package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.15.2.tar.gz
sha256=13a67c0a4559ae22e9765c8fdb88957b16c2b335a2d5f47e4d6d9b4b8b299926
doc/src/zify_plugin/zify.ml.html
Source file zify.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Constr open Names open Pp open Lazy module NamedDecl = Context.Named.Declaration let debug_zify = CDebug.create ~name:"zify" () (* The following [constr] are necessary for constructing the proof terms *) let zify str = EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref ("ZifyClasses." ^ str))) (** classes *) let coq_InjTyp = lazy (Coqlib.lib_ref "ZifyClasses.InjTyp") let coq_BinOp = lazy (Coqlib.lib_ref "ZifyClasses.BinOp") let coq_UnOp = lazy (Coqlib.lib_ref "ZifyClasses.UnOp") let coq_CstOp = lazy (Coqlib.lib_ref "ZifyClasses.CstOp") let coq_BinRel = lazy (Coqlib.lib_ref "ZifyClasses.BinRel") let coq_PropBinOp = lazy (Coqlib.lib_ref "ZifyClasses.PropBinOp") let coq_PropUOp = lazy (Coqlib.lib_ref "ZifyClasses.PropUOp") let coq_BinOpSpec = lazy (Coqlib.lib_ref "ZifyClasses.BinOpSpec") let coq_UnOpSpec = lazy (Coqlib.lib_ref "ZifyClasses.UnOpSpec") let coq_Saturate = lazy (Coqlib.lib_ref "ZifyClasses.Saturate") (* morphism like lemma *) let mkapp2 = lazy (zify "mkapp2") let mkapp = lazy (zify "mkapp") let eq_refl = lazy (zify "eq_refl") let eq = lazy (zify "eq") let mkrel = lazy (zify "mkrel") let iff_refl = lazy (zify "iff_refl") let eq_iff = lazy (zify "eq_iff") let rew_iff = lazy (zify "rew_iff") let rew_iff_rev = lazy (zify "rew_iff_rev") (* propositional logic *) let op_and = lazy (zify "and") let op_and_morph = lazy (zify "and_morph") let op_or = lazy (zify "or") let op_or_morph = lazy (zify "or_morph") let op_impl_morph = lazy (zify "impl_morph") let op_iff = lazy (zify "iff") let op_iff_morph = lazy (zify "iff_morph") let op_not = lazy (zify "not") let op_not_morph = lazy (zify "not_morph") let op_True = lazy (zify "True") let op_I = lazy (zify "I") (** [unsafe_to_constr c] returns a [Constr.t] without considering an evar_map. This is useful for calling Constr.hash *) let unsafe_to_constr = EConstr.Unsafe.to_constr let pr_constr env evd e = Printer.pr_econstr_env env evd e let gl_pr_constr e = let genv = Global.env () in let evd = Evd.from_env genv in pr_constr genv evd e let whd = Reductionops.clos_whd_flags CClosure.all let is_convertible env evd t1 t2 = Reductionops.(is_conv env evd t1 t2) (** [get_type_of] performs beta reduction ; Is it ok for Retyping.get_type_of (Zpower_nat n q) to return (fun _ : nat => Z) q ? *) let get_type_of env evd e = Tacred.cbv_beta env evd (Retyping.get_type_of env evd e) (* arguments are dealt with in a second step *) let rec find_option pred l = match l with | [] -> raise Not_found | e :: l -> ( match pred e with Some r -> r | None -> find_option pred l ) module ConstrMap = struct open Names.GlobRef type 'a t = 'a list Map.t let add gr e m = Map.update gr (function None -> Some [e] | Some l -> Some (e :: l)) m let empty = Map.empty let find evd h m = match Map.find (fst (EConstr.destRef evd h)) m with | e :: _ -> e | [] -> assert false let find_all evd h m = Map.find (fst (EConstr.destRef evd h)) m let fold f m acc = Map.fold (fun k l acc -> List.fold_left (fun acc e -> f k e acc) acc l) m acc end module HConstr = struct module M = Map.Make (struct type t = EConstr.t let compare c c' = Constr.compare (unsafe_to_constr c) (unsafe_to_constr c') end) type 'a t = 'a M.t let add h e m = M.add h e m let empty = M.empty let find = M.find end (** [get_projections_from_constant (evd,c) ] returns an array of constr [| a1,.. an|] such that [c] is defined as Definition c := mk a1 .. an with mk a constructor. ai is therefore either a type parameter or a projection. *) let get_projections_from_constant (evd, i) = match EConstr.kind evd (whd (Global.env ()) evd i) with | App (c, a) -> Some a | _ -> raise (CErrors.user_err Pp.