package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.pretyping/constr_matching.ml.html
Source file constr_matching.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (*i*) open Pp open CErrors open Util open Names open Constr open Context open Termops open EConstr open Vars open Pattern open Patternops open Context.Rel.Declaration open Ltac_pretype (*i*) let error_instantiate_pattern id l = let is = match l with | [_] -> "is" | _ -> "are" in user_err (str "Cannot substitute the term bound to " ++ Id.print id ++ strbrk " in pattern because the term refers to " ++ pr_enum Id.print l ++ strbrk " which " ++ str is ++ strbrk " not bound in the pattern.") type instantiated_pattern = constr_pattern let instantiate_pattern env sigma lvar c = let open EConstr in let open Vars in let rec aux vars = function | PVar id as x -> (try let ctx,c = Id.Map.find id lvar in try let inst = List.map (fun id -> mkRel (List.index Name.equal (Name id) vars)) ctx in let c = substl inst c in pattern_of_constr env sigma c with Not_found (* List.index failed *) -> let vars = List.map_filter (function Name id -> Some id | _ -> None) vars in error_instantiate_pattern id (List.subtract Id.equal ctx vars) with Not_found (* Map.find failed *) -> x) | c -> map_pattern_with_binders (fun id vars -> id::vars) aux vars c in if Id.Map.is_empty lvar then c else aux [] c (* Given a term with second-order variables in it, represented by Meta's, and possibly applied using [SOAPP] to terms, this function will perform second-order, binding-preserving, matching, in the case where the pattern is a pattern in the sense of Dale Miller. ALGORITHM: Given a pattern, we decompose it, flattening Cast's and apply's, recursing on all operators, and pushing the name of the binder each time we descend a binder. When we reach a first-order variable, we ask that the corresponding term's free-rels all be higher than the depth of the current stack. When we reach a second-order application, we ask that the intersection of the free-rels of the term and the current stack be contained in the arguments of the application, and in that case, we construct a LAMBDA with the names on the stack. *) type binding_bound_vars = Id.Set.t type bound_ident_map = Id.t Id.Map.t exception PatternMatchingFailure let warn_meta_collision = CWarnings.create ~name:"meta-collision" ~category:"ltac" (fun name -> strbrk "Collision between bound variable " ++ Id.print name ++ strbrk " and a metavariable of same name.") let constrain sigma n (ids, m) ((names,seen as names_seen), terms as subst) = let open EConstr in try let (ids', m') = Id.Map.find n terms in if List.equal Id.equal ids ids' && eq_constr sigma m m' then subst else raise PatternMatchingFailure with Not_found -> let () = if Id.Map.mem n names then warn_meta_collision n in (names_seen, Id.Map.add n (ids, m) terms) let add_binders na1 na2 binding_vars ((names,seen), terms as subst) = match na1, na2.binder_name with | Name id1, Name id2 when Id.Set.mem id1 binding_vars -> if Id.Map.mem id1 names then let () = Glob_ops.warn_variable_collision id1 in subst else let id2 = Namegen.next_ident_away id2 seen in let names = Id.Map.add id1 id2 names in let seen = Id.Set.add id2 seen in let () = if Id.Map.mem id1 terms then warn_meta_collision id1 in ((names,seen), terms) | _ -> subst let rec build_lambda sigma vars ctx m = match vars with | [] -> if Vars.closed0 sigma m then m else raise PatternMatchingFailure | n :: vars -> (* change [ x1 ... xn y z1 ... zm |- t ] into [ x1 ... xn z1 ... zm |- lam y. t ] *) let pre, suf = List.chop (pred n) ctx in let (na, t, suf) = match suf with | [] -> assert false | (_, id, t) :: suf -> (map_annot Name.mk_name id, t, suf) in (* Check that the abstraction is legal by generating a transitive closure of its dependencies. *) let is_nondep t clear = match clear with | [] -> true | _ -> let rels = free_rels sigma t in let check i b = b || not (Int.Set.mem i rels) in List.for_all_i check 1 clear in let fold (_, _, t) clear = is_nondep t clear :: clear in (* Produce a list of booleans: true iff we keep the hypothesis *) let clear = List.fold_right fold pre [false] in let clear = List.drop_last clear in (* If the conclusion depends on a variable we cleared, failure *) let () = if not (is_nondep m clear) then raise PatternMatchingFailure in (* Create the abstracted term *) let fold (k, accu) keep = if keep then let k = succ k in (k, Some k :: accu) else (k, None :: accu) in let keep, shift = List.fold_left fold (0, []) clear in let shift = List.rev shift in let map = function | None -> mkProp (* dummy term *) | Some i -> mkRel (i + 1) in (* [x1 ... xn y z1 ... zm] -> [x1 ... xn f(z1) ... f(zm) y] *) let subst = List.map map shift @ mkRel 1 :: List.mapi (fun i _ -> mkRel (i + keep + 2)) suf in let map i (na, id, c) = let i = succ i in let subst = List.skipn i subst in let subst = List.map (fun c -> Vars.lift (- i) c) subst in (na, id, substl subst c) in let pre = List.mapi map pre in let pre = List.filter_with clear pre in let m = substl subst m in let map i = if i > n then i - n + keep else match List.nth shift (i - 1) with | None -> (* We cleared a variable that we wanted to abstract! *) raise PatternMatchingFailure | Some k -> k in let vars = List.map map vars in (* Create the abstraction *) let m = mkLambda (na, Vars.lift keep t, m) in build_lambda sigma vars (pre @ suf) m let rec extract_bound_aux k accu frels ctx = match ctx with | [] -> accu | (na, _, _) :: ctx -> if Int.Set.mem k frels then begin match na with | Name id -> let () = if Id.Set.mem id accu then raise PatternMatchingFailure in extract_bound_aux (k + 1) (Id.Set.add id accu) frels ctx | Anonymous -> raise PatternMatchingFailure end else extract_bound_aux (k + 1) accu frels ctx let extract_bound_vars frels ctx = extract_bound_aux 1 Id.Set.empty frels ctx let dummy_constr = EConstr.mkProp let make_renaming ids = function | (Name id, _, _) -> begin try EConstr.mkRel (List.index Id.equal id ids) with Not_found -> dummy_constr end | _ -> dummy_constr let push_binder na1 na2 t ctx = let id2 = map_annot (function | Name id2 -> id2 | Anonymous -> let avoid = Id.Set.of_list (List.map (fun (_,id,_) -> id.binder_name) ctx) in Namegen.next_ident_away Namegen.default_non_dependent_ident avoid) na2 in (na1, id2, t) :: ctx (* This is an optimization of the main pattern-matching which shares the longest common prefix of the body and type of a fixpoint. The only practical effect at the time of writing is in binding variable names: these variable names must be bound only once since the