbl,slb) -> List.fold_left (fun avoid id -> Id.Set.add id avoid) avoid [s;seq;sbl;slb]) Id.Set.empty list_id (* build the right eq_I A B.. N eq_A .. eq_N *) let eqI handle (ind,u) list_id = let eA = Array.of_list((List.map (fun (s,_,_,_) -> mkVar s) list_id)@ (List.map (fun (_,seq,_,_)-> mkVar seq) list_id )) and e = mkConstU (get_scheme handle beq_scheme_kind ind,u) in mkApp(e,eA) (**********************************************************************) (* Boolean->Leibniz *) open Namegen let compute_bl_goal env handle (ind,u) lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eqI = eqI handle (ind,u) list_id in let avoid = avoid_of_list_id list_id in let x = next_ident_away (Id.of_string "x") avoid in let y = next_ident_away (Id.of_string "y") (Id.Set.add x avoid) in let create_input c = let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq (),[|bb (); mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt () |])) Sorts.Relevant ( mkApp(eq (),[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd (make_annot sbl Sorts.Relevant) b a ) c (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,(bb ()))) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd (make_annot seq Sorts.Relevant) b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> let x = map_annot (function Name s -> s | Anonymous -> next_ident_away (Id.of_string "A") avoid) (RelDecl.get_annot decl) in mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec in create_input ( mkNamedProd (make_annot x Sorts.Relevant) (mkFullInd env (ind,u) (2*nparrec)) ( mkNamedProd (make_annot y Sorts.Relevant) (mkFullInd env (ind,u) (2*nparrec+1)) ( mkArrow (mkApp(eq (),[|bb ();mkApp(eqI,[|mkVar x;mkVar y|]);tt ()|])) Sorts.Relevant (mkApp(eq (),[|mkFullInd env (ind,u) (2*nparrec+3);mkVar x;mkVar y|])) ))) let compute_bl_tact handle ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_ ) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_ ) -> sbl) list_id ) in intros_using_then first_intros begin fun fresh_first_intros -> Tacticals.tclTHENLIST [ intro_using_then (Id.of_string "x") (fun freshn -> induct_on (EConstr.mkVar freshn)); intro_using_then (Id.of_string "y") (fun freshm -> destruct_on (EConstr.mkVar freshm)); intro_using_then (Id.of_string "Z") begin fun freshz -> Tacticals.tclTHENLIST [ intros; Tacticals.tclTRY ( Tacticals.tclORELSE reflexivity my_discr_tac ); simpl_in_hyp (freshz,Locus.InHyp); (* repeat ( apply andb_prop in z;let z1:= fresh "Z" in destruct z as [z1 z]). *) Tacticals.tclREPEAT ( Tacticals.tclTHENLIST [ Simple.apply_in freshz (EConstr.of_constr (andb_prop())); destruct_on_as (EConstr.mkVar freshz) (IntroOrPattern [[CAst.make @@ IntroNaming (IntroFresh (Id.of_string "Z")); CAst.make @@ IntroNaming (IntroIdentifier freshz)]]) ]); (* Ci a1 ... an = Ci b1 ... bn replace bi with ai; auto || replace bi with ai by apply typeofbi_prod ; auto *) Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let sigma = Tacmach.project gl in match EConstr.kind sigma concl with | App (c,ca) -> ( match EConstr.kind sigma c with | Ind (indeq, u) -> if GlobRef.equal (GlobRef.IndRef indeq) Coqlib.(lib_ref "core.eq.type") then Tacticals.tclTHEN (do_replace_bl handle ind (List.rev fresh_first_intros) nparrec (ca.(2)) (ca.(1))) Auto.default_auto else Tacticals.