package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.kernel/indTyping.ml.html
Source file indTyping.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Univ open Term open Constr open Declarations open Environ open Entries open Type_errors open Context.Rel.Declaration (** Check name unicity. Redundant with safe_typing's add_field checks -> to remove?. *) (* [check_constructors_names id s cl] checks that all the constructors names appearing in [l] are not present in the set [s], and returns the new set of names. The name [id] is the name of the current inductive type, used when reporting the error. *) let check_constructors_names = let rec check idset = function | [] -> idset | c::cl -> if Id.Set.mem c idset then raise (InductiveError (SameNamesConstructors c)) else check (Id.Set.add c idset) cl in check (* [mind_check_names mie] checks the names of an inductive types declaration, and raises the corresponding exceptions when two types or two constructors have the same name. *) let mind_check_names mie = let rec check indset cstset = function | [] -> () | ind::inds -> let id = ind.mind_entry_typename in let cl = ind.mind_entry_consnames in if Id.Set.mem id indset then raise (InductiveError (SameNamesTypes id)) else let cstset' = check_constructors_names cstset cl in check (Id.Set.add id indset) cstset' inds in check Id.Set.empty Id.Set.empty mie.mind_entry_inds (* The above verification is not necessary from the kernel point of vue since inductive and constructors are not referred to by their name, but only by the name of the inductive packet and an index. *) (************************************************************************) (************************** Type checking *******************************) (************************************************************************) type univ_info = { ind_squashed : bool; ind_has_relevant_arg : bool; ind_min_univ : Sorts.t option; (* Some for template *) ind_univ : Sorts.t; missing : Sorts.t list; (* missing u <= ind_univ constraints *) } let sup_sort s1 s2 = match s1, s2 with | (_, SProp) -> assert false (* template SProp not allowed *) | (SProp, s) | (Prop, s) | (s, Prop) -> s | (Set, Set) -> Sorts.set | (Set, Type u) | (Type u, Set) -> Sorts.sort_of_univ (Universe.sup u Universe.type0) | (Type u, Type v) -> Sorts.sort_of_univ (Universe.sup u v) let check_univ_leq ?(is_real_arg=false) env u info = let ind_univ = info.ind_univ in let info = if not info.ind_has_relevant_arg && is_real_arg && not (Sorts.is_sprop u) then {info with ind_has_relevant_arg=true} else info in (* Inductive types provide explicit lifting from SProp to other universes, so allow SProp <= any. *) if Sorts.is_sprop u || UGraph.check_leq_sort (universes env) u ind_univ then { info with ind_min_univ = Option.map (sup_sort u) info.ind_min_univ } else if is_impredicative_sort env ind_univ && Option.is_empty info.ind_min_univ then { info with ind_squashed = true } else {info with missing = u :: info.missing} let check_context_univs ~ctor env info ctx = let check_one d (info,env) = let info = match d with | LocalAssum (_,t) -> (* could be retyping if it becomes available in the kernel *) let tj = Typeops.infer_type env t in check_univ_leq ~is_real_arg:ctor env tj.utj_type info | LocalDef _ -> info in info, push_rel d env in fst (Context.Rel.fold_outside ~init:(info,env) check_one ctx) let check_indices_matter env_params info indices = if not (indices_matter env_params) then info else check_context_univs ~ctor:false env_params info indices (* env_ar contains the inductives before the current ones in the block, and no parameters *) let check_arity ~template env_params env_ar ind = let {utj_val=arity;utj_type=_} = Typeops.infer_type env_params ind.mind_entry_arity in let indices, ind_sort = Reduction.dest_arity env_params arity in let ind_min_univ = if template then Some Sorts.prop else None in let univ_info = { ind_squashed=false; ind_has_relevant_arg=false; ind_min_univ; ind_univ=ind_sort; missing=[]; } in let univ_info = check_indices_matter env_params univ_info indices in (* We do not need to generate the universe of the arity with params; if later, after the validation of the inductive definition, full_arity is used as argument or subject to cast, an upper universe will be generated *) let arity = it_mkProd_or_LetIn arity (Environ.rel_context env_params) in let x = Context.make_annot (Name ind.mind_entry_typename) (Sorts.relevance_of_sort ind_sort) in push_rel (LocalAssum (x, arity)) env_ar, (arity, indices, univ_info) let check_constructor_univs env_ar_par info (args,_) = (* We ignore the output, positivity will check that it's the expected inductive type *) check_context_univs ~ctor:true env_ar_par info args let check_constructors env_ar_par isrecord params lc (arity,indices,univ_info) = let lc = Array.map_of_list (fun c -> (Typeops.infer_type env_ar_par c).utj_val) lc in let splayed_lc = Array.map (Reduction.dest_prod_assum env_ar_par) lc in let univ_info = match Array.length lc with (* Empty type: all OK *) | 0 -> univ_info | 1 -> (* SProp primitive records are OK, if we squash and become fakerecord also OK *) if isrecord then univ_info (* 1 constructor with no arguments also OK in SProp (to make things easier on ourselves when reducing we forbid letins) *) else if (Environ.typing_flags env_ar_par).allow_uip && fst (splayed_lc.