user view at a fix displays only a (maximal) shared common prefix *) let rec match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env' subst t1 t2 b1 b2 = match t1, EConstr.kind sigma t2, b1, EConstr.kind sigma b2 with | PProd(na1,c1,t1'), Prod(na2,c2,t2'), PLambda (_,c1',b1'), Lambda (na2',c2',b2') -> let ctx = push_binder na1 na2 c2 ctx in let ctx' = push_binder na1 na2' c2' ctx' in let env = EConstr.push_rel (LocalAssum (na2,c2)) env in let subst = sorec ctx env subst c1 c2 in let subst = sorec ctx env subst c1' c2' in let subst = add_binders na1 na2 binding_vars subst in match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env' subst t1' t2' b1' b2' | PLetIn(na1,c1,u1,t1), LetIn(na2,c2,u2,t2), PLetIn(_,c1',u1',b1), LetIn(na2',c2',u2',b2) -> let ctx = push_binder na1 na2 u2 ctx in let ctx' = push_binder na1 na2' u2' ctx' in let env = EConstr.push_rel (LocalDef (na2,c2,t2)) env in let subst = sorec ctx env subst c1 c2 in let subst = sorec ctx env subst c1' c2' in let subst = Option.fold_left (fun subst u1 -> sorec ctx env subst u1 u2) subst u1 in let subst = Option.fold_left (fun subst u1' -> sorec ctx env subst u1' u2') subst u1' in let subst = add_binders na1 na2 binding_vars subst in match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env' subst t1 t2 b1 b2 | _ -> sorec ctx' env' (sorec ctx env subst t1 t2) b1 b2 let merge_binding sigma allow_bound_rels ctx n cT subst = let c = match ctx with | [] -> (* Optimization *) ([], cT) | _ -> let frels = free_rels sigma cT in if allow_bound_rels then let vars = extract_bound_vars frels ctx in let ordered_vars = Id.Set.elements vars in let rename binding = make_renaming ordered_vars binding in let renaming = List.map rename ctx in (ordered_vars, Vars.substl renaming cT) else let depth = List.length ctx in let min_elt = try Int.Set.min_elt frels with Not_found -> succ depth in if depth < min_elt then ([], Vars.lift (- depth) cT) else raise PatternMatchingFailure in constrain sigma n c subst let matches_core env sigma allow_bound_rels (binding_vars,pat) c = let open EConstr in let convref ref c = let open GlobRef in match ref, EConstr.kind sigma c with | VarRef id, Var id' -> Names.Id.equal id id' | ConstRef c, Const (c',_) -> Environ.QConstant.equal env c c' | IndRef i, Ind (i', _) -> Names.Ind.CanOrd.equal i i' | ConstructRef c, Construct (c',u) -> Names.Construct.CanOrd.equal c c' | _, _ -> false in let rec sorec ctx env subst p t = let cT = strip_outer_cast sigma t in match p, EConstr.kind sigma cT with | PSoApp (n,args),m -> let fold (ans, seen) = function | PRel n -> let () = if Int.Set.mem n seen then user_err (str "Non linear second-order pattern") in (n :: ans, Int.Set.add n seen) | _ -> user_err (str "Only bound indices allowed in second order pattern matching.") in let relargs, relset = List.fold_left fold ([], Int.Set.empty) args in let frels = free_rels sigma cT in if Int.Set.subset frels relset then constrain sigma n ([], build_lambda sigma relargs ctx cT) subst else raise PatternMatchingFailure | PMeta (Some n), m -> merge_binding sigma allow_bound_rels ctx n cT subst | PMeta None, m -> subst | PRef (GlobRef.VarRef v1), Var v2 when Id.equal v1 v2 -> subst | PVar v1, Var v2 when Id.equal v1 v2 -> subst | PRef ref, _ when convref ref cT -> subst | PRel n1, Rel n2 when Int.equal n1 n2 -> subst | PSort ps, Sort s -> if Sorts.family_equal ps (Sorts.family (ESorts.kind sigma s)) then subst else raise PatternMatchingFailure | PApp (p, [||]), _ -> sorec ctx env subst p t | PApp (PApp (h, a1), a2), _ -> sorec ctx env subst (PApp(h,Array.append a1 a2)) t | PApp (PMeta meta,args1), App (c2,args2) -> (let diff = Array.length args2 - Array.length args1 in if diff >= 0 then let args21, args22 = Array.chop diff args2 in let c = mkApp(c2,args21) in let subst = match meta with | None -> subst | Some n -> merge_binding sigma allow_bound_rels ctx n c subst in Array.fold_left2 (sorec ctx env) subst args1 args22 else (* Might be a projection on the right *) match EConstr.kind sigma c2 with | Proj (pr, c) -> (try let term = Retyping.expand_projection env sigma pr c (Array.to_list args2) in sorec ctx env subst p term with Retyping.RetypeError _ -> raise PatternMatchingFailure) | _ -> raise PatternMatchingFailure) | PApp (c1,arg1), App (c2,arg2) -> (match c1, EConstr.kind sigma c2 with | PRef (GlobRef.ConstRef r), Proj (pr,c) when not (Environ.QConstant.equal env r (Projection.constant pr)) -> raise PatternMatchingFailure | PProj (pr1,c1), Proj (pr,c) -> if Environ.QProjection.equal env pr1 pr then try Array.fold_left2 (sorec ctx env) (sorec ctx env subst c1 c) arg1 arg2 with Invalid_argument _ -> raise PatternMatchingFailure else raise PatternMatchingFailure | _, Proj (pr,c) -> (try let term = Retyping.expand_projection env sigma pr c (Array.to_list arg2) in sorec ctx env subst p term with Retyping.RetypeError _ -> raise PatternMatchingFailure) | _, _ -> try Array.fold_left2 (sorec ctx env) (sorec ctx env subst c1 c2) arg1 arg2 with Invalid_argument _ -> raise PatternMatchingFailure) | PApp (PRef (GlobRef.ConstRef c1), _), Proj (pr, c2) when not (Environ.QConstant.equal env c1 (Projection.constant pr)) -> raise PatternMatchingFailure | PApp (c, args), Proj (pr, c2) -> (try let term = Retyping.expand_projection env sigma pr c2 [] in sorec ctx env subst p term with Retyping.RetypeError _ -> raise PatternMatchingFailure) | PProj (p1,c1), Proj (p2,c2) when Environ.QProjection.equal env p1 p2 -> sorec ctx env subst c1 c2 | PProd (na1,c1,d1), Prod(na2,c2,d2) -> sorec (push_binder na1 na2 c2 ctx) (EConstr.push_rel (LocalAssum (na2,c2)) env) (add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2 | PLambda (na1,c1,d1), Lambda(na2,c2,d2) -> sorec (push_binder na1 na2 c2 ctx) (EConstr.push_rel (LocalAssum (na2,c2)) env) (add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2 | PLetIn (na1,c1,Some t1,d1), LetIn(na2,c2,t2,d2) -> sorec (push_binder na1 na2 t2 ctx) (EConstr.push_rel (LocalDef (na2,c2,t2)) env) (add_binders na1 na2 binding_vars (sorec ctx env (sorec ctx env subst c1 c2) t1 t2)) d1 d2 | PLetIn (na1,c1,None,d1), LetIn(na2,c2,t2,d2) -> sorec (push_binder na1 na2 t2 ctx) (EConstr.push_rel (LocalDef (na2,c2,t2)) env) (add_binders na1 na2 binding_vars (sorec ctx env subst c1 c2)) d1 d2 | PIf (a1,b1,b1'), Case (ci, u2, pms2, p2, iv, a2, ([|b2;b2'|] as br2)) -> let (_, _, _, p2, _, _, br2) = EConstr.annotate_case env sigma (ci, u2, pms2, p2, iv, a2, br2) in let ctx_b2,b2 = br2.(0) in let ctx_b2',b2' = br2.