package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.gramlib/grammar.ml.html
Source file grammar.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
(* camlp5r *) (* grammar.ml,v *) (* Copyright (c) INRIA 2007-2017 *) open Gramext open Format open Util (* Functorial interface *) type norec type mayrec module type S = sig type te type 'c pattern type ty_pattern = TPattern : 'a pattern -> ty_pattern module Parsable : sig type t val make : ?loc:Loc.t -> char Stream.t -> t val comments : t -> ((int * int) * string) list end module Entry : sig type 'a t val make : string -> 'a t val create : string -> 'a t val parse : 'a t -> Parsable.t -> 'a val name : 'a t -> string type 'a parser_fun = { parser_fun : te LStream.t -> 'a } val of_parser : string -> 'a parser_fun -> 'a t val parse_token_stream : 'a t -> te LStream.t -> 'a val print : Format.formatter -> 'a t -> unit val is_empty : 'a t -> bool end module rec Symbol : sig type ('self, 'trec, 'a) t val nterm : 'a Entry.t -> ('self, norec, 'a) t val nterml : 'a Entry.t -> string -> ('self, norec, 'a) t val list0 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t val list0sep : ('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool -> ('self, 'trec, 'a list) t val list1 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t val list1sep : ('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool -> ('self, 'trec, 'a list) t val opt : ('self, 'trec, 'a) t -> ('self, 'trec, 'a option) t val self : ('self, mayrec, 'self) t val next : ('self, mayrec, 'self) t val token : 'c pattern -> ('self, norec, 'c) t val tokens : ty_pattern list -> ('self, norec, unit) t val rules : 'a Rules.t list -> ('self, norec, 'a) t end and Rule : sig type ('self, 'trec, 'f, 'r) t val stop : ('self, norec, 'r, 'r) t val next : ('self, _, 'a, 'r) t -> ('self, _, 'b) Symbol.t -> ('self, mayrec, 'b -> 'a, 'r) t val next_norec : ('self, norec, 'a, 'r) Rule.t -> ('self, norec, 'b) Symbol.t -> ('self, norec, 'b -> 'a, 'r) t end and Rules : sig type 'a t val make : (_, norec, 'f, Loc.t -> 'a) Rule.t -> 'f -> 'a t end module Production : sig type 'a t val make : ('a, _, 'f, Loc.t -> 'a) Rule.t -> 'f -> 'a t end type 'a single_extend_statement = string option * Gramext.g_assoc option * 'a Production.t list type 'a extend_statement = | Reuse of string option * 'a Production.t list | Fresh of Gramext.position * 'a single_extend_statement list val generalize_symbol : ('a, 'tr, 'c) Symbol.t -> ('a, norec, 'c) Symbol.t option (* Used in custom entries, should tweak? *) val level_of_nonterm : ('a, norec, 'c) Symbol.t -> string option end module type ExtS = sig include S val safe_extend : 'a Entry.t -> 'a extend_statement -> unit val safe_delete_rule : 'a Entry.t -> 'a Production.t -> unit module Unsafe : sig val clear_entry : 'a Entry.t -> unit end end (* Implementation *) module GMake (L : Plexing.S) = struct type te = L.te type 'c pattern = 'c L.pattern type ty_pattern = TPattern : 'a pattern -> ty_pattern type 'a parser_t = L.te LStream.t -> 'a type grammar = { gtokens : (string * string option, int ref) Hashtbl.t } let egram = { gtokens = Hashtbl.create 301 } (** Used to propagate possible presence of SELF/NEXT in a rule (binary and) *) type ('a, 'b, 'c) ty_and_rec = | NoRec2 : (norec, norec, norec) ty_and_rec | MayRec2 : ('a, 'b, mayrec) ty_and_rec (** Used to propagate possible presence of SELF/NEXT in a tree (ternary and) *) type ('a, 'b, 'c, 'd) ty_and_rec3 = | NoRec3 : (norec, norec, norec, norec) ty_and_rec3 | MayRec3 : ('a, 'b, 'c, mayrec) ty_and_rec3 type 'a ty_entry = { ename : string; mutable estart : int -> 'a parser_t; mutable econtinue : int -> int -> 'a -> 'a parser_t; mutable edesc : 'a ty_desc; } and 'a ty_desc = | Dlevels of 'a ty_level list | Dparser of 'a parser_t and 'a ty_level = Level : (_, _, 'a) ty_rec_level -> 'a ty_level and ('trecs, 'trecp, 'a) ty_rec_level = { assoc : g_assoc; lname : string option; lsuffix : ('a, 'trecs, 'a -> Loc.t -> 'a) ty_tree; lprefix : ('a, 'trecp, Loc.t -> 'a) ty_tree; } and ('self, 'trec, 'a) ty_symbol = | Stoken : 'c pattern -> ('self, norec, 'c) ty_symbol | Stokens : ty_pattern list -> ('self, norec, unit) ty_symbol | Slist1 : ('self, 'trec, 'a) ty_symbol -> ('self, 'trec, 'a list) ty_symbol | Slist1sep : ('self, 'trec, 'a) ty_symbol * ('self, norec, unit) ty_symbol * bool -> ('self, 'trec, 'a list) ty_symbol | Slist0 : ('self, 'trec, 'a) ty_symbol -> ('self, 'trec, 'a list) ty_symbol | Slist0sep : ('self, 'trec, 'a) ty_symbol * ('self, norec, unit) ty_symbol * bool -> ('self, 'trec, 'a list) ty_symbol | Sopt : ('self, 'trec, 'a) ty_symbol -> ('self, 'trec, 'a option) ty_symbol | Sself : ('self, mayrec, 'self) ty_symbol | Snext : ('self, mayrec, 'self) ty_symbol | Snterm : 'a ty_entry -> ('self, norec, 'a) ty_symbol (* norec but the entry can nevertheless introduce a loop with the current entry*) | Snterml : 'a ty_entry * string -> ('self, norec, 'a) ty_symbol | Stree : ('self, 'trec, Loc.t -> 'a) ty_tree -> ('self, 'trec, 'a) ty_symbol and ('self, _, _, 'r) ty_rule = | TStop : ('self, norec, 'r, 'r) ty_rule | TNext : ('trr, 'trs, 'tr) ty_and_rec * ('self, 'trr, 'a, 'r) ty_rule * ('self, 'trs, 'b) ty_symbol -> ('self, 'tr, 'b -> 'a, 'r) ty_rule and ('self, 'trec, 'a) ty_tree = | Node : ('trn, 'trs, 'trb, 'tr) ty_and_rec3 * ('self, 'trn, 'trs, 'trb, 'b, 'a) ty_node -> ('self, 'tr, 'a) ty_tree | LocAct : 'k * 'k list -> ('self, norec, 'k) ty_tree | DeadEnd : ('self, norec, 'k) ty_tree and ('self, 'trec, 'trecs, 'trecb, 'a, 'r) ty_node = { node : ('self, 'trec, 'a) ty_symbol; son : ('self, 'trecs, 'a -> 'r) ty_tree; brother : ('self, 'trecb, 'r) ty_tree; } type 'a ty_rules = | TRules : (_, norec, 'act, Loc.t -> 'a) ty_rule * 'act -> 'a ty_rules type 'a ty_production = | TProd : ('a, _, 'act, Loc.t -> 'a) ty_rule * 'act -> 'a ty_production let rec derive_eps : type s r a. (s, r, a) ty_symbol -> bool = function Slist0 _ -> true | Slist0sep (_, _, _) -> true | Sopt _ -> true | Stree t -> tree_derive_eps t | Slist1 _ -> false | Slist1sep (_, _, _) -> false | Snterm _ -> false | Snterml (_, _) -> false | Snext -> false | Sself -> false | Stoken _ -> false | Stokens _ -> false and tree_derive_eps : type s tr a. (s, tr, a) ty_tree -> bool = function LocAct (_, _) -> true | Node (_, {node = s; brother = bro; son = son}) -> derive_eps s && tree_derive_eps son || tree_derive_eps bro | DeadEnd -> false (** FIXME: find a way to do that type-safely *) let eq_entry : type a1 a2. a1 ty_entry -> a2 ty_entry -> (a1, a2) eq option = fun e1 e2 -> if (Obj.magic e1) == (Obj.magic e2) then Some (Obj.magic Refl) else None let tok_pattern_eq_list pl1 pl2 = let f (TPattern p1) (TPattern p2) = Option.has_some (L.tok_pattern_eq p1 p2) in if List.for_all2eq f pl1 pl2 then Some Refl else None let rec eq_symbol : type s r1 r2 a1 a2. (s, r1, a1) ty_symbol -> (s, r2, a2) ty_symbol -> (a1, a2) eq option = fun s1 s2 -> match s1, s2 with Snterm e1, Snterm e2 -> eq_entry e1 e2 | Snterml (e1, l1), Snterml (e2, l2) -> if String.equal l1 l2 then eq_entry e1 e2 else None | Slist0 s1, Slist0 s2 -> begin match eq_symbol s1 s2 with None -> None | Some Refl -> Some Refl end | Slist0sep (s1, sep1, b1), Slist0sep (s2, sep2, b2) -> if b1 = b2 then match eq_symbol s1 s2 with | None -> None | Some Refl -> match eq_symbol sep1 sep2 with | None -> None | Some Refl -> Some Refl else None | Slist1 s1, Slist1 s2 -> begin match eq_symbol s1 s2 with None -> None | Some Refl -> Some Refl end | Slist1sep (s1, sep1, b1), Slist1sep (s2, sep2, b2) -> if b1 = b2 