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") | _ -> Tacticals.tclZEROMSG (str" Failure while solving Boolean->Leibniz.") ) | _ -> Tacticals.tclZEROMSG (str "Failure while solving Boolean->Leibniz.") end ] end ] end let make_bl_scheme env handle mind = let mib = Environ.lookup_mind mind env in if not (Int.equal (Array.length mib.mind_packets) 1) then user_err (str "Automatic building of boolean->Leibniz lemmas not supported"); (* Setting universes *) let auctx = Declareops.universes_context mib.mind_universes in let u, uctx = UnivGen.fresh_instance_from auctx None in let uctx = UState.merge ~sideff:false UState.univ_rigid (UState.from_env env) uctx in let ind = (mind,0) in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = Inductive.inductive_nonrec_rec_paramdecls (mib,u) in let bl_goal = compute_bl_goal env handle (ind,u) lnamesparrec nparrec in let bl_goal = EConstr.of_constr bl_goal in let poly = Declareops.inductive_is_polymorphic mib in let (ans, _, _, _, uctx) = Declare.build_by_tactic ~poly ~side_eff:false env ~uctx ~typ:bl_goal (compute_bl_tact handle (ind, EConstr.EInstance.make u) lnamesparrec nparrec) in ([|ans|], uctx) let make_bl_scheme_deps env ind = let inds = get_inductive_deps ~noprop:false env ind in let map ind = SchemeMutualDep (ind, !bl_scheme_kind_aux ()) in SchemeMutualDep (ind, beq_scheme_kind) :: List.map map inds let bl_scheme_kind = declare_mutual_scheme_object "_dec_bl" ~deps:make_bl_scheme_deps make_bl_scheme let _ = bl_scheme_kind_aux := fun () -> bl_scheme_kind (**********************************************************************) (* Leibniz->Boolean *) let compute_lb_goal env handle (ind,u) lnamesparrec nparrec = let list_id = list_id lnamesparrec in let eq = eq () and tt = tt () and bb = bb () in let avoid = avoid_of_list_id list_id in let eqI = eqI handle (ind,u) list_id in let x = next_ident_away (Id.of_string "x") avoid in let y = next_ident_away (Id.of_string "y") (Id.Set.add x avoid) in let create_input c = let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) Sorts.Relevant ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd (make_annot slb Sorts.Relevant) b a ) c (List.rev list_id) (List.rev lb_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(make_annot Anonymous Sorts.Relevant,mkVar s, mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd (make_annot seq Sorts.Relevant) b a ) lb_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> let x = map_annot (function Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_annot decl) in mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec in create_input ( mkNamedProd (make_annot x Sorts.Relevant) (mkFullInd env (ind,u) (2*nparrec)) ( mkNamedProd (make_annot y Sorts.Relevant) (mkFullInd env (ind,u) (2*nparrec+1)) ( mkArrow (mkApp(eq,[|mkFullInd env (ind,u) (2*nparrec+2);mkVar x;mkVar y|])) Sorts.Relevant (mkApp(eq,[|bb;mkApp(eqI,[|mkVar x;mkVar y|]);tt|])) ))) let compute_lb_tact handle ind lnamesparrec nparrec = let list_id = list_id lnamesparrec in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in intros_using_then first_intros begin fun fresh_first_intros -> Tacticals.tclTHENLIST [ intro_using_then (Id.of_string "x") (fun freshn -> induct_on (EConstr.mkVar freshn)); intro_using_then (Id.of_string "y") (fun freshm -> destruct_on (EConstr.mkVar freshm)); intro_using_then (Id.of_string "Z") begin fun freshz -> Tacticals.tclTHENLIST [ intros; Tacticals.tclTRY ( Tacticals.tclORELSE reflexivity my_discr_tac ); my_inj_tac freshz; intros; simpl_in_concl; Auto.default_auto; Tacticals.tclREPEAT ( Tacticals.tclTHENLIST [apply (EConstr.of_constr (andb_true_intro())); simplest_split ;Auto.default_auto ] ); Proofview.Goal.enter begin fun gls -> let concl = Proofview.Goal.concl gls in let sigma = Tacmach.project gls in (* assume the goal to be eq (eq_type ...) = true *) match EConstr.kind sigma concl with | App(c,ca) -> (match (EConstr.kind sigma ca.(1)) with | App(c',ca') -> let n = Array.length ca' in do_replace_lb handle (List.rev fresh_first_intros) nparrec ca'.(n-2) ca'.(n-1) | _ -> Tacticals.