( str "The hnf of term " ++ pr_constr (Global.env ()) evd i ++ str " should be an application i.e. (c a1 ... an)")) (** An instance of type, say T, is registered into a hashtable, say TableT. *) type 'a decl = { decl : EConstr.t ; (* Registered type instance *) deriv : 'a (* Projections of insterest *) } module EInjT = struct type t = { isid : bool ; (* S = T -> inj = fun x -> x*) source : EConstr.t ; (* S *) target : EConstr.t ; (* T *) (* projections *) inj : EConstr.t ; (* S -> T *) pred : EConstr.t ; (* T -> Prop *) cstr : EConstr.t option (* forall x, pred (inj x) *) } end (** [classify_op] classify injected operators and detect special cases. *) type classify_op = | OpInj (* e.g. Z.of_nat -> \x.x *) | OpSame (* e.g. Z.add -> Z.add *) | OpConv (* e.g. Pos.ge == \x.y. Z.ge (Z.pos x) (Z.pos y) \x.y. Z.pos (Pos.add x y) == \x.y. Z.add (Z.pos x) (Z.pos y) Z.succ == (\x.x + 1) *) | OpOther (*let pp_classify_op = function | OpInj -> Pp.str "Identity" | OpSame -> Pp.str "Same" | OpConv -> Pp.str "Conv" | OpOther -> Pp.str "Other" *) let name x = Context.make_annot (Name.mk_name (Names.Id.of_string x)) Sorts.Relevant let mkconvert_unop i1 i2 op top = (* fun x => inj (op x) *) let op = EConstr.mkLambda ( name "x" , i1.EInjT.source , EConstr.mkApp (i2.EInjT.inj, [|EConstr.mkApp (op, [|EConstr.mkRel 1|])|]) ) in (* fun x => top (inj x) *) let top = EConstr.mkLambda ( name "x" , i1.EInjT.source , EConstr.mkApp (top, [|EConstr.mkApp (i1.EInjT.inj, [|EConstr.mkRel 1|])|]) ) in (op, top) let mkconvert_binop i1 i2 i3 op top = (* fun x y => inj (op x y) *) let op = EConstr.mkLambda ( name "x" , i1.EInjT.source , EConstr.mkLambda ( name "y" , i1.EInjT.source , EConstr.mkApp ( i3.EInjT.inj , [|EConstr.mkApp (op, [|EConstr.mkRel 2; EConstr.mkRel 1|])|] ) ) ) in (* fun x y => top (inj x) (inj y) *) let top = EConstr.mkLambda ( name "x" , i1.EInjT.source , EConstr.mkLambda ( name "y" , i2.EInjT.source , EConstr.mkApp ( top , [| EConstr.mkApp (i1.EInjT.inj, [|EConstr.mkRel 2|]) ; EConstr.mkApp (i2.EInjT.inj, [|EConstr.mkRel 1|]) |] ) ) ) in (op, top) let mkconvert_rel i r tr = let tr = EConstr.mkLambda ( name "x" , i.EInjT.source , EConstr.mkLambda ( name "y" , i.EInjT.source , EConstr.mkApp ( tr , [| EConstr.mkApp (i.EInjT.inj, [|EConstr.mkRel 2|]) ; EConstr.mkApp (i.EInjT.inj, [|EConstr.mkRel 1|]) |] ) ) ) in (r, tr) (** [classify_op mkconvert op top] takes the injection [inj] for the origin operator [op] and the destination operator [top] -- both [op] and [top] are closed terms *) let classify_op mkconvert inj op top = let env = Global.env () in let evd = Evd.from_env env in if is_convertible env evd inj op then OpInj else if EConstr.eq_constr evd op top then OpSame else let op, top = mkconvert op top in if is_convertible env evd op top then OpConv else OpOther (*let classify_op mkconvert tysrc op top = let res = classify_op mkconvert tysrc op top in Feedback.msg_debug Pp.( str "classify_op:" ++ gl_pr_constr op ++ str " " ++ gl_pr_constr top ++ str " " ++ pp_classify_op res ++ fnl ()); res *) module EBinOpT = struct type t = { (* Op : source1 -> source2 -> source3 *) source1 : EConstr.t ; source2 : EConstr.t ; source3 : EConstr.t ; target1 : EConstr.t ; target2 : EConstr.t ; target3 : EConstr.t ; inj1 : EInjT.t (* InjTyp source1 target1 *) ; inj2 : EInjT.t (* InjTyp source2 target2 *) ; inj3 : EInjT.t (* InjTyp source3 target3 *) ; bop : EConstr.t (* BOP *) ; tbop : EConstr.t (* TBOP *) ; tbopinj : EConstr.t (* TBOpInj *) ; classify_binop : classify_op } end module ECstOpT = struct type t = { source : EConstr.t ; target : EConstr.t ; inj : EInjT.t ; cst : EConstr.t ; cstinj : EConstr.t ; is_construct : bool } end module EUnOpT = struct type t = { source1 : EConstr.t ; source2 : EConstr.t ; target1 : EConstr.t ; target2 : EConstr.t ; uop : EConstr.t ; inj1_t : EInjT.t ; inj2_t : EInjT.t ; tuop : EConstr.t ; tuopinj : EConstr.t ; classify_unop : classify_op ; is_construct : bool } end module EBinRelT = struct type t = { source : EConstr.t ; target : EConstr.t ; inj : EInjT.t ; brel : EConstr.t ; tbrel : EConstr.t ; brelinj : EConstr.t ; classify_rel : classify_op } end module EPropBinOpT = struct type t = {op : EConstr.t; op_iff : EConstr.t} end module EPropUnOpT = struct type t = {op : EConstr.t; op_iff : EConstr.t} end module ESatT = struct type t = {parg1 : EConstr.t; parg2 : EConstr.t; satOK : EConstr.t} end module ESpecT = struct type t = {spec : EConstr.t} end (* Different type of declarations *) type decl_kind = | PropOp of EPropBinOpT.t decl | PropUnOp of EPropUnOpT.t decl | InjTyp of EInjT.t decl | BinRel of EBinRelT.t decl | BinOp of EBinOpT.t decl | UnOp of EUnOpT.t decl | CstOp of ECstOpT.t decl | Saturate of ESatT.t decl | UnOpSpec of ESpecT.t decl | BinOpSpec of ESpecT.t decl type term_kind = Application of EConstr.constr | OtherTerm of EConstr.constr module type Elt = sig type elt (** name *) val name : string val gref : GlobRef.t Lazy.t val table : (term_kind * decl_kind) ConstrMap.t ref val cast : elt decl -> decl_kind val dest : decl_kind -> elt decl option (** [get_key] is the type-index used as key for the instance *) val get_key : int (** [mk_elt evd i [a0,..,an] returns the element of the table built from the type-instance i and the arguments (type indexes and projections) of the type-class constructor. *) val mk_elt : Evd.evar_map -> EConstr.t -> EConstr.t array -> elt (* val arity : int*) end let table = Summary.ref ~name:"zify_table" ConstrMap.empty let saturate = Summary.ref ~name:"zify_saturate" ConstrMap.empty let specs = Summary.ref ~name:"zify_specs" ConstrMap.empty let table_cache = ref ConstrMap.empty let saturate_cache = ref ConstrMap.empty let specs_cache = ref ConstrMap.empty (** Each type-class gives rise to a different table. They only differ on how projections are extracted. *) module EInj = struct open EInjT type elt = EInjT.t let name = "EInj" let gref = coq_InjTyp let table = table let cast x = InjTyp x let dest = function InjTyp x -> Some x | _ -> None let is_cstr_true evd c = match EConstr.kind evd c with | Lambda (_, _, c) -> EConstr.eq_constr_nounivs evd c (Lazy.force op_True) | _ -> false let mk_elt evd i (a : EConstr.t array) = let isid = EConstr.eq_constr_nounivs evd a.(0) a.(1) in { isid ; source = a.(0) ; target = a.(1) ; inj = a.(2) ; pred = a.(3) ; cstr = (if is_cstr_true evd a.(3) then None else Some a.(4)) } let get_key = 0 end let get_inj evd c = match get_projections_from_constant (evd, c) with | None -> let env = Global.env () in let t = string_of_ppcmds (pr_constr env evd c) in failwith ("Cannot register term " ^ t) | Some a -> EInj.mk_elt evd c a let rec decomp_type evd ty = match EConstr.kind_of_type evd ty with | EConstr.ProdType (_, t1, rst) -> t1 :: decomp_type evd rst | _ -> [ty] let pp_type env evd l = Pp.prlist_with_sep (fun _ -> Pp.str " -> ") (pr_constr env evd) l let check_typ evd expty op = let env = Global.env () in let ty = Retyping.get_type_of env evd op in let ty = decomp_type evd ty in if List.for_all2 (EConstr.eq_constr_nounivs evd) ty expty then () else raise (CErrors.user_err Pp.( str ": Cannot register operator " ++ pr_constr env evd op ++ str ". It has type " ++ pp_type env evd ty ++ str " instead of expected type " ++ pp_type env evd expty)) module EBinOp = struct type elt = EBinOpT.t open EBinOpT let name = "BinOp" let gref = coq_BinOp let table = table let mk_elt evd i a = let i1 = get_inj evd a.