then match eq_symbol s1 s2 with | None -> None | Some Refl -> match eq_symbol sep1 sep2 with | None -> None | Some Refl -> Some Refl else None | Sopt s1, Sopt s2 -> begin match eq_symbol s1 s2 with None -> None | Some Refl -> Some Refl end | Stree _, Stree _ -> None | Sself, Sself -> Some Refl | Snext, Snext -> Some Refl | Stoken p1, Stoken p2 -> L.tok_pattern_eq p1 p2 | Stokens pl1, Stokens pl2 -> tok_pattern_eq_list pl1 pl2 | _ -> None let is_before : type s1 s2 r1 r2 a1 a2. (s1, r1, a1) ty_symbol -> (s2, r2, a2) ty_symbol -> bool = fun s1 s2 -> match s1, s2 with | Stoken p1, Stoken p2 -> snd (L.tok_pattern_strings p1) <> None && snd (L.tok_pattern_strings p2) = None | Stoken _, _ -> true | _ -> false (** Ancillary datatypes *) type 'a ty_rec = MayRec : mayrec ty_rec | NoRec : norec ty_rec type ('a, 'b, 'c) ty_and_ex = | NR00 : (mayrec, mayrec, mayrec) ty_and_ex | NR01 : (mayrec, norec, mayrec) ty_and_ex | NR10 : (norec, mayrec, mayrec) ty_and_ex | NR11 : (norec, norec, norec) ty_and_ex type ('a, 'b) ty_mayrec_and_ex = | MayRecNR : ('a, 'b, _) ty_and_ex -> ('a, 'b) ty_mayrec_and_ex type ('s, 'a) ty_mayrec_symbol = | MayRecSymbol : ('s, _, 'a) ty_symbol -> ('s, 'a) ty_mayrec_symbol type ('s, 'a) ty_mayrec_tree = | MayRecTree : ('s, 'tr, 'a) ty_tree -> ('s, 'a) ty_mayrec_tree type ('s, 'a, 'r) ty_mayrec_rule = | MayRecRule : ('s, _, 'a, 'r) ty_rule -> ('s, 'a, 'r) ty_mayrec_rule type ('self, 'trec, _) ty_symbols = | TNil : ('self, norec, unit) ty_symbols | TCns : ('trh, 'trt, 'tr) ty_and_rec * ('self, 'trh, 'a) ty_symbol * ('self, 'trt, 'b) ty_symbols -> ('self, 'tr, 'a * 'b) ty_symbols (** ('i, 'p, 'f, 'r) rel_prod0 ~ ∃ α₁ ... αₙ. p ≡ αₙ * ... α₁ * 'i ∧ f ≡ α₁ -> ... -> αₙ -> 'r *) type ('i, _, 'f, _) rel_prod0 = | Rel0 : ('i, 'i, 'f, 'f) rel_prod0 | RelS : ('i, 'p, 'f, 'a -> 'r) rel_prod0 -> ('i, 'a * 'p, 'f, 'r) rel_prod0 type ('p, 'k, 'r) rel_prod = (unit, 'p, 'k, 'r) rel_prod0 type ('s, 'tr, 'i, 'k, 'r) any_symbols = | AnyS : ('s, 'tr, 'p) ty_symbols * ('i, 'p, 'k, 'r) rel_prod0 -> ('s, 'tr, 'i, 'k, 'r) any_symbols type ('s, 'tr, 'k, 'r) ty_belast_rule = | Belast : ('trr, 'trs, 'tr) ty_and_rec * ('s, 'trr, 'k, 'a -> 'r) ty_rule * ('s, 'trs, 'a) ty_symbol -> ('s, 'tr, 'k, 'r) ty_belast_rule (* unfortunately, this is quadratic, but ty_rules aren't too long * (99% of the time of length less or equal 10 and maximum is 22 * when compiling Coq and its standard library) *) let rec get_symbols : type s trec k r. (s, trec, k, r) ty_rule -> (s, trec, unit, k, r) any_symbols = let rec belast_rule : type s trr trs tr a k r. (trr, trs, tr) ty_and_rec -> (s, trr, k, r) ty_rule -> (s, trs, a) ty_symbol -> (s, tr, a -> k, r) ty_belast_rule = fun ar r s -> match ar, r with | NoRec2, TStop -> Belast (NoRec2, TStop, s) | MayRec2, TStop -> Belast (MayRec2, TStop, s) | NoRec2, TNext (NoRec2, r, s') -> let Belast (NoRec2, r, s') = belast_rule NoRec2 r s' in Belast (NoRec2, TNext (NoRec2, r, s), s') | MayRec2, TNext (_, r, s') -> let Belast (_, r, s') = belast_rule MayRec2 r s' in Belast (MayRec2, TNext (MayRec2, r, s), s') in function | TStop -> AnyS (TNil, Rel0) | TNext (MayRec2, r, s) -> let Belast (MayRec2, r, s) = belast_rule MayRec2 r s in let AnyS (r, pf) = get_symbols r in AnyS (TCns (MayRec2, s, r), RelS pf) | TNext (NoRec2, r, s) -> let Belast (NoRec2, r, s) = belast_rule NoRec2 r s in let AnyS (r, pf) = get_symbols r in AnyS (TCns (NoRec2, s, r), RelS pf) let get_rec_symbols (type s tr p) (s : (s, tr, p) ty_symbols) : tr ty_rec = match s with TCns (MayRec2, _, _) -> MayRec | TCns (NoRec2, _, _) -> NoRec | TNil -> NoRec let get_rec_tree (type s tr f) (s : (s, tr, f) ty_tree) : tr ty_rec = match s with Node (MayRec3, _) -> MayRec | Node (NoRec3, _) -> NoRec | LocAct _ -> NoRec | DeadEnd -> NoRec let and_symbols_tree (type s trs trt p f) (s : (s, trs, p) ty_symbols) (t : (s, trt, f) ty_tree) : (trs, trt) ty_mayrec_and_ex = match get_rec_symbols s, get_rec_tree t with | MayRec, MayRec -> MayRecNR NR00 | MayRec, NoRec -> MayRecNR NR01 | NoRec, MayRec -> MayRecNR NR10 | NoRec, NoRec -> MayRecNR NR11 let and_and_tree (type s tr' trt tr trn trs trb f) (ar : (tr', trt, tr) ty_and_rec) (arn : (trn, trs, trb, trt) ty_and_rec3) (t : (s, trb, f) ty_tree) : (tr', trb, tr) ty_and_rec = match ar, arn, get_rec_tree t with | MayRec2, _, MayRec -> MayRec2 | MayRec2, _, NoRec -> MayRec2 | NoRec2, NoRec3, NoRec -> NoRec2 let insert_tree (type s trs trt tr p k a) entry_name (ar : (trs, trt, tr) ty_and_ex) (gsymbols : (s, trs, p) ty_symbols) (pf : (p, k, a) rel_prod) (action : k) (tree : (s, trt, a) ty_tree) : (s, tr, a) ty_tree = let rec insert : type trs trt tr p f k. (trs, trt, tr) ty_and_ex -> (s, trs, p) ty_symbols -> (p, k, f) rel_prod -> (s, trt, f) ty_tree -> k -> (s, tr, f) ty_tree = fun ar symbols pf tree action -> match symbols, pf with TCns (ars, s, sl), RelS pf -> (* descent in tree at symbol [s] *) insert_in_tree ar ars s sl pf tree action | TNil, Rel0 -> (* insert the action *) let node (type tb) ({node = s; son = son; brother = bro} : (_, _, _, tb, _, _) ty_node) = let ar : (norec, tb, tb) ty_and_ex = match get_rec_tree bro with MayRec -> NR10 | NoRec -> NR11 in {node = s; son = son; brother = insert ar TNil Rel0 bro action} in match ar, tree with | NR10, Node (_, n) -> Node (MayRec3, node n) | NR11, Node (NoRec3, n) -> Node (NoRec3, node n) | NR11, LocAct (old_action, action_list) -> (* What to do about this warning? For now it is disabled *) if false then begin let msg = "<W> Grammar extension: " ^ (if entry_name = "" then "" else "in ["^entry_name^"%s], ") ^ "some rule has been masked" in Feedback.msg_warning (Pp.str msg) end; LocAct (action, old_action :: action_list) | NR11, DeadEnd -> LocAct (action, []) and insert_in_tree : type trs trs' trs'' trt tr a p f k. (trs'', trt, tr) ty_and_ex -> (trs, trs', trs'') ty_and_rec -> (s, trs, a) ty_symbol -> (s, trs', p) ty_symbols -> (p, k, a -> f) rel_prod -> (s, trt, f) ty_tree -> k -> (s, tr, f) ty_tree = fun ar ars s sl pf tree action -> let ar : (trs'', trt, tr) ty_and_rec = match ar with NR11 -> NoRec2 | NR00 -> MayRec2 | NR01 -> MayRec2 | NR10 -> MayRec2 in match try_insert ar ars s sl pf tree action with Some t -> t | None -> let node ar = {node = s; son = insert ar sl pf DeadEnd action; brother = tree} in match ar, ars, get_rec_symbols sl with | MayRec2, MayRec2, MayRec -> Node (MayRec3, node NR01) | MayRec2, _, NoRec -> Node (MayRec3, node NR11) | NoRec2, NoRec2, NoRec -> Node (NoRec3, node NR11) and try_insert : type trs trs' trs'' trt tr a p f k. (trs'', trt, tr) ty_and_rec -> (trs, trs', trs'') ty_and_rec -> (s, trs, a) ty_symbol -> (s, trs', p) ty_symbols -> (p, k, a -> f) rel_prod -> (s, trt, f) ty_tree -> k -> (s, tr, f) ty_tree option = fun ar ars symb symbl pf tree action -> match tree with Node (arn, {node = symb1; son = son; brother = bro}) -> (* merging rule [symb; symbl -> action] in tree [symb1; son | bro] *) begin match eq_symbol symb symb1 with | Some Refl -> (* reducing merge of [symb; symbl -> action] with [symb1; son] to merge of [symbl -> action] with [son] *) let MayRecNR arss = and_symbols_tree symbl son in let son = insert arss symbl pf son action in let node = {node = symb1; son = son; brother = bro} in (* propagate presence of SELF/NEXT *) begin match ar, ars, arn, arss with | MayRec2, _, _, _ -> Some (Node (MayRec3, node)) | NoRec2, NoRec2, NoRec3, NR11 -> Some (Node (NoRec3, node)) end | None -> let ar' = and_and_tree ar arn bro in if is_before symb1 symb || derive_eps symb && not (derive_eps symb1) then (* inserting new rule after current rule, i.e. in [bro] *) let bro = match try_insert ar' ars symb symbl pf bro action with Some bro -> (* could insert in [bro] *) bro | None -> (* not ok to insert in [bro] or after; we insert now *) let MayRecNR arss = and_symbols_tree symbl DeadEnd in let son = insert arss symbl pf DeadEnd action in let node = {node = symb; son = son; brother = bro} in (* propagate presence of SELF/NEXT *) match ar, ars, arn, arss with | MayRec2, _, _, _ -> Node (MayRec3, node) | NoRec2, NoRec2, NoRec3, NR11 -> Node (NoRec3, node) in let node = {node = symb1; son = son; brother = bro} in (* propagate presence of SELF/NEXT *) match ar, arn with | MayRec2, _ -> Some (Node (MayRec3, node)) | NoRec2, NoRec3 -> Some (Node (NoRec3, node)) else (* should insert in [bro] or before the tree [symb1; son | bro] *) match try_insert ar' ars symb symbl pf bro action with Some bro -> (* could insert in [bro] *) let node = {node = symb1; son = son; brother = bro} in begin match ar, arn with | MayRec2, _ -> Some (Node (MayRec3, node)) | NoRec2, NoRec3 -> Some (Node (NoRec3, node)) end | None -> (* should insert before [symb1; son | bro] *) None end | LocAct (_, _) -> None | DeadEnd -> None in insert ar gsymbols pf tree action let insert_tree_norec (type s p k a) entry_name (gsymbols : (s, norec, p) ty_symbols) (pf : (p, k, a) rel_prod) (action : k) (tree : (s, norec, a) ty_tree) : (s, norec, a) ty_tree = insert_tree entry_name NR11 gsymbols pf action tree let insert_tree (type s trs trt p k a) entry_name (gsymbols : (s, trs, p) ty_symbols) (pf : (p, k, a) rel_prod) (action : k) (tree : (s, trt, a) ty_tree) : (s, a) ty_mayrec_tree = let MayRecNR ar = and_symbols_tree gsymbols tree in MayRecTree (insert_tree entry_name ar gsymbols pf action tree) let srules (type self a) (rl : a ty_rules list) : (self, norec, a) ty_symbol = let rec retype_tree : type s a. (s, norec, a) ty_tree -> (self, norec, a) ty_tree = function | Node (NoRec3, {node = s; son = son; brother = bro}) -> Node (NoRec3, {node = retype_symbol s; son = retype_tree son; brother = retype_tree bro}) | LocAct (k, kl) -> LocAct (k, kl) | DeadEnd -> DeadEnd and retype_symbol : type s a. (s, norec, a) ty_symbol -> (self, norec, a) ty_symbol = function | Stoken p -> Stoken p | Stokens l -> Stokens l | Slist1 s -> Slist1 (retype_symbol s) | Slist1sep (s, sep, b) -> Slist1sep (retype_symbol s, retype_symbol sep, b) | Slist0 s -> Slist0 (retype_symbol s) | Slist0sep (s, sep, b) -> Slist0sep (retype_symbol s, retype_symbol sep, b) | Sopt s -> Sopt (retype_symbol s) | Snterm e -> Snterm e | Snterml (e, l) -> Snterml (e, l) | Stree t -> Stree (retype_tree t) in let rec retype_rule : type s k r. (s, norec, k, r) ty_rule -> (self, norec, k, r) ty_rule = function | TStop -> TStop | TNext (NoRec2, r, s) -> TNext (NoRec2, retype_rule r, retype_symbol s) in let t = List.fold_left (fun tree (TRules (symbols, action)) -> let symbols = retype_rule symbols in let AnyS (symbols, pf) = get_symbols symbols in insert_tree_norec "" symbols pf action tree) DeadEnd rl in Stree t let is_level_labelled n (Level lev) = match lev.lname with Some n1 -> n = n1 | None -> false let insert_level (type s tr p k) entry_name (symbols : (s, tr, p) ty_symbols) (pf : (p, k, Loc.t -> s) rel_prod) (action : k) (slev : s ty_level) : s ty_level = match symbols with | TCns (_, Sself, symbols) -> (* Insert a rule of the form "SELF; ...." *) let Level slev = slev in let RelS pf = pf in let MayRecTree lsuffix = insert_tree entry_name symbols pf action slev.lsuffix in Level {assoc = slev.assoc; lname = slev.lname; lsuffix = lsuffix; lprefix = slev.lprefix} | _ -> (* Insert a rule not starting with SELF *) let Level slev = slev in let MayRecTree lprefix = insert_tree entry_name symbols pf action slev.lprefix in Level {assoc = slev.assoc; lname = slev.lname; lsuffix = slev.lsuffix; lprefix = lprefix} let empty_lev lname assoc = let assoc = match assoc with Some a -> a | None -> LeftA in Level {assoc = assoc; lname = lname; lsuffix = DeadEnd; lprefix = DeadEnd} let err_no_level lev e = let msg = sprintf "Grammar.extend: No level labelled \"%s\" in entry \"%s\"" lev e in failwith msg let get_position entry position levs = match position with First -> [], levs | Last -> levs, [] | Before n -> let rec get = function [] -> err_no_level n entry.ename | lev :: levs -> if is_level_labelled n lev then [], lev :: levs else let (levs1, levs2) = get levs in lev :: levs1, levs2 in get levs | After n -> let rec get = function [] -> err_no_level n entry.ename | lev :: levs -> if is_level_labelled n lev then [lev], levs else let (levs1, levs2) = get levs in lev :: levs1, levs2 in get levs let get_level entry name levs = match name with | Some n -> let rec get = function [] -> err_no_level n entry.ename | lev :: levs -> if is_level_labelled n lev then [], lev, levs else let (levs1, rlev, levs2) = get levs in lev :: levs1, rlev, levs2 in get levs | None -> begin match levs with lev :: levs -> [], lev, levs | [] -> let msg = sprintf "Grammar.extend: No top level in entry \"%s\"" entry.ename in failwith msg end let change_to_self0 (type s) (type trec) (type a) (entry : s ty_entry) : (s, trec, a) ty_symbol -> (s, a) ty_mayrec_symbol = function | Snterm e -> begin match eq_entry e entry with | None -> MayRecSymbol (Snterm e) | Some Refl -> MayRecSymbol (Sself) end | x -> MayRecSymbol x let rec change_to_self : type s trec a r. s ty_entry -> (s, trec, a, r) ty_rule -> (s, a, r) ty_mayrec_rule = fun e r -> match r with | TStop -> MayRecRule TStop | TNext (_, r, t) -> let MayRecRule r = change_to_self e r in let MayRecSymbol t = change_to_self0 e t in MayRecRule (TNext (MayRec2, r, t)) let insert_token gram tok = L.tok_using tok; let r = let tok = L.tok_pattern_strings tok in try Hashtbl.find gram.gtokens tok with Not_found -> let r = ref 0 in Hashtbl.add gram.gtokens tok r; r in incr r let insert_tokens gram symbols = let rec insert : type s trec a. (s, trec, a) ty_symbol -> unit = function | Slist0 s -> insert s | Slist1 s -> insert s | Slist0sep (s, t, _) -> insert s; insert t | Slist1sep (s, t, _) -> insert s; insert t | Sopt s -> insert s | Stree t -> tinsert t | Stoken tok -> insert_token gram tok | Stokens (TPattern tok::_) -> insert_token gram tok (* Only the first token is liable to trigger a keyword effect *) | Stokens [] -> assert false | Snterm _ -> () | Snterml (_, _) -> () | Snext -> () | Sself -> () and tinsert : type s tr a. (s, tr, a) ty_tree -> unit = function Node (_, {node = s; brother = bro; son = son}) -> insert s; tinsert bro; tinsert son | LocAct (_, _) -> () | DeadEnd -> () and linsert : type s tr p. (s, tr, p) ty_symbols -> unit = function | TNil -> () | TCns (_, s, r) -> insert s; linsert r in linsert symbols type 'a single_extend_statement = string option * Gramext.g_assoc option * 'a ty_production list type 'a extend_statement = | Reuse of string option * 'a ty_production list | Fresh of Gramext.position * 'a single_extend_statement list let add_prod entry lev (TProd (symbols, action)) = let MayRecRule symbols = change_to_self entry symbols in let AnyS (symbols, pf) = get_symbols symbols in insert_tokens egram symbols; insert_level entry.ename symbols pf action lev let levels_of_rules entry st = let elev = match entry.edesc with Dlevels elev -> elev | Dparser _ -> let msg = sprintf "Grammar.extend: entry not extensible: \"%s\"" entry.ename in failwith msg in match st with | Reuse (name, []) -> elev | Reuse (name, prods) -> let (levs1, lev, levs2) = get_level entry name