(0)) = [] && List.for_all Context.Rel.Declaration.is_local_assum params then univ_info (* 1 constructor with arguments must squash if SProp (we could allow arguments in SProp but the reduction rule is a pain) *) else check_univ_leq env_ar_par Sorts.prop univ_info (* More than 1 constructor: must squash if Prop/SProp *) | _ -> check_univ_leq env_ar_par Sorts.set univ_info in let univ_info = Array.fold_left (check_constructor_univs env_ar_par) univ_info splayed_lc in (* generalize the constructors over the parameters *) let lc = Array.map (fun c -> Term.it_mkProd_or_LetIn c params) lc in (arity, lc), (indices, splayed_lc), univ_info let check_record data = List.for_all (fun (_,(_,splayed_lc),info) -> (* records must have all projections definable -> equivalent to not being squashed *) not info.ind_squashed (* relevant records must have at least 1 relevant argument *) && (Sorts.is_sprop info.ind_univ || info.ind_has_relevant_arg) && (match splayed_lc with (* records must have 1 constructor with at least 1 argument, and no anonymous fields *) | [|ctx,_|] -> let module D = Context.Rel.Declaration in List.exists D.is_local_assum ctx && List.for_all (fun d -> not (D.is_local_assum d) || not (Name.is_anonymous (D.get_name d))) ctx | _ -> false)) data (* Allowed eliminations *) (* Previous comment: *) (* Unitary/empty Prop: elimination to all sorts are realizable *) (* unless the type is large. If it is large, forbids large elimination *) (* which otherwise allows simulating the inconsistent system Type:Type. *) (* -> this is now handled by is_smashed: *) (* - all_sorts in case of small, unitary Prop (not smashed) *) (* - logical_sorts in case of large, unitary Prop (smashed) *) let allowed_sorts {ind_squashed;ind_univ;ind_min_univ=_;ind_has_relevant_arg=_;missing=_} = if not ind_squashed then InType else Sorts.family ind_univ (* For a level to be template polymorphic, it must be introduced by the definition (so have no constraint except lbound <= l) and not to be constrained from below, so any universe l' <= l can be used as an instance of l. All bounds from above, i.e. l <=/< r will be valid for any l' <= l. *) let unbounded_from_below u cstrs = Univ.Constraints.for_all (fun (l, d, r) -> match d with | Eq -> not (Univ.Level.equal l u) && not (Univ.Level.equal r u) | Lt | Le -> not (Univ.Level.equal r u)) cstrs let get_template univs ~env_params ~env_ar_par ~params data entries = match univs with | Polymorphic_ind_entry _ | Monomorphic_ind_entry -> None | Template_ind_entry ctx -> let is_prop = match data with | [ _, _, info ] -> Sorts.is_prop @@ Option.get info.ind_min_univ | _ -> CErrors.user_err Pp.(str "Template-polymorphism not allowed with mutual inductives.") in (* Compute potential template parameters *) let map decl = match decl with | LocalAssum (_, p) -> let c = Term.strip_prod_assum p in let s = match kind c with | Sort (Type u) -> begin match Universe.level u with | Some l -> if Level.Set.mem l (fst ctx) then Some l else None | None -> None end | _ -> None in Some s | LocalDef _ -> None in let params = List.map_filter map params in let params = if is_prop then (* Inductive types in Prop have no template universes, but are still marked as template to please the upper layers. *) List.map (fun _ -> None) params else (* We reuse the same code as the one for variance inference. *) let init_variance = Array.map_of_list (fun l -> l, None) (Level.Set.elements (fst ctx)) in let variance = InferCumulativity.infer_inductive ~env_params ~env_ar_par init_variance ~arities:(List.map (fun e -> e.mind_entry_arity) entries) ~ctors:(List.map (fun e -> e.mind_entry_lc) entries) in let fold accu v (l, _) = match v with | Variance.Irrelevant -> Level.Set.add l accu | Variance.Covariant | Variance.Invariant -> accu in let irrel = Array.fold_left2 fold Level.Set.empty variance init_variance in let () = if Level.Set.is_empty irrel then CErrors.user_err Pp.