(7) in let i2 = get_inj evd a.(8) in let i3 = get_inj evd a.(9) in let bop = a.(6) in let tbop = a.(10) in check_typ evd EInjT.[i1.source; i2.source; i3.source] bop; { source1 = a.(0) ; source2 = a.(1) ; source3 = a.(2) ; target1 = a.(3) ; target2 = a.(4) ; target3 = a.(5) ; inj1 = i1 ; inj2 = i2 ; inj3 = i3 ; bop ; tbop ; tbopinj = a.(11) ; classify_binop = classify_op (mkconvert_binop i1 i2 i3) i3.EInjT.inj a.(6) tbop } let get_key = 6 let cast x = BinOp x let dest = function BinOp x -> Some x | _ -> None end (*let debug_term msg c = let genv = Global.env () in Feedback.msg_debug Pp.(str msg ++ str " " ++ pr_constr genv (Evd.from_env genv) c); c *) module ECstOp = struct type elt = ECstOpT.t open ECstOpT let name = "CstOp" let gref = coq_CstOp let table = table let cast x = CstOp x let dest = function CstOp x -> Some x | _ -> None let isConstruct evd c = match EConstr.kind evd c with | Construct _ | Int _ | Float _ -> true | _ -> false let mk_elt evd i a = { source = a.(0) ; target = a.(1) ; inj = get_inj evd a.(3) ; cst = a.(4) ; cstinj = a.(5) ; is_construct = isConstruct evd a.(2) } let get_key = 2 end module EUnOp = struct type elt = EUnOpT.t open EUnOpT let name = "UnOp" let gref = coq_UnOp let table = table let cast x = UnOp x let dest = function UnOp x -> Some x | _ -> None let mk_elt evd i a = let i1 = get_inj evd a.(5) in let i2 = get_inj evd a.(6) in let uop = a.(4) in check_typ evd EInjT.[i1.source; i2.source] uop; let tuop = a.(7) in { source1 = a.(0) ; source2 = a.(1) ; target1 = a.(2) ; target2 = a.(3) ; uop ; inj1_t = i1 ; inj2_t = i2 ; tuop ; tuopinj = a.(8) ; is_construct = EConstr.isConstruct evd uop ; classify_unop = classify_op (mkconvert_unop i1 i2) i2.EInjT.inj uop tuop } let get_key = 4 end module EBinRel = struct type elt = EBinRelT.t open EBinRelT let name = "BinRel" let gref = coq_BinRel let table = table let cast x = BinRel x let dest = function BinRel x -> Some x | _ -> None let mk_elt evd i a = let i = get_inj evd a.(3) in let brel = a.(2) in let tbrel = a.(4) in check_typ evd EInjT.[i.source; i.source; EConstr.mkProp] brel; { source = a.(0) ; target = a.(1) ; inj = get_inj evd a.(3) ; brel ; tbrel ; brelinj = a.(5) ; classify_rel = classify_op (mkconvert_rel i) i.EInjT.inj brel tbrel } let get_key = 2 end module EPropBinOp = struct type elt = EPropBinOpT.t open EPropBinOpT let name = "PropBinOp" let gref = coq_PropBinOp let table = table let cast x = PropOp x let dest = function PropOp x -> Some x | _ -> None let mk_elt evd i a = {op = a.(0); op_iff = a.(1)} let get_key = 0 end module EPropUnOp = struct type elt = EPropUnOpT.t open EPropUnOpT let name = "PropUOp" let gref = coq_PropUOp let table = table let cast x = PropUnOp x let dest = function PropUnOp x -> Some x | _ -> None let mk_elt evd i a = {op = a.(0); op_iff = a.(1)} let get_key = 0 end let constr_of_term_kind = function Application c -> c | OtherTerm c -> c module type S = sig val register : Libnames.qualid -> unit val print : unit -> unit end module MakeTable (E : Elt) = struct (** Given a term [c] and its arguments ai, we construct a HConstr.t table that is indexed by ai for i = E.get_key. The elements of the table are built using E.mk_elt c [|a0,..,an|] *) let make_elt (evd, i) = match get_projections_from_constant (evd, i) with | None -> let env = Global.env () in let t = string_of_ppcmds (pr_constr env evd i) in failwith ("Cannot register term " ^ t) | Some a -> E.mk_elt evd i a let safe_ref evd c = try fst (EConstr.destRef evd c) with DestKO -> CErrors.user_err Pp.