elev in let lev = List.fold_left (fun lev prod -> add_prod entry lev prod) lev prods in levs1 @ [lev] @ levs2 | Fresh (position, rules) -> let (levs1, levs2) = get_position entry position elev in let fold levs (lname, assoc, prods) = let lev = empty_lev lname assoc in let lev = List.fold_left (fun lev prod -> add_prod entry lev prod) lev prods in lev :: levs in let levs = List.fold_left fold [] rules in levs1 @ List.rev levs @ levs2 let logically_eq_symbols entry = let rec eq_symbols : type s1 s2 trec1 trec2 a1 a2. (s1, trec1, a1) ty_symbol -> (s2, trec2, a2) ty_symbol -> bool = fun s1 s2 -> match s1, s2 with Snterm e1, Snterm e2 -> e1.ename = e2.ename | Snterm e1, Sself -> e1.ename = entry.ename | Sself, Snterm e2 -> entry.ename = e2.ename | Snterml (e1, l1), Snterml (e2, l2) -> e1.ename = e2.ename && l1 = l2 | Slist0 s1, Slist0 s2 -> eq_symbols s1 s2 | Slist0sep (s1, sep1, b1), Slist0sep (s2, sep2, b2) -> eq_symbols s1 s2 && eq_symbols sep1 sep2 && b1 = b2 | Slist1 s1, Slist1 s2 -> eq_symbols s1 s2 | Slist1sep (s1, sep1, b1), Slist1sep (s2, sep2, b2) -> eq_symbols s1 s2 && eq_symbols sep1 sep2 && b1 = b2 | Sopt s1, Sopt s2 -> eq_symbols s1 s2 | Stree t1, Stree t2 -> eq_trees t1 t2 | Stoken p1, Stoken p2 -> L.tok_pattern_eq p1 p2 <> None | Stokens pl1, Stokens pl2 -> tok_pattern_eq_list pl1 pl2 <> None | Sself, Sself -> true | Snext, Snext -> true | _ -> false and eq_trees : type s1 s2 tr1 tr2 a1 a2. (s1, tr1, a1) ty_tree -> (s2, tr2, a2) ty_tree -> bool = fun t1 t2 -> match t1, t2 with Node (_, n1), Node (_, n2) -> eq_symbols n1.node n2.node && eq_trees n1.son n2.son && eq_trees n1.brother n2.brother | LocAct _, LocAct _ -> true | LocAct _, DeadEnd -> true | DeadEnd, LocAct _ -> true | DeadEnd, DeadEnd -> true | _ -> false in eq_symbols (* [delete_rule_in_tree] returns [Some (dsl, t)] if success [dsl] = Some (list of deleted nodes) if branch deleted None if action replaced by previous version of action [t] = remaining tree [None] if failure *) type 's ex_symbols = | ExS : ('s, 'tr, 'p) ty_symbols -> 's ex_symbols let delete_rule_in_tree entry = let rec delete_in_tree : type s tr tr' p r. (s, tr, p) ty_symbols -> (s, tr', r) ty_tree -> (s ex_symbols option * (s, r) ty_mayrec_tree) option = fun symbols tree -> match symbols, tree with | TCns (_, s, sl), Node (_, n) -> if logically_eq_symbols entry s n.node then delete_son sl n else begin match delete_in_tree symbols n.brother with Some (dsl, MayRecTree t) -> Some (dsl, MayRecTree (Node (MayRec3, {node = n.node; son = n.son; brother = t}))) | None -> None end | TCns (_, s, sl), _ -> None | TNil, Node (_, n) -> begin match delete_in_tree TNil n.brother with Some (dsl, MayRecTree t) -> Some (dsl, MayRecTree (Node (MayRec3, {node = n.node; son = n.son; brother = t}))) | None -> None end | TNil, DeadEnd -> None | TNil, LocAct (_, []) -> Some (Some (ExS TNil), MayRecTree DeadEnd) | TNil, LocAct (_, action :: list) -> Some (None, MayRecTree (LocAct (action, list))) and delete_son : type s p tr trn trs trb a r. (s, tr, p) ty_symbols -> (s, trn, trs, trb, a, r) ty_node -> (s ex_symbols option * (s, r) ty_mayrec_tree) option = fun sl n -> match delete_in_tree sl n.son with Some (Some (ExS dsl), MayRecTree DeadEnd) -> Some (Some (ExS (TCns (MayRec2, n.node, dsl))), MayRecTree n.brother) | Some (Some (ExS dsl), MayRecTree t) -> let t = Node (MayRec3, {node = n.node; son = t; brother = n.brother}) in Some (Some (ExS (TCns (MayRec2, n.node, dsl))), MayRecTree t) | Some (None, MayRecTree t) -> let t = Node (MayRec3, {node = n.node; son = t; brother = n.brother}) in Some (None, MayRecTree t) | None -> None in delete_in_tree let decr_keyw_use_in_token gram tok = let tok' = L.tok_pattern_strings tok in let r = Hashtbl.find gram.gtokens tok' in decr r; if !r == 0 then begin Hashtbl.remove gram.gtokens tok'; L.tok_removing tok end let rec decr_keyw_use : type s tr a. _ -> (s, tr, a) ty_symbol -> unit = fun gram -> function Stoken tok -> decr_keyw_use_in_token gram tok | Stokens (TPattern tok :: _) -> decr_keyw_use_in_token gram tok | Stokens [] -> assert false | Slist0 s -> decr_keyw_use gram s | Slist1 s -> decr_keyw_use gram s | Slist0sep (s1, s2, _) -> decr_keyw_use gram s1; decr_keyw_use gram s2 | Slist1sep (s1, s2, _) -> decr_keyw_use gram s1; decr_keyw_use gram s2 | Sopt s -> decr_keyw_use gram s | Stree t -> decr_keyw_use_in_tree gram t | Sself -> () | Snext -> () | Snterm _ -> () | Snterml (_, _) -> () and decr_keyw_use_in_tree : type s tr a. _ -> (s, tr, a) ty_tree -> unit = fun gram -> function DeadEnd -> () | LocAct (_, _) -> () | Node (_, n) -> decr_keyw_use gram n.node; decr_keyw_use_in_tree gram n.son; decr_keyw_use_in_tree gram n.brother and decr_keyw_use_in_list : type s tr p. _ -> (s, tr, p) ty_symbols -> unit = fun gram -> function | TNil -> () | TCns (_, s, l) -> decr_keyw_use gram s; decr_keyw_use_in_list gram l let rec delete_rule_in_suffix entry symbols = function Level lev :: levs -> begin match delete_rule_in_tree entry symbols lev.lsuffix with Some (dsl, MayRecTree t) -> begin match dsl with Some (ExS dsl) -> decr_keyw_use_in_list egram dsl | None -> () end; begin match t, lev.lprefix with DeadEnd, DeadEnd -> levs | _ -> let lev = {assoc = lev.assoc; lname = lev.lname; lsuffix = t; lprefix = lev.lprefix} in Level lev :: levs end | None -> let levs = delete_rule_in_suffix entry symbols levs in Level lev :: levs end | [] -> raise Not_found let rec delete_rule_in_prefix entry symbols = function Level lev :: levs -> begin match delete_rule_in_tree entry symbols lev.lprefix with Some (dsl, MayRecTree t) -> begin match dsl with Some (ExS dsl) -> decr_keyw_use_in_list egram dsl | None -> () end; begin match t, lev.lsuffix with DeadEnd, DeadEnd -> levs | _ -> let lev = {assoc = lev.assoc; lname = lev.lname; lsuffix = lev.lsuffix; lprefix = t} in Level lev :: levs end | None -> let levs = delete_rule_in_prefix entry symbols levs in Level lev :: levs end | [] -> raise Not_found let delete_rule_in_level_list (type s tr p) (entry : s ty_entry) (symbols : (s, tr, p) ty_symbols) levs = match symbols with TCns (_, Sself, symbols) -> delete_rule_in_suffix entry symbols levs | TCns (_, Snterm e, symbols') -> begin match eq_entry e entry with | None -> delete_rule_in_prefix entry symbols levs | Some Refl -> delete_rule_in_suffix entry symbols' levs end | _ -> delete_rule_in_prefix entry symbols levs let rec flatten_tree : type s tr a. (s, tr, a) ty_tree -> s ex_symbols list = function DeadEnd -> [] | LocAct (_, _) -> [ExS TNil] | Node (_, {node = n; brother = b; son = s}) -> List.map (fun (ExS l) -> ExS (TCns (MayRec2, n, l))) (flatten_tree s) @ flatten_tree b let utf8_print = ref true let utf8_string_escaped s = let b = Buffer.create (String.length s) in let rec loop i = if i = String.length s then Buffer.contents b else begin begin match s.