package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.16.0.tar.gz
sha256=36577b55f4a4b1c64682c387de7abea932d0fd42fc0cd5406927dca344f53587
doc/src/coq-core.engine/univSubst.ml.html
Source file univSubst.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Sorts open Util open Constr open Univ type 'a universe_map = 'a Level.Map.t type universe_subst = Universe.t universe_map type universe_subst_fn = Level.t -> Universe.t type universe_level_subst_fn = Level.t -> Level.t let subst_instance fn i = Instance.of_array (Array.Smart.map fn (Instance.to_array i)) let subst_univs_universe fn ul = let addn n u = iterate Universe.super n u in let subst, nosubst = List.fold_right (fun (u, n) (subst,nosubst) -> try let a' = addn n (fn u) in (a' :: subst, nosubst) with Not_found -> (subst, (u, n) :: nosubst)) (Universe.repr ul) ([], []) in match subst with | [] -> ul | u :: ul -> let substs = List.fold_left Universe.sup u subst in List.fold_left (fun acc (u, n) -> Universe.sup acc (addn n (Universe.make u))) substs nosubst let enforce_eq u v c = if Universe.equal u v then c else match Universe.level u, Universe.level v with | Some u, Some v -> enforce_eq_level u v c | _ -> CErrors.anomaly (Pp.str "A universe comparison can only happen between variables.") let constraint_add_leq v u c = let eq (x, n) (y, m) = Int.equal m n && Level.equal x y in (* We just discard trivial constraints like u<=u *) if eq v u then c else match v, u with | (x,n), (y,m) -> let j = m - n in if j = -1 (* n = m+1, v+1 <= u <-> v < u *) then Constraints.add (x,Lt,y) c else if j <= -1 (* n = m+k, v+k <= u and k>0 *) then if Level.equal x y then (* u+k <= u with k>0 *) Constraints.add (x,Lt,x) c else CErrors.anomaly (Pp.str"Unable to handle arbitrary u+k <= v constraints.") else if j = 0 then Constraints.add (x,Le,y) c else (* j >= 1 *) (* m = n + k, u <= v+k *) if Level.equal x y then c (* u <= u+k, trivial *) else if Level.is_set x then c (* Prop,Set <= u+S k, trivial *) else Constraints.add (x,Le,y) c (* u <= v implies u <= v+k *) let check_univ_leq_one u v = let leq (u,n) (v,n') = let cmp = Level.compare u v in if Int.equal cmp 0 then n <= n' else false in Universe.exists (leq u) v let check_univ_leq u v = Universe.for_all (fun u -> check_univ_leq_one u v) u let enforce_leq u v c = List.fold_left (fun c v -> (List.fold_left (fun c u -> constraint_add_leq u v c) c u)) c v let enforce_leq u v c = if check_univ_leq u v then c else enforce_leq (Universe.repr u) (Universe.repr v) c let get_algebraic = function | Prop | SProp -> assert false | Set -> Universe.type0 | Type u -> u let enforce_eq_sort s1 s2 cst = match s1, s2 with | (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst | (((Prop | Set | Type _) as s1), (Prop | SProp as s2)) | ((Prop | SProp as s1), ((Prop | Set | Type _) as s2)) -> raise (UGraph.UniverseInconsistency (Eq, s1, s2, None)) | (Set | Type _), (Set | Type _) -> enforce_eq (get_algebraic s1) (get_algebraic s2) cst let enforce_leq_sort s1 s2 cst = match s1, s2 with | (SProp, SProp) | (Prop, Prop) | (Set, Set) -> cst | (Prop, (Set | Type _)) -> cst | (((Prop | Set | Type _) as s1), (Prop | SProp as s2)) | ((SProp as s1), ((Prop | Set | Type _) as s2)) -> raise (UGraph.UniverseInconsistency (Le, s1, s2, None)) | (Set | Type _), (Set | Type _) -> enforce_leq (get_algebraic s1) (get_algebraic s2) cst let enforce_leq_alg_sort s1 s2 g = match s1, s2 with | (SProp, SProp) | (Prop, Prop) | (Set, Set) -> Constraints.empty, g | (Prop, (Set | Type _)) -> Constraints.empty, g | (((Prop | Set | Type _) as s1), (Prop | SProp as s2)) | ((SProp as s1), ((Prop | Set | Type _) as s2)) -> if UGraph.cumulative_sprop g && is_sprop s1 then Constraints.empty, g else raise (UGraph.UniverseInconsistency (Le, s1, s2, None)) | (Set | Type _), (Set | Type _) -> UGraph.enforce_leq_alg (get_algebraic s1) (get_algebraic s2) g let enforce_univ_constraint (u,d,v) = match d with | Eq -> enforce_eq u v | Le -> enforce_leq u v | Lt -> enforce_leq (Universe.super u) v let subst_univs_level fn l = try Some (fn l) with Not_found -> None let subst_univs_constraint fn (u,d,v as c) cstrs = let u' = subst_univs_level fn u in let v' = subst_univs_level fn v in match u', v' with | None, None -> Constraints.add c cstrs | Some u, None -> enforce_univ_constraint (u,d,Universe.make v) cstrs | None, Some v -> enforce_univ_constraint (Universe.make u,d,v) cstrs | Some u, Some v -> enforce_univ_constraint (u,d,v) cstrs let subst_univs_constraints subst csts = Constraints.fold (fun c cstrs -> subst_univs_constraint subst c cstrs) csts Constraints.empty let level_subst_of f = fun l -> try let u = f l in match Universe.level u with | None -> l | Some l -> l with Not_found -> l let normalize_univ_variable ~find = let rec aux cur = let b = find cur in let b' = subst_univs_universe aux b in if Universe.equal b' b then b else b' in aux type universe_opt_subst = Universe.t option universe_map let normalize_univ_variable_opt_subst ectx = let find l = match Univ.Level.Map.find l ectx with | Some b -> b | None -> raise Not_found in normalize_univ_variable ~find let normalize_universe_opt_subst subst = let normlevel = normalize_univ_variable_opt_subst subst in subst_univs_universe normlevel let normalize_opt_subst ctx = let normalize = normalize_universe_opt_subst ctx in Univ.Level.Map.mapi (fun u -> function | None -> None | Some v -> Some (normalize v)) ctx let normalize_univ_variables ctx = let ctx = normalize_opt_subst ctx in let def, subst = Univ.Level.Map.fold (fun u v (def, subst) -> match v with | None -> (def, subst) | Some b -> (Univ.Level.Set.add u def, Univ.Level.Map.add u b subst)) ctx (Univ.Level.Set.empty, Univ.Level.Map.empty) in ctx, def, subst let subst_univs_fn_puniverses f (c, u as cu) = let u' = subst_instance f u in if u' == u then cu else (c, u') let nf_evars_and_universes_opt_subst f subst = let subst = normalize_univ_variable_opt_subst subst in let lsubst = level_subst_of subst in let rec aux c = match kind c with | Evar (evk, args) -> let args' = List.Smart.map aux args in (match try f (evk, args') with Not_found -> None with | None -> if args == args' then c else mkEvar (evk, args') | Some c -> aux c) | Const pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstU pu' | Ind pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkIndU pu' | Construct pu -> let pu' = subst_univs_fn_puniverses lsubst pu in if pu' == pu then c else mkConstructU pu' | Sort (Type u) -> let u' = subst_univs_universe subst u in if u' == u then c else mkSort (sort_of_univ u') | Case (ci,u,pms,p,iv,t,br) -> let u' = subst_instance lsubst u in if u' == u then Constr.map aux c else Constr.map aux (mkCase (ci,u',pms,p,iv,t,br)) | Array (u,elems,def,ty) -> let u' = subst_instance lsubst u in let elems' = CArray.Smart.map aux elems in let def' = aux def in let ty' = aux ty in if u == u' && elems == elems' && def == def' && ty == ty' then c else mkArray (u',elems',def',ty') | _ -> Constr.map aux c in aux let pr_universe_subst = let open Pp in Level.Map.pr (fun u -> str" := " ++ Universe.pr u ++ spc ())
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>