(1) in let n = Context.Rel.length ctx_b2 in let n' = Context.Rel.length ctx_b2' in if Vars.noccur_between sigma 1 n b2 && Vars.noccur_between sigma 1 n' b2' then let f l (LocalAssum (na,t) | LocalDef (na,_,t)) = push_binder Anonymous na t l in let ctx_br = List.fold_left f ctx ctx_b2 in let ctx_br' = List.fold_left f ctx ctx_b2' in let b1 = lift_pattern n b1 and b1' = lift_pattern n' b1' in sorec ctx_br' (push_rel_context ctx_b2' env) (sorec ctx_br (push_rel_context ctx_b2 env) (sorec ctx env subst a1 a2) b1 b2) b1' b2' else raise PatternMatchingFailure | PCase (ci1, p1, a1, br1), Case (ci2, u2, pms2, p2, iv, a2, br2) -> let (_, _, _, p2, _, _, br2) = EConstr.annotate_case env sigma (ci2, u2, pms2, p2, iv, a2, br2) in let n2 = Array.length br2 in let () = match ci1.cip_ind with | None -> () | Some ind1 -> (* ppedrot: Something spooky going here. The comparison used to be the generic one, so I may have broken something. *) if not (Ind.CanOrd.equal ind1 ci2.ci_ind) then raise PatternMatchingFailure in let () = if not ci1.cip_extensible && not (Int.equal (List.length br1) n2) then raise PatternMatchingFailure in let sorec_under_ctx subst (n, c1) (decls, c2) = let env = push_rel_context decls env in let rec fold (ctx, subst) nas decls = match nas, decls with | [], _ -> (* Historical corner case: less bound variables are allowed in destructuring let-bindings. See #13735. *) (ctx, subst) | na1 :: nas, d :: decls -> let na2 = Context.Rel.Declaration.get_annot d in let t = Context.Rel.Declaration.get_type d in let ctx = push_binder na1 na2 t ctx in let subst = add_binders na1 na2 binding_vars subst in fold (ctx, subst) nas decls | _, [] -> assert false in let ctx, subst = fold (ctx, subst) (Array.to_list n) (List.rev decls) in sorec ctx env subst c1 c2 in let chk_branch subst (j,n,c) = (* (ind,j+1) is normally known to be a correct constructor and br2 a correct match over the same inductive *) assert (j < n2); sorec_under_ctx subst (n, c) br2.(j) in let subst = sorec ctx env subst a1 a2 in let subst = match p1 with | None -> subst | Some p1 -> sorec_under_ctx subst p1 p2 in List.fold_left chk_branch subst br1 | PFix ((ln1,i1),(lna1,tl1,bl1)), Fix ((ln2,i2),(lna2,tl2,bl2)) when Array.equal Int.equal ln1 ln2 && i1 = i2 -> let ctx' = Array.fold_left3 (fun ctx na1 na2 t2 -> push_binder na1 na2 t2 ctx) ctx lna1 lna2 tl2 in let env' = Array.fold_left2 (fun env na2 c2 -> EConstr.push_rel (LocalAssum (na2,c2)) env) env lna2 tl2 in let subst = Array.fold_left4 (match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env') subst tl1 tl2 bl1 bl2 in Array.fold_left2 (fun subst na1 na2 -> add_binders na1 na2 binding_vars subst) subst lna1 lna2 | PCoFix (i1,(lna1,tl1,bl1)), CoFix (i2,(lna2,tl2,bl2)) when i1 = i2 -> let ctx' = Array.fold_left3 (fun ctx na1 na2 t2 -> push_binder na1 na2 t2 ctx) ctx lna1 lna2 tl2 in let env' = Array.fold_left2 (fun env na2 c2 -> EConstr.push_rel (LocalAssum (na2,c2)) env) env lna2 tl2 in let subst = Array.fold_left4 (match_under_common_fix_binders sorec sigma binding_vars ctx ctx' env env') subst tl1 tl2 bl1 bl2 in Array.fold_left2 (fun subst na1 na2 -> add_binders na1 na2 binding_vars subst) subst lna1 lna2 | PEvar (c1,args1), Evar (c2,args2) when Evar.equal c1 c2 -> List.fold_left2 (sorec ctx env) subst args1 args2 | PInt i1, Int i2 when Uint63.equal i1 i2 -> subst | PFloat f1, Float f2 