[i] with '"' -> Buffer.add_string b "\\\"" | '\\' -> Buffer.add_string b "\\\\" | '\n' -> Buffer.add_string b "\\n" | '\t' -> Buffer.add_string b "\\t" | '\r' -> Buffer.add_string b "\\r" | '\b' -> Buffer.add_string b "\\b" | c -> Buffer.add_char b c end; loop (i + 1) end in loop 0 let string_escaped s = if !utf8_print then utf8_string_escaped s else String.escaped s let print_str ppf s = fprintf ppf "\"%s\"" (string_escaped s) let print_token b ppf p = match L.tok_pattern_strings p with | "", Some s -> print_str ppf s | con, Some prm -> if b then fprintf ppf "%s@ %a" con print_str prm else fprintf ppf "(%s@ %a)" con print_str prm | con, None -> fprintf ppf "%s" con let print_tokens ppf = function | [] -> assert false | TPattern p :: pl -> fprintf ppf "[%a%a]" (print_token true) p (fun ppf -> List.iter (function TPattern p -> fprintf ppf ";@ "; print_token true ppf p)) pl let rec print_symbol : type s tr r. formatter -> (s, tr, r) ty_symbol -> unit = fun ppf -> function | Slist0 s -> fprintf ppf "LIST0 %a" print_symbol1 s | Slist0sep (s, t, osep) -> fprintf ppf "LIST0 %a SEP %a%s" print_symbol1 s print_symbol1 t (if osep then " OPT_SEP" else "") | Slist1 s -> fprintf ppf "LIST1 %a" print_symbol1 s | Slist1sep (s, t, osep) -> fprintf ppf "LIST1 %a SEP %a%s" print_symbol1 s print_symbol1 t (if osep then " OPT_SEP" else "") | Sopt s -> fprintf ppf "OPT %a" print_symbol1 s | Stoken p -> print_token true ppf p | Stokens [TPattern p] -> print_token true ppf p | Stokens pl -> print_tokens ppf pl | Snterml (e, l) -> fprintf ppf "%s%s@ LEVEL@ %a" e.ename "" print_str l | s -> print_symbol1 ppf s and print_symbol1 : type s tr r. formatter -> (s, tr, r) ty_symbol -> unit = fun ppf -> function | Snterm e -> fprintf ppf "%s%s" e.ename "" | Sself -> pp_print_string ppf "SELF" | Snext -> pp_print_string ppf "NEXT" | Stoken p -> print_token false ppf p | Stokens [TPattern p] -> print_token false ppf p | Stokens pl -> print_tokens ppf pl | Stree t -> print_level ppf pp_print_space (flatten_tree t) | s -> fprintf ppf "(%a)" print_symbol s and print_rule : type s tr p. formatter -> (s, tr, p) ty_symbols -> unit = fun ppf symbols -> fprintf ppf "@[<hov 0>"; let rec fold : type s tr p. _ -> (s, tr, p) ty_symbols -> unit = fun sep symbols -> match symbols with | TNil -> () | TCns (_, symbol, symbols) -> fprintf ppf "%t%a" sep print_symbol symbol; fold (fun ppf -> fprintf ppf ";@ ") symbols in let () = fold (fun ppf -> ()) symbols in fprintf ppf "@]" and print_level : type s. _ -> _ -> s ex_symbols list -> _ = fun ppf pp_print_space rules -> fprintf ppf "@[<hov 0>[ "; let () = Format.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf "%a| " pp_print_space ()) (fun ppf (ExS rule) -> print_rule ppf rule) ppf rules in fprintf ppf " ]@]" let print_levels ppf elev = Format.pp_print_list ~pp_sep:(fun ppf () -> fprintf ppf "@,| ") (fun ppf (Level lev) -> let rules = List.map (fun (ExS t) -> ExS (TCns (MayRec2, Sself, t))) (flatten_tree lev.lsuffix) @ flatten_tree lev.lprefix in fprintf ppf "@[<hov 2>"; begin match lev.lname with Some n -> fprintf ppf "%a@;<1 2>" print_str n | None -> () end; begin match lev.assoc with LeftA -> fprintf ppf "LEFTA" | RightA -> fprintf ppf "RIGHTA" | NonA -> fprintf ppf "NONA" end; fprintf ppf "@]@;<1 2>"; print_level ppf pp_force_newline rules) ppf elev let print_entry ppf e = fprintf ppf "@[<v 0>[ "; begin match e.edesc with Dlevels elev -> print_levels ppf elev | Dparser _ -> fprintf ppf "<parser>" end; fprintf ppf " ]@]" let name_of_symbol : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> string = fun entry -> function Snterm e -> "[" ^ e.ename ^ "]" | Snterml (e, l) -> "[" ^ e.ename ^ " level " ^ l ^ "]" | Sself -> "[" ^ entry.ename ^ "]" | Snext -> "[" ^ entry.ename ^ "]" | Stoken tok -> L.tok_text tok | Stokens tokl -> String.concat " " (List.map (function TPattern tok -> L.tok_text tok) tokl) | Slist0 _ -> assert false | Slist1sep _ -> assert false | Slist1 _ -> assert false | Slist0sep _ -> assert false | Sopt _ -> assert false | Stree _ -> assert false type ('r, 'f) tok_list = | TokNil : ('f, 'f) tok_list | TokCns : 'a pattern * ('r, 'f) tok_list -> ('a -> 'r, 'f) tok_list type ('s, 'f) tok_tree = TokTree : 'a pattern * ('s, _, 'a -> 'r) ty_tree * ('r, 'f) tok_list -> ('s, 'f) tok_tree let rec get_token_list : type s tr a r f. s ty_entry -> a pattern -> (r, f) tok_list -> (s, tr, a -> r) ty_tree -> (s, f) tok_tree option = fun entry last_tok rev_tokl tree -> match tree with Node (_, {node = Stoken tok; son = son; brother = DeadEnd}) -> get_token_list entry tok (TokCns (last_tok, rev_tokl)) son | _ -> match rev_tokl with | TokNil -> None | _ -> Some (TokTree (last_tok, tree, rev_tokl)) let rec name_of_symbol_failed : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> _ = fun entry -> function | Slist0 s -> name_of_symbol_failed entry s | Slist0sep (s, _, _) -> name_of_symbol_failed entry s | Slist1 s -> name_of_symbol_failed entry s | Slist1sep (s, _, _) -> name_of_symbol_failed entry s | Sopt s -> name_of_symbol_failed entry s | Stree t -> name_of_tree_failed entry t | s -> name_of_symbol entry s and name_of_tree_failed : type s tr a. s ty_entry -> (s, tr, a) ty_tree -> _ = fun entry -> function Node (_, {node = s; brother = bro; son = son}) -> let tokl = match s with Stoken tok -> get_token_list entry tok TokNil son | _ -> None in begin match tokl with None -> let txt = name_of_symbol_failed entry s in let txt = match s, son with Sopt _, Node _ -> txt ^ " or " ^ name_of_tree_failed entry son | _ -> txt in let txt = match bro with DeadEnd -> txt | LocAct (_, _) -> txt | Node _ -> txt ^ " or " ^ name_of_tree_failed entry bro in txt | Some (TokTree (last_tok, _, rev_tokl)) -> let rec build_str : type a b. string -> (a, b) tok_list -> string = fun s -> function | TokNil -> s | TokCns (tok, t) -> build_str (L.tok_text tok ^ " " ^ s) t in build_str (L.tok_text last_tok) rev_tokl end | DeadEnd -> "???" | LocAct (_, _) -> "action" let tree_failed (type s tr a) (entry : s ty_entry) (prev_symb_result : a) (prev_symb : (s, tr, a) ty_symbol) tree = let txt = name_of_tree_failed entry tree in let txt = match prev_symb with Slist0 s -> let txt1 = name_of_symbol_failed entry s in txt1 ^ " or " ^ txt ^ " expected" | Slist1 s -> let txt1 = name_of_symbol_failed entry s in txt1 ^ " or " ^ txt ^ " expected" | Slist0sep (s, sep, _) -> begin match prev_symb_result with [] -> let txt1 = name_of_symbol_failed entry s in txt1 ^ " or " ^ txt ^ " expected" | _ -> let txt1 = name_of_symbol_failed entry sep in txt1 ^ " or " ^ txt ^ " expected" end | Slist1sep (s, sep, _) -> begin match prev_symb_result with [] -> let txt1 = name_of_symbol_failed entry s in txt1 ^ " or " ^ txt ^ " expected" | _ -> let txt1 = name_of_symbol_failed entry sep in txt1 ^ " or " ^ txt ^ " expected" end | Sopt _ -> txt ^ " expected" | Stree _ -> txt ^ " expected" | _ -> txt ^ " expected after " ^ name_of_symbol_failed entry prev_symb in txt ^ " (in [" ^ entry.ename ^ "])" let symb_failed entry prev_symb_result prev_symb symb = let tree = Node (MayRec3, {node = symb; brother = DeadEnd; son = DeadEnd}) in tree_failed entry prev_symb_result prev_symb tree let level_number entry lab = let rec lookup levn = function [] -> failwith ("unknown level " ^ lab) | lev :: levs -> if is_level_labelled lab lev then levn else lookup (succ levn) levs in match entry.edesc with Dlevels elev -> lookup 0 elev | Dparser _ -> raise Not_found let rec top_symb : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> (s, norec, a) ty_symbol = fun entry -> function Sself -> Snterm entry | Snext -> Snterm entry | Snterml (e, _) -> Snterm e | Slist1sep (s, sep, b) -> Slist1sep (top_symb entry s, sep, b) | _ -> raise Stream.Failure let entry_of_symb : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> a ty_entry = fun entry -> function Sself -> entry | Snext -> entry | Snterm e -> e | Snterml (e, _) -> e | _ -> raise Stream.Failure let top_tree : type s tr a. s ty_entry -> (s, tr, a) ty_tree -> (s, tr, a) ty_tree = fun entry -> function Node (MayRec3, {node = s; brother = bro; son = son}) -> Node (MayRec3, {node = top_symb entry s; brother = bro; son = son}) | Node (NoRec3, {node = s; brother = bro; son = son}) -> Node (NoRec3, {node = top_symb entry s; brother = bro; son = son}) | LocAct (_, _) -> raise Stream.Failure | DeadEnd -> raise Stream.Failure let skip_if_empty bp p strm = if LStream.count strm == bp then fun a -> p strm else raise Stream.Failure let continue entry bp a symb son p1 (strm__ : _ LStream.t) = let a = (entry_of_symb entry symb).econtinue 0 bp a strm__ in let act = try p1 strm__ with Stream.Failure -> raise (Stream.Error (tree_failed entry a symb son)) in fun _ -> act a (** Recover from a success on [symb] with result [a] followed by a failure on [son] in a rule of the form [a = symb; son] *) let do_recover parser_of_tree entry nlevn alevn bp a symb son (strm__ : _ LStream.t) = try (* Try to replay the son with the top occurrence of NEXT (by default at level nlevn) and trailing SELF (by default at alevn) replaced with self at top level; This allows for instance to recover from a failure on the second SELF of « SELF; "\/"; SELF » by doing as if it were « SELF; "\/"; same-entry-at-top-level » with application e.g. to accept "A \/ forall x, x = x" w/o requiring the expected parentheses as in "A \/ (forall x, x = x)". *) parser_of_tree entry nlevn alevn (top_tree entry son) strm__ with Stream.Failure -> try (* Discard the rule if what has been consumed before failing is the empty sequence (due to some OPT or LIST0); example: « OPT "!"; ident » fails to see an ident and the OPT was resolved into the empty sequence, with application e.g. to being able to safely write « LIST1 [ OPT "!"; id = ident -> id] ». *) skip_if_empty bp (fun (strm__ : _ LStream.t) -> raise Stream.Failure) strm__ with Stream.Failure -> (* In case of success on just SELF, NEXT or an explicit call to a subentry followed by a failure on the rest (son), retry parsing as if this entry had been called at its toplevel; example: « "{"; entry-at-some-level; "}" » fails on "}" and is retried with « "{"; same-entry-at-top-level; "}" », allowing e.g. to parse « {1 + 1} » while « {(1 + 1)} » would have been expected according to the level. *) continue entry bp a symb son (parser_of_tree entry nlevn alevn son) strm__ let recover parser_of_tree entry nlevn alevn bp a symb son strm = do_recover parser_of_tree entry nlevn alevn bp a symb son strm let item_skipped = ref false let call_and_push ps al strm = item_skipped := false; let a = ps strm in let al = if !item_skipped then al else a :: al in item_skipped := false; al let token_ematch tok = let tematch = L.tok_match tok in fun tok -> tematch tok (** nlevn: level for Snext alevn: level for recursive calls on the left-hand side of the rule (depending on associativity) *) let rec parser_of_tree : type s tr r. s ty_entry -> int -> int -> (s, tr, r) ty_tree -> r parser_t = fun entry nlevn alevn -> function DeadEnd -> (fun (strm__ : _ LStream.t) -> raise Stream.Failure) | LocAct (act, _) -> (fun (strm__ : _ LStream.t) -> act) | Node (_, {node = Sself; son = LocAct (act, _); brother = DeadEnd}) -> (* SELF on the right-hand side of the last rule *) (fun (strm__ : _ LStream.t) -> let a = entry.estart alevn strm__ in act a) | Node (_, {node = Sself; son = LocAct (act, _); brother = bro}) -> (* SELF on the right-hand side of a rule *) let p2 = parser_of_tree entry nlevn alevn bro in (fun (strm__ : _ LStream.t) -> match try Some (entry.estart alevn strm__) with Stream.Failure -> None with Some a -> act a | _ -> p2 strm__) | Node (_, {node = Stoken tok; son = son; brother = DeadEnd}) -> parser_of_token_list entry nlevn alevn tok son | Node (_, {node = Stoken tok; son = son; brother = bro}) -> let p2 = parser_of_tree entry nlevn alevn bro in let p1 = parser_of_token_list entry nlevn alevn tok son in (fun (strm__ : _ LStream.t) -> try p1 strm__ with Stream.Failure -> p2 strm__) | Node (_, {node = s; son = son; brother = DeadEnd}) -> let ps = parser_of_symbol entry nlevn s in let p1 = parser_of_tree entry nlevn alevn son in let p1 = parser_cont p1 entry nlevn alevn s son in (fun (strm__ : _ LStream.t) -> let bp = LStream.count strm__ in let a = ps strm__ in let act = try p1 bp a strm__ with Stream.Failure -> raise (Stream.Error (tree_failed entry a s son)) in act a) | Node (_, {node = s; son = son; brother = bro}) -> let ps = parser_of_symbol entry nlevn s in let p1 = parser_of_tree entry nlevn alevn son in let p1 = parser_cont p1 entry nlevn alevn s son in let p2 = parser_of_tree entry nlevn alevn bro in (fun (strm : _ LStream.t) -> let bp = LStream.count strm in match try Some (ps strm) with Stream.Failure -> None with Some a -> begin match (try Some (p1 bp a strm) with Stream.Failure -> None) with Some act -> act a | None -> raise (Stream.Error (tree_failed entry a s son)) end | None -> p2 strm) and parser_cont : type s tr tr' a r. (a -> r) parser_t -> s ty_entry -> int -> int -> (s, tr, a) ty_symbol -> (s, tr', a -> r) ty_tree -> int -> a -> (a -> r) parser_t = fun p1 entry nlevn alevn s son bp a (strm__ : _ LStream.t) -> try p1 strm__ with Stream.Failure -> recover parser_of_tree entry nlevn alevn bp a s son strm__ (** [parser_of_token_list] attempts to look-ahead an arbitrary-long finite sequence of tokens. E.g., in [ [ "foo"; "bar1"; "bar3"; ... -> action1 | "foo"; "bar2"; ... -> action2 | other-rules ] ] compiled as: [ [ "foo"; ["bar1"; "bar3"; ... -> action1 |"bar2"; ... -> action2] | other-rules ] ] this is able to look ahead "foo"; "bar1"; "bar3" and if not found "foo"; "bar1", then, if still not found, "foo"; "bar2" _without_ consuming the tokens until it is sure that a longest chain of tokens (before finding non-terminals or the end of the production) is found (and backtracking to [other-rules] if no such longest chain can be found). *) and parser_of_token_list : type s tr lt r. s ty_entry -> int -> int -> lt pattern -> (s, tr, lt -> r) ty_tree -> r parser_t = fun entry nlevn alevn tok tree -> let rec loop : type tr lt r. int -> lt pattern -> (s, tr, r) ty_tree -> lt -> r parser_t = fun n last_tok tree -> match tree with | Node (_, {node = Stoken tok; son = son; brother = bro}) -> let tematch = token_ematch tok in let p2 = loop n last_tok bro in let p1 = loop (n+1) tok son in fun last_a strm -> (match (try Some (tematch (LStream.peek_nth n strm)) with Stream.Failure -> None) with | Some a -> (match try Some (p1 a strm) with Stream.Failure -> None with | Some act -> act a | None -> p2 last_a strm) | None -> p2 last_a strm) | DeadEnd -> fun last_a strm -> raise Stream.Failure | _ -> let ps = parser_of_tree entry nlevn alevn tree in fun last_a strm -> for _i = 1 to n do LStream.junk strm done; match try Some (ps strm) with Stream.Failure -> (* Tolerance: retry w/o granting the level constraint (see recover) *) try Some (parser_of_tree entry nlevn alevn (top_tree entry tree) strm) with Stream.Failure -> None with | Some act -> act | None -> raise (Stream.Error (tree_failed entry last_a (Stoken last_tok) tree)) in let ps = loop 1 tok tree in let tematch = token_ematch tok in fun strm -> match LStream.peek strm with | Some tok -> let a = tematch tok in let act = ps a strm in act a | None -> raise Stream.Failure and parser_of_symbol : type s tr a. s ty_entry -> int -> (s, tr, a) ty_symbol -> a parser_t = fun entry nlevn -> function | Slist0 s -> let ps = call_and_push (parser_of_symbol entry nlevn s) in let rec loop al (strm__ : _ LStream.t) = match try Some (ps al strm__) with Stream.Failure -> None with Some al -> loop al strm__ | _ -> al in (fun (strm__ : _ LStream.t) -> let a = loop [] strm__ in List.rev a) | Slist0sep (symb, sep, false) -> let ps = call_and_push (parser_of_symbol entry