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") ) | _ -> Tacticals.tclZEROMSG (str "Failure while solving Leibniz->Boolean.") end ] end ] end let make_lb_scheme env handle mind = let mib = Environ.lookup_mind mind env in if not (Int.equal (Array.length mib.mind_packets) 1) then user_err (str "Automatic building of Leibniz->boolean lemmas not supported"); let ind = (mind,0) in (* Setting universes *) let auctx = Declareops.universes_context mib.mind_universes in let u, uctx = UnivGen.fresh_instance_from auctx None in let uctx = UState.merge ~sideff:false UState.univ_rigid (UState.from_env env) uctx in let nparrec = mib.mind_nparams_rec in let lnonparrec,lnamesparrec = Inductive.inductive_nonrec_rec_paramdecls (mib,u) in let lb_goal = compute_lb_goal env handle (ind,u) lnamesparrec nparrec in let lb_goal = EConstr.of_constr lb_goal in let poly = Declareops.inductive_is_polymorphic mib in let (ans, _, _, _, ctx) = Declare.build_by_tactic ~poly ~side_eff:false env ~uctx ~typ:lb_goal (compute_lb_tact handle ind lnamesparrec nparrec) in ([|ans|], ctx) let make_lb_scheme_deps env ind = let inds = get_inductive_deps ~noprop:false env ind in let map ind = SchemeMutualDep (ind, !lb_scheme_kind_aux ()) in SchemeMutualDep (ind, beq_scheme_kind) :: List.map map inds let lb_scheme_kind = declare_mutual_scheme_object "_dec_lb" ~deps:make_lb_scheme_deps make_lb_scheme let _ = lb_scheme_kind_aux := fun () -> lb_scheme_kind (**********************************************************************) (* Decidable equality *) let check_not_is_defined () = if not (Coqlib.has_ref "core.not.type") then raise (UndefinedCst "not") (* {n=m}+{n<>m} part *) let compute_dec_goal env ind lnamesparrec nparrec = check_not_is_defined (); let eq = eq () and tt = tt () and bb = bb () in let list_id = list_id lnamesparrec in let avoid = avoid_of_list_id list_id in let x = next_ident_away (Id.of_string "x") avoid in let y = next_ident_away (Id.of_string "y") (Id.Set.add x avoid) in let create_input c = let lb_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) Sorts.Relevant ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) )) ) list_id in let bl_typ = List.map (fun (s,seq,_,_) -> mkNamedProd (make_annot x Sorts.Relevant) (mkVar s) ( mkNamedProd (make_annot y Sorts.Relevant) (mkVar s) ( mkArrow ( mkApp(eq,[|bb;mkApp(mkVar seq,[|mkVar x;mkVar y|]);tt|])) Sorts.Relevant ( mkApp(eq,[|mkVar s;mkVar x;mkVar y|])) )) ) list_id in let lb_input = List.fold_left2 ( fun a (s,_,_,slb) b -> mkNamedProd (make_annot slb Sorts.Relevant) b a ) c (List.rev list_id) (List.rev lb_typ) in let bl_input = List.fold_left2 ( fun a (s,_,sbl,_) b -> mkNamedProd (make_annot sbl Sorts.Relevant) b a ) lb_input (List.rev list_id) (List.rev bl_typ) in let eqs_typ = List.map (fun (s,_,_,_) -> mkProd(make_annot Anonymous Sorts.Relevant,mkVar s, mkProd(make_annot Anonymous Sorts.Relevant,mkVar s,bb)) ) list_id in let eq_input = List.fold_left2 ( fun a (s,seq,_,_) b -> mkNamedProd (make_annot seq Sorts.Relevant) b a ) bl_input (List.rev list_id) (List.rev eqs_typ) in List.fold_left (fun a decl -> let x = map_annot (function Name s -> s | Anonymous -> Id.of_string "A") (RelDecl.get_annot decl) in mkNamedProd x (RelDecl.get_type decl) a) eq_input lnamesparrec in let eqnm = mkApp(eq,[|mkFullInd env ind (3*nparrec+2);mkVar x;mkVar y|]) in create_input ( mkNamedProd (make_annot x Sorts.Relevant) (mkFullInd env ind (3*nparrec)) ( mkNamedProd (make_annot y Sorts.Relevant) (mkFullInd env ind (3*nparrec+1)) ( mkApp(sumbool(),[|eqnm;mkApp (UnivGen.constr_of_monomorphic_global (Global.env ()) @@ Coqlib.lib_ref "core.not.type",[|eqnm|])|]) ) ) ) let compute_dec_tact handle (ind,u) lnamesparrec nparrec = let eq = eq () and tt = tt () and ff = ff () and bb = bb () in let list_id = list_id lnamesparrec in let _ = get_scheme handle beq_scheme_kind ind in (* This is just an assertion? *) let _non_fresh_eqI = eqI handle (ind,u) list_id in let eqtrue x = mkApp(eq,[|bb;x;tt|]) in let eqfalse x = mkApp(eq,[|bb;x;ff|]) in let first_intros = ( List.map (fun (s,_,_,_) -> s ) list_id ) @ ( List.map (fun (_,seq,_,_) -> seq) list_id ) @ ( List.map (fun (_,_,sbl,_) -> sbl) list_id ) @ ( List.map (fun (_,_,_,slb) -> slb) list_id ) in let fresh_id s gl = fresh_id_in_env (Id.Set.empty) s (Proofview.Goal.env gl) in intros_using_then first_intros begin fun fresh_first_intros -> let eqI = let a = Array.of_list fresh_first_intros in let n = List.length list_id in assert (Int.equal (Array.length a) (4 * n)); let fresh_list_id = List.init n (fun i -> (Array.get a i, Array.get a (i+n), Array.get a (i+2*n), Array.get a (i+3*n))) in eqI handle (ind,u) fresh_list_id in intro_using_then (Id.of_string "x") begin fun freshn -> intro_using_then (Id.of_string "y") begin fun freshm -> Proofview.Goal.enter begin fun gl -> let freshH = fresh_id (Id.of_string "H") gl in let eqbnm = mkApp(eqI,[|mkVar freshn;mkVar freshm|]) in let arfresh = Array.of_list fresh_first_intros in let xargs = Array.sub arfresh 0 (2*nparrec) in let c = get_scheme handle bl_scheme_kind ind in let blI = mkConstU (c,u) in let c = get_scheme handle lb_scheme_kind ind in let lbI = mkConstU (c,u) in Tacticals.tclTHENLIST [ (*we do this so we don't have to prove the same goal twice *) assert_by (Name freshH) (EConstr.of_constr ( mkApp(sumbool(),[|eqtrue eqbnm; eqfalse eqbnm|]) )) (Tacticals.tclTHEN (destruct_on (EConstr.of_constr eqbnm)) Auto.default_auto); Proofview.Goal.enter begin fun gl -> let freshH2 = fresh_id (Id.of_string "H") gl in Tacticals.tclTHENS (destruct_on_using (EConstr.mkVar freshH) freshH2) [ (* left *) Tacticals.tclTHENLIST [ simplest_left; apply (EConstr.of_constr (mkApp(blI,Array.map mkVar xargs))); Auto.default_auto ] ; (*right *) Proofview.Goal.enter begin fun gl -> let freshH3 = fresh_id (Id.of_string "H") gl in Tacticals.tclTHENLIST [ simplest_right ; unfold_constr (Coqlib.lib_ref "core.not.type"); intro; Equality.subst_all (); assert_by (Name freshH3) (EConstr.of_constr (mkApp(eq,[|bb;mkApp(eqI,[|mkVar freshm;mkVar freshm|]);tt|]))) (Tacticals.tclTHENLIST [ apply (EConstr.of_constr (mkApp(lbI,Array.map mkVar xargs))); Auto.default_auto ]); Equality.general_rewrite ~where:(Some freshH3) ~l2r:true Locus.AllOccurrences ~freeze:true ~dep:false ~with_evars:true ((EConstr.mkVar freshH2), NoBindings ) ; my_discr_tac ] end ] end ] end end end end let make_eq_decidability env handle mind = let mib = Environ.lookup_mind mind env in if not (Int.equal (Array.length mib.mind_packets) 1) then raise DecidabilityMutualNotSupported; let ind = (mind,0) in let nparrec = mib.mind_nparams_rec in (* Setting universes *) let auctx = Declareops.universes_context mib.mind_universes in let u, uctx = UnivGen.fresh_instance_from auctx None in let uctx = UState.merge ~sideff:false UState.univ_rigid (UState.from_env env) uctx in let lnonparrec,lnamesparrec = Inductive.inductive_nonrec_rec_paramdecls (mib,u) in let poly = Declareops.inductive_is_polymorphic mib in let (ans, _, _, _, ctx) = Declare.build_by_tactic ~poly ~side_eff:false env ~uctx ~typ:(EConstr.of_constr (compute_dec_goal env (ind,u) lnamesparrec nparrec)) (compute_dec_tact handle (ind,u) lnamesparrec nparrec) in ([|ans|], ctx) let eq_dec_scheme_kind = declare_mutual_scheme_object "_eq_dec" ~deps:(fun _ ind -> [SchemeMutualDep (ind, bl_scheme_kind); SchemeMutualDep (ind, lb_scheme_kind)]) make_eq_decidability (* The eq_dec_scheme proofs depend on the equality and discr tactics but the inj tactics, that comes with discr, depends on the eq_dec_scheme... *) let _ = Equality.set_eq_dec_scheme_kind eq_dec_scheme_kind
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>