when Float64.equal f1 f2 -> subst | PArray(pt,pdef,pty), Array(_u,t,def,ty) when Array.length pt = Array.length t -> sorec ctx env (sorec ctx env (Array.fold_left2 (sorec ctx env) subst pt t) pdef def) pty ty | (PRef _ | PVar _ | PRel _ | PApp _ | PProj _ | PLambda _ | PProd _ | PLetIn _ | PSort _ | PIf _ | PCase _ | PFix _ | PCoFix _| PEvar _ | PInt _ | PFloat _ | PArray _), _ -> raise PatternMatchingFailure in sorec [] env ((Id.Map.empty,Id.Set.empty), Id.Map.empty) pat c let matches_core_closed env sigma pat c = let names, subst = matches_core env sigma false pat c in (fst names, Id.Map.map snd subst) let extended_matches env sigma pat c = let (names,_), subst = matches_core env sigma true pat c in names, subst let matches env sigma pat c = snd (matches_core_closed env sigma (Id.Set.empty,pat) c) type context = constr Lazy.t let special_meta = (-1) let empty_context = Lazy.from_val (mkMeta special_meta) let repr_context c = Lazy.force c let instantiate_context ctxt c = let ctxt = EConstr.Unsafe.to_constr (Lazy.force ctxt) in let c = EConstr.Unsafe.to_constr c in EConstr.of_constr (subst_meta [special_meta, c] ctxt) type matching_result = { m_sub : bound_ident_map * patvar_map; m_ctx : context; } let mkresult s c n = IStream.Cons ( { m_sub=s; m_ctx=c; } , (IStream.thunk n) ) let isPMeta = function PMeta _ -> true | _ -> false let matches_head env sigma pat c = let open EConstr in let head = match pat, EConstr.kind sigma c with | PApp (c1,arg1), App (c2,arg2) -> if isPMeta c1 then c else let n1 = Array.length arg1 in if n1 < Array.length arg2 then mkApp (c2,Array.sub arg2 0 n1) else c | c1, App (c2,arg2) when not (isPMeta c1) -> c2 | _ -> c in matches env sigma pat head (* Tells if it is an authorized occurrence and if the instance is closed *) let env sigma closed pat c mk_ctx = try let subst = matches_core_closed env sigma pat c in if closed && Id.Map.exists (fun _ c -> not (closed0 sigma c)) (snd subst) then (fun next -> next ()) else (fun next -> mkresult subst (lazy (mk_ctx (mkMeta special_meta))) next) with PatternMatchingFailure -> (fun next -> next ()) let subargs env v = Array.map_to_list (fun c -> (env, c)) v (* Tries to match a subterm of [c] with [pat] *) let sub_match ?(closed=true) env sigma pat c = let open EConstr in let rec aux env c mk_ctx next = let here = authorized_occ env sigma closed pat c mk_ctx in let next () = match EConstr.kind sigma c with | Cast (c1,k,c2) -> let next_mk_ctx = function | [c1] -> mk_ctx (mkCast (c1, k, c2)) | _ -> assert false in try_aux [env, c1] next_mk_ctx next | Lambda (x,c1,c2) -> let next_mk_ctx = function | [c1; c2] -> mk_ctx (mkLambda (x, c1, c2)) | _ -> assert false in let env' = EConstr.push_rel (LocalAssum (x,c1)) env in try_aux [(env, c1); (env', c2)] next_mk_ctx next | Prod (x,c1,c2) -> let next_mk_ctx = function | [c1; c2] -> mk_ctx (mkProd (x, c1, c2)) | _ -> assert false in let env' = EConstr.push_rel (LocalAssum (x,c1)) env in try_aux [(env, c1); (env', c2)] next_mk_ctx next | LetIn (x,c1,t,c2) -> let next_mk_ctx = function | [c1; c2] -> mk_ctx (mkLetIn (x, c1, t, c2)) | _ -> assert false in let env' = EConstr.push_rel (LocalDef (x,c1,t)) env in try_aux [(env, c1); (env', c2)] next_mk_ctx next | App (c1,lc) -> let lc1 = Array.sub lc 0 (Array.length lc - 1) in