nlevn symb) in let pt = parser_of_symbol entry nlevn sep in let rec kont al (strm__ : _ LStream.t) = match try Some (pt strm__) with Stream.Failure -> None with Some v -> let al = try ps al strm__ with Stream.Failure -> raise (Stream.Error (symb_failed entry v sep symb)) in kont al strm__ | _ -> al in (fun (strm__ : _ LStream.t) -> match try Some (ps [] strm__) with Stream.Failure -> None with Some al -> let a = kont al strm__ in List.rev a | _ -> []) | Slist0sep (symb, sep, true) -> let ps = call_and_push (parser_of_symbol entry nlevn symb) in let pt = parser_of_symbol entry nlevn sep in let rec kont al (strm__ : _ LStream.t) = match try Some (pt strm__) with Stream.Failure -> None with Some v -> begin match (try Some (ps al strm__) with Stream.Failure -> None) with Some al -> kont al strm__ | _ -> al end | _ -> al in (fun (strm__ : _ LStream.t) -> match try Some (ps [] strm__) with Stream.Failure -> None with Some al -> let a = kont al strm__ in List.rev a | _ -> []) | Slist1 s -> let ps = call_and_push (parser_of_symbol entry nlevn s) in let rec loop al (strm__ : _ LStream.t) = match try Some (ps al strm__) with Stream.Failure -> None with Some al -> loop al strm__ | _ -> al in (fun (strm__ : _ LStream.t) -> let al = ps [] strm__ in let a = loop al strm__ in List.rev a) | Slist1sep (symb, sep, false) -> let ps = call_and_push (parser_of_symbol entry nlevn symb) in let pt = parser_of_symbol entry nlevn sep in let rec kont al (strm__ : _ LStream.t) = match try Some (pt strm__) with Stream.Failure -> None with Some v -> let al = try ps al strm__ with Stream.Failure -> let a = try parse_top_symb entry symb strm__ with Stream.Failure -> raise (Stream.Error (symb_failed entry v sep symb)) in a :: al in kont al strm__ | _ -> al in (fun (strm__ : _ LStream.t) -> let al = ps [] strm__ in let a = kont al strm__ in List.rev a) | Slist1sep (symb, sep, true) -> let ps = call_and_push (parser_of_symbol entry nlevn symb) in let pt = parser_of_symbol entry nlevn sep in let rec kont al (strm__ : _ LStream.t) = match try Some (pt strm__) with Stream.Failure -> None with Some v -> begin match (try Some (ps al strm__) with Stream.Failure -> None) with Some al -> kont al strm__ | _ -> match try Some (parse_top_symb entry symb strm__) with Stream.Failure -> None with Some a -> kont (a :: al) strm__ | _ -> al end | _ -> al in (fun (strm__ : _ LStream.t) -> let al = ps [] strm__ in let a = kont al strm__ in List.rev a) | Sopt s -> let ps = parser_of_symbol entry nlevn s in (fun (strm__ : _ LStream.t) -> match try Some (ps strm__) with Stream.Failure -> None with Some a -> Some a | _ -> None) | Stree t -> let pt = parser_of_tree entry 1 0 t in (fun (strm__ : _ LStream.t) -> let bp = LStream.count strm__ in let a = pt strm__ in let ep = LStream.count strm__ in let loc = LStream.interval_loc bp ep strm__ in a loc) | Snterm e -> (fun (strm__ : _ LStream.t) -> e.estart 0 strm__) | Snterml (e, l) -> (fun (strm__ : _ LStream.t) -> e.estart (level_number e l) strm__) | Sself -> (fun (strm__ : _ LStream.t) -> entry.estart 0 strm__) | Snext -> (fun (strm__ : _ LStream.t) -> entry.estart nlevn strm__) | Stoken tok -> parser_of_token entry tok | Stokens tokl -> parser_of_tokens entry tokl and parser_of_token : type s a. s ty_entry -> a pattern -> a parser_t = fun entry tok -> let f = L.tok_match tok in fun strm -> match LStream.peek strm with Some tok -> let r = f tok in LStream.junk strm; r | None -> raise Stream.Failure and parser_of_tokens : type s. s ty_entry -> ty_pattern list -> unit parser_t = fun entry tokl -> let rec loop n = function | [] -> fun strm -> for _i = 1 to n do LStream.junk strm done; () | TPattern tok :: tokl -> let tematch = token_ematch tok in fun strm -> ignore (tematch (LStream.peek_nth n strm)); loop (n+1) tokl strm in loop 0 tokl and parse_top_symb : type s tr a. s ty_entry -> (s, tr, a) ty_symbol -> a parser_t = fun entry symb -> parser_of_symbol entry 0 (top_symb entry symb) (** [start_parser_of_levels entry clevn levels levn strm] goes top-down from level [clevn] to the last level, ignoring rules between [levn] and [clevn], as if starting from [max(clevn,levn)]. On each rule of the form [prefix] (where [prefix] is a rule not starting with [SELF]), it tries to consume the stream [strm]. The interesting case is [entry.estart] which is [start_parser_of_levels entry 0 entry.edesc], thus practically going from [levn] to the end. More schematically, assuming each level has the form level n: [ a = SELF; b = suffix_tree_n -> action_n(a,b) | a = prefix_tree_n -> action'_n(a) ] then the main loop does the following: estart n = if prefix_tree_n matches the stream as a then econtinue n (action'_n(a)) else start (n+1) econtinue n a = if suffix_tree_n matches the stream as b then econtinue n (action_n(a,b)) else if n=0 then a else econtinue (n-1) a *) let rec start_parser_of_levels entry clevn = function [] -> (fun levn (strm__ : _ LStream.t) -> raise Stream.Failure) | Level lev :: levs -> let p1 = start_parser_of_levels entry (succ clevn) levs in match lev.lprefix with DeadEnd -> p1 | tree -> let alevn = match lev.assoc with LeftA | NonA -> succ clevn | RightA -> clevn in let p2 = parser_of_tree entry (succ clevn) alevn tree in match levs with [] -> (fun levn strm -> (* this code should be there but is commented to preserve compatibility with previous versions... with this code, the grammar entry e: [[ "x"; a = e | "y" ]] should fail because it should be: e: [RIGHTA[ "x"; a = e | "y" ]]... if levn > clevn then match strm with parser [] else *) let (strm__ : _ LStream.t) = strm in let bp = LStream.count strm__ in let act = p2 strm__ in let ep = LStream.count strm__ in let a = act (LStream.interval_loc bp ep strm__) in entry.econtinue levn bp a strm) | _ -> fun levn strm -> if levn > clevn then (* Skip rules before [levn] *) p1 levn strm else let (strm__ : _ LStream.t) = strm in let bp = LStream.count strm__ in match try Some (p2 strm__) with Stream.Failure -> None with Some act -> let ep = LStream.count strm__ in let a = act (LStream.interval_loc bp ep strm__) in entry.econtinue levn bp a strm | _ -> p1 levn strm__ (** [continue_parser_of_levels entry clevn levels levn bp a strm] goes bottom-up from the last level to level [clevn], ignoring rules between [levn] and [clevn], as if stopping at [max(clevn,levn)]. It tries to consume the stream [strm] on the suffix of rules of the form [SELF; suffix] knowing that [a] is what consumed [SELF] at level [levn] (or [levn+1] depending on associativity). The interesting case is [entry.econtinue levn bp a] which is [try continue_parser_of_levels entry 0 entry.edesc levn bp a with Failure -> a], thus practically going from the end to [levn]. *) let rec continue_parser_of_levels entry clevn = function [] -> (fun levn bp a (strm__ : _ LStream.t) -> raise Stream.Failure) | Level lev :: levs -> let p1 = continue_parser_of_levels entry (succ clevn) levs in match lev.lsuffix with DeadEnd -> p1 | tree -> let alevn = match lev.assoc with LeftA | NonA -> succ clevn | RightA -> clevn in let p2 = parser_of_tree entry (succ clevn) alevn tree in fun levn bp a strm -> if levn > clevn then (* Skip rules before [levn] *) p1 levn bp a strm else let (strm__ : _ LStream.t) = strm in try p1 levn bp a strm__ with Stream.Failure -> let act = p2 strm__ in let ep = LStream.count strm__ in let a = act a (LStream.interval_loc bp ep strm__) in entry.econtinue levn bp a strm let continue_parser_of_entry entry = match entry.edesc with Dlevels elev -> let p = continue_parser_of_levels