(strbrk "Ill-formed template inductive declaration: not polymorphic on any universe.") in let map = function | None -> None | Some l -> if Level.Set.mem l irrel && unbounded_from_below l (snd ctx) then Some l else None in List.rev_map map params in Some { template_param_levels = params; template_context = ctx } let abstract_packets usubst ((arity,lc),(indices,splayed_lc),univ_info) = if not (List.is_empty univ_info.missing) then raise (InductiveError (MissingConstraints (univ_info.missing,univ_info.ind_univ))); let arity = Vars.subst_univs_level_constr usubst arity in let lc = Array.map (Vars.subst_univs_level_constr usubst) lc in let indices = Vars.subst_univs_level_context usubst indices in let splayed_lc = Array.map (fun (args,out) -> let args = Vars.subst_univs_level_context usubst args in let out = Vars.subst_univs_level_constr usubst out in args,out) splayed_lc in let ind_univ = match univ_info.ind_univ with | Prop | SProp | Set -> univ_info.ind_univ | Type u -> Sorts.sort_of_univ (Univ.subst_univs_level_universe usubst u) in let arity = match univ_info.ind_min_univ with | None -> RegularArity {mind_user_arity = arity; mind_sort = ind_univ} | Some min_univ -> TemplateArity { template_level = min_univ; } in let kelim = allowed_sorts univ_info in (arity,lc), (indices,splayed_lc), kelim let typecheck_inductive env ~sec_univs (mie:mutual_inductive_entry) = let () = match mie.mind_entry_inds with | [] -> CErrors.anomaly Pp.(str "empty inductive types declaration.") | _ -> () in (* Check unicity of names (redundant with safe_typing's add_field checks) *) mind_check_names mie; assert (List.is_empty (Environ.rel_context env)); (* universes *) let env_univs = match mie.mind_entry_universes with | Template_ind_entry ctx -> (* For that particular case, we typecheck the inductive in an environment where the universes introduced by the definition are only [>= Prop] *) let env = set_universes_lbound env UGraph.Bound.Prop in push_context_set ~strict:false ctx env | Monomorphic_ind_entry -> env | Polymorphic_ind_entry ctx -> push_context ctx env in let has_template_poly = match mie.mind_entry_universes with | Template_ind_entry _ -> true | Monomorphic_ind_entry | Polymorphic_ind_entry _ -> false in (* Params *) let env_params, params = Typeops.check_context env_univs mie.mind_entry_params in (* Arities *) let env_ar, data = List.fold_left_map (check_arity ~template:has_template_poly env_params) env_univs mie.mind_entry_inds in let env_ar_par = push_rel_context params env_ar in (* Constructors *) let isrecord = match mie.mind_entry_record with | Some (Some _) -> true | Some None | None -> false in let data = List.map2 (fun ind data -> check_constructors env_ar_par isrecord params ind.mind_entry_lc data) mie.mind_entry_inds data in let record = mie.mind_entry_record in let data, record = match record with | None | Some None -> data, record | Some (Some _) -> if check_record data then data, record else (* if someone tried to declare a record as SProp but it can't be primitive we must squash. *) let data = List.map (fun (a,b,univs) -> a,b,check_univ_leq env_ar_par Sorts.prop univs) data in data, Some None in let variance = match mie.mind_entry_variance with | None -> None | Some variances -> match mie.mind_entry_universes with | Monomorphic_ind_entry | Template_ind_entry _ -> CErrors.user_err Pp.(str "Inductive cannot be both monomorphic and universe cumulative.") | Polymorphic_ind_entry uctx -> let univs = Instance.to_array @@ UContext.instance uctx in let univs = Array.map2 (fun a b -> a,b) univs variances in let univs = match sec_univs with | None -> univs | Some sec_univs -> let sec_univs = Array.map (fun u -> u, None) sec_univs in Array.append sec_univs univs in let variances = InferCumulativity.infer_inductive ~env_params ~env_ar_par ~arities:(List.map (fun e -> e.mind_entry_arity) mie.mind_entry_inds) ~ctors:(List.map (fun e -> e.mind_entry_lc) mie.mind_entry_inds) univs in Some variances in let template = get_template mie.mind_entry_universes ~env_params ~env_ar_par ~params data mie.mind_entry_inds in (* Abstract universes *) let usubst, univs = match mie.mind_entry_universes with | Monomorphic_ind_entry | Template_ind_entry _ -> Univ.empty_level_subst, Monomorphic | Polymorphic_ind_entry uctx -> let (inst, auctx) = Univ.abstract_universes uctx in let inst = Univ.make_instance_subst inst in (inst, Polymorphic auctx) in let params = Vars.subst_univs_level_context usubst params in let data = List.map (abstract_packets usubst) data in let env_ar_par = let ctx = Environ.rel_context env_ar_par in let ctx = Vars.subst_univs_level_context usubst ctx in let env = Environ.pop_rel_context (Environ.nb_rel env_ar_par) env_ar_par in Environ.push_rel_context ctx env in env_ar_par, univs, template, variance, record, params, Array.of_list data
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>