let app = mkApp (c1,lc1) in let mk_ctx = function | [app';c] -> mk_ctx (mkApp (app',[|c|])) | _ -> assert false in try_aux [(env, app); (env, Array.last lc)] mk_ctx next | Case (ci,u,pms,hd0,iv,c1,lc0) -> let (mib, mip) = Inductive.lookup_mind_specif env ci.ci_ind in let (_, hd, _, _, br) = expand_case env sigma (ci, u, pms, hd0, iv, c1, lc0) in let hd = let (ctx, hd) = decompose_lam_assum sigma hd in (push_rel_context ctx env, hd) in let map i br = let decls = mip.Declarations.mind_consnrealdecls.(i) in let (ctx, c) = decompose_lam_n_decls sigma decls br in (push_rel_context ctx env, c) in let lc = Array.to_list (Array.mapi map br) in let next_mk_ctx = function | c1 :: rem -> let pms, rem = List.chop (Array.length pms) rem in let pms = Array.of_list pms in let hd, lc = match rem with [] -> assert false | x :: l -> (x, l) in let hd = (fst hd0, hd) in let map_br (nas, _) br = (nas, br) in mk_ctx (mkCase (ci,u,pms,hd,iv,c1,Array.map2 map_br lc0 (Array.of_list lc))) | _ -> assert false in let sub = (env, c1) :: Array.fold_right (fun c accu -> (env, c) :: accu) pms (hd :: lc) in try_aux sub next_mk_ctx next | Fix (indx,(names,types,bodies as recdefs)) -> let nb_fix = Array.length types in let next_mk_ctx le = let (ntypes,nbodies) = CList.chop nb_fix le in mk_ctx (mkFix (indx,(names, Array.of_list ntypes, Array.of_list nbodies))) in let env' = push_rec_types recdefs env in let sub = subargs env types @ subargs env' bodies in try_aux sub next_mk_ctx next | CoFix (i,(names,types,bodies as recdefs)) -> let nb_fix = Array.length types in let next_mk_ctx le = let (ntypes,nbodies) = CList.chop nb_fix le in mk_ctx (mkCoFix (i,(names, Array.of_list ntypes, Array.of_list nbodies))) in let env' = push_rec_types recdefs env in let sub = subargs env types @ subargs env' bodies in try_aux sub next_mk_ctx next | Proj (p,c') -> begin match Retyping.expand_projection env sigma p c' [] with | term -> aux env term mk_ctx next | exception Retyping.RetypeError _ -> next () end | Array(u, t, def, ty) -> let next_mk_ctx = function | def :: ty :: l -> mk_ctx (mkArray(u, Array.of_list l, def, ty)) | _ -> assert false in let sub = (env,def) :: (env,ty) :: subargs env t in try_aux sub next_mk_ctx next | Construct _|Ind _|Evar _|Const _|Rel _|Meta _|Var _|Sort _|Int _|Float _ -> next () in here next (* Tries [sub_match] for all terms in the list *) and try_aux lc mk_ctx next = let rec try_sub_match_rec lacc lc = match lc with | [] -> next () | (env, c) :: tl -> let mk_ctx ce = mk_ctx (List.rev_append lacc (ce :: List.map snd tl)) in let next () = try_sub_match_rec (c :: lacc) tl in aux env c mk_ctx next in try_sub_match_rec [] lc in let lempty () = IStream.Nil in let result () = aux env c (fun x -> x) lempty in IStream.thunk result let match_subterm env sigma pat c = sub_match env sigma pat c let is_matching env sigma pat c = try let _ = matches env sigma pat c in true with PatternMatchingFailure -> false let is_matching_head env sigma pat c = try let _ = matches_head env sigma pat c in true with PatternMatchingFailure -> false let is_matching_appsubterm ?(closed=true) env sigma pat c = let pat = (Id.Set.empty,pat) in let results = sub_match ~closed env sigma pat c in not (IStream.is_empty results)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>