entry 0 elev in (fun levn bp a (strm__ : _ LStream.t) -> try p levn bp a strm__ with Stream.Failure -> a) | Dparser p -> fun levn bp a (strm__ : _ LStream.t) -> raise Stream.Failure let empty_entry ename levn strm = raise (Stream.Error ("entry [" ^ ename ^ "] is empty")) let start_parser_of_entry entry = match entry.edesc with Dlevels [] -> empty_entry entry.ename | Dlevels elev -> start_parser_of_levels entry 0 elev | Dparser p -> fun levn strm -> p strm (* Extend syntax *) let init_entry_functions entry = entry.estart <- (fun lev strm -> let f = start_parser_of_entry entry in entry.estart <- f; f lev strm); entry.econtinue <- (fun lev bp a strm -> let f = continue_parser_of_entry entry in entry.econtinue <- f; f lev bp a strm) let extend_entry entry statement = let elev = levels_of_rules entry statement in entry.edesc <- Dlevels elev; init_entry_functions entry (* Deleting a rule *) let delete_rule entry sl = match entry.edesc with Dlevels levs -> let levs = delete_rule_in_level_list entry sl levs in entry.edesc <- Dlevels levs; entry.estart <- (fun lev strm -> let f = start_parser_of_entry entry in entry.estart <- f; f lev strm); entry.econtinue <- (fun lev bp a strm -> let f = continue_parser_of_entry entry in entry.econtinue <- f; f lev bp a strm) | Dparser _ -> () (* Normal interface *) module Parsable = struct type t = { pa_tok_strm : L.te LStream.t ; lexer_state : L.State.t ref } let parse_parsable entry p = let efun = entry.estart 0 in let ts = p.pa_tok_strm in let get_parsing_loc () = (* Build the loc spanning from just after what is consumed (count) up to the further token known to have been read (max_peek). Being a parsing error, there needs to be a next token that caused the failure, except when the rule is empty (e.g. an empty custom entry); thus, we need to ensure that the token at location cnt has been peeked (which in turn ensures that the max peek is at least the current position) *) let _ = LStream.peek ts in let loc' = LStream.max_peek_loc ts in let loc = LStream.get_loc (LStream.count ts) ts in Loc.merge loc loc' in try efun ts with Stream.Failure -> let loc = get_parsing_loc () in Loc.raise ~loc (Stream.Error ("illegal begin of " ^ entry.ename)) | Stream.Error _ as exc -> let loc = get_parsing_loc () in Loc.raise ~loc exc | exc -> (* An error produced by the evaluation of the right-hand side *) (* of a rule, or a signal such as Sys.Break; we leave to the *) (* error the responsibility of locating itself *) let exc,info = Exninfo.capture exc in Exninfo.iraise (exc,info) let parse_parsable e p = L.State.set !(p.lexer_state); try let c = parse_parsable e p in p.lexer_state := L.State.get (); c with exn -> let exn,info = Exninfo.capture exn in L.State.drop (); Exninfo.iraise (exn,info) let make ?loc cs = let lexer_state = ref (L.State.init ()) in L.State.set !lexer_state; let ts = L.tok_func ?loc cs in lexer_state := L.State.get (); {pa_tok_strm = ts; lexer_state} let comments p = L.State.get_comments !(p.lexer_state) end module Entry = struct type 'a t = 'a ty_entry let make n = { ename = n; estart = empty_entry n; econtinue = (fun _ _ _ (strm__ : _ LStream.t) -> raise Stream.Failure); edesc = Dlevels []} let create = make let parse (e : 'a t) p : 'a = Parsable.parse_parsable e p let parse_token_stream (e : 'a t) ts : 'a = e.estart 0 ts let name e = e.ename type 'a parser_fun = { parser_fun : te LStream.t -> 'a } let of_parser n { parser_fun = (p : te LStream.t -> 'a) } : 'a t = { ename = n; estart = (fun _ -> p); econtinue = (fun _ _ _ (strm__ : _ LStream.t) -> raise Stream.Failure); edesc = Dparser p} let print ppf e = fprintf ppf "%a@." print_entry e let is_empty e = match e.edesc with | Dparser _ -> failwith "Arbitrary parser entry" | Dlevels elev -> List.is_empty elev end module rec Symbol : sig type ('self, 'trec, 'a) t = ('self, 'trec, 'a) ty_symbol val nterm : 'a Entry.t -> ('self, norec, 'a) t val nterml : 'a Entry.t -> string -> ('self, norec, 'a) t val list0 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t val list0sep : ('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool -> ('self, 'trec, 'a list) t val list1 : ('self, 'trec, 'a) t -> ('self, 'trec, 'a list) t val list1sep : ('self, 'trec, 'a) t -> ('self, norec, unit) t -> bool -> ('self, 'trec, 'a list) t val opt : ('self, 'trec, 'a) t -> ('self, 'trec, 'a option) t val self : ('self, mayrec, 'self) t val next : ('self, mayrec, 'self) t val token : 'c pattern -> ('self, norec, 'c) t val tokens : ty_pattern list -> ('self, norec, unit) t val rules : 'a Rules.t list -> ('self, norec, 'a) t end = struct type ('self, 'trec, 'a) t = ('self, 'trec, 'a) ty_symbol let nterm e = Snterm e let nterml e l = Snterml (e, l) let list0 s = Slist0 s let list0sep s sep b = Slist0sep (s, sep, b) let list1 s = Slist1 s let list1sep s sep b = Slist1sep (s, sep, b) let opt s = Sopt s let self = Sself let next = Snext let token tok = Stoken tok let tokens tokl = Stokens tokl let rules (t : 'a Rules.t list) = srules t end and Rule : sig type ('self, 'trec, 'f, 'r) t = ('self, 'trec, 'f, 'r) ty_rule val stop : ('self, norec, 'r, 'r) t val next : ('self, _, 'a, 'r) t -> ('self, _, 'b) Symbol.t -> ('self, mayrec, 'b -> 'a, 'r) t val next_norec : ('self, norec, 'a, 'r) Rule.t -> ('self, norec, 'b) Symbol.t -> ('self, norec, 'b -> 'a, 'r) t end = struct type ('self, 'trec, 'f, 'r) t = ('self, 'trec, 'f, 'r) ty_rule let stop = TStop let next r s = TNext (MayRec2, r, s) let next_norec r s = TNext (NoRec2, r, s) end and Rules : sig type 'a t = 'a ty_rules val make : (_, norec, 'f, Loc.t -> 'a) Rule.t -> 'f -> 'a t end = struct type 'a t = 'a ty_rules let make p act = TRules (p, act) end module Production = struct type 'a t = 'a ty_production let make p act = TProd (p, act) end module Unsafe = struct let clear_entry e = e.estart <- (fun _ (strm__ : _ LStream.t) -> raise Stream.Failure); e.econtinue <- (fun _ _ _ (strm__ : _ LStream.t) -> raise Stream.Failure); match e.edesc with Dlevels _ -> e.edesc <- Dlevels [] | Dparser _ -> () end let safe_extend (e : 'a Entry.t) data = extend_entry e data let safe_delete_rule e (TProd (r,_act)) = let AnyS (symbols, _) = get_symbols r in delete_rule e symbols let level_of_nonterm sym = match sym with | Snterml (_,l) -> Some l | _ -> None exception SelfSymbol let rec generalize_symbol : type a tr s. (s, tr, a) Symbol.t -> (s, norec, a) ty_symbol = function | Stoken tok -> Stoken tok | Stokens tokl -> Stokens tokl | Slist1 e -> Slist1 (generalize_symbol e) | Slist1sep (e, sep, b) -> let e = generalize_symbol e in let sep = generalize_symbol sep in Slist1sep (e, sep, b) | Slist0 e -> Slist0 (generalize_symbol e) | Slist0sep (e, sep, b) -> let e = generalize_symbol e in let sep = generalize_symbol sep in Slist0sep (e, sep, b) | Sopt e -> Sopt (generalize_symbol e) | Sself -> raise SelfSymbol | Snext -> raise SelfSymbol | Snterm e -> Snterm e | Snterml (e, l) -> Snterml (e, l) | Stree r -> Stree (generalize_tree r) and generalize_tree : type a tr s . (s, tr, a) ty_tree -> (s, norec, a) ty_tree = fun r -> match r with | Node (fi, n) -> let fi = match fi with | NoRec3 -> NoRec3 | MayRec3 -> raise SelfSymbol in let n = match n with | { node; son; brother } -> let node = generalize_symbol node in let son = generalize_tree son in let brother = generalize_tree brother in { node; son; brother } in Node (fi, n) | LocAct _ as r -> r | DeadEnd as r -> r let generalize_symbol s = try Some (generalize_symbol s) with SelfSymbol -> None end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>