(str "Add Zify "++str E.name ++ str ": the term "++ gl_pr_constr c ++ str " should be a global reference") let register_hint evd t elt = match EConstr.kind evd t with | App (c, _) -> let gr = safe_ref evd c in E.table := ConstrMap.add gr (Application t, E.cast elt) !E.table | _ -> let gr = safe_ref evd t in E.table := ConstrMap.add gr (OtherTerm t, E.cast elt) !E.table let register_constr env evd c = let c = EConstr.of_constr c in let t = get_type_of env evd c in match EConstr.kind evd t with | App (intyp, args) when EConstr.isRefX evd (Lazy.force E.gref) intyp -> let styp = args.(E.get_key) in let elt = {decl = c; deriv = make_elt (evd, c)} in register_hint evd styp elt | _ -> let env = Global.env () in raise (CErrors.user_err Pp.( str "Cannot register " ++ pr_constr env evd c ++ str ". It has type " ++ pr_constr env evd t ++ str " instead of type " ++ Printer.pr_global (Lazy.force E.gref) ++ str " X1 ... Xn")) let register_obj : Constr.constr -> Libobject.obj = let cache_constr (_, c) = let env = Global.env () in let evd = Evd.from_env env in register_constr env evd c in let subst_constr (subst, c) = Mod_subst.subst_mps subst c in Libobject.declare_object @@ Libobject.superglobal_object_nodischarge ("register-zify-" ^ E.name) ~cache:cache_constr ~subst:(Some subst_constr) (** [register c] is called from the VERNACULAR ADD [name] reference(t). The term [c] is interpreted and registered as a [superglobal_object_nodischarge]. TODO: pre-compute [get_type_of] - [cache_constr] is using another environment. *) let register c = try let c = UnivGen.constr_of_monomorphic_global (Global.env ()) (Nametab.locate c) in let _ = Lib.add_anonymous_leaf (register_obj c) in () with Not_found -> raise (CErrors.user_err Pp.(Libnames.pr_qualid c ++ str " does not exist.")) let pp_keys () = let env = Global.env () in let evd = Evd.from_env env in ConstrMap.fold (fun _ (k, d) acc -> match E.dest d with | None -> acc | Some _ -> Pp.(pr_constr env evd (constr_of_term_kind k) ++ str " " ++ acc)) !E.table (Pp.str "") let print () = Feedback.msg_info (pp_keys ()) end module InjTable = MakeTable (EInj) module ESat = struct type elt = ESatT.t open ESatT let name = "Saturate" let gref = coq_Saturate let table = saturate let cast x = Saturate x let dest = function Saturate x -> Some x | _ -> None let mk_elt evd i a = {parg1 = a.(2); parg2 = a.(3); satOK = a.(5)} let get_key = 1 end module EUnopSpec = struct open ESpecT type elt = ESpecT.t let name = "UnopSpec" let gref = coq_UnOpSpec let table = specs let cast x = UnOpSpec x let dest = function UnOpSpec x -> Some x | _ -> None let mk_elt evd i a = {spec = a.(4)} let get_key = 2 end module EBinOpSpec = struct open ESpecT type elt = ESpecT.t let name = "BinOpSpec" let gref = coq_BinOpSpec let table = specs let cast x = BinOpSpec x let dest = function BinOpSpec x -> Some x | _ -> None let mk_elt evd i a = {spec = a.(5)} let get_key = 3 end module BinOp = MakeTable (EBinOp) module UnOp = MakeTable (EUnOp) module CstOp = MakeTable (ECstOp) module BinRel = MakeTable (EBinRel) module PropBinOp = MakeTable (EPropBinOp) module PropUnOp = MakeTable (EPropUnOp) module Saturate = MakeTable (ESat) module UnOpSpec = MakeTable (EUnopSpec) module BinOpSpec = MakeTable (EBinOpSpec) let init_cache () = table_cache := !table; saturate_cache := !saturate; specs_cache := !specs open EInjT (** Get constr of lemma and projections in ZifyClasses. *) (** Module [CstrTable] records terms [x] injected into [inj x] together with the corresponding type constraint. The terms are stored by side-effect during the traversal of the goal. It must therefore be cleared before calling the main tactic. *) module CstrTable = struct module HConstr = Hashtbl.Make (struct type t = EConstr.t let hash c = Constr.hash (unsafe_to_constr c) let equal c c' = Constr.equal (unsafe_to_constr c) (unsafe_to_constr c') end) let table : EConstr.t HConstr.t = HConstr.create 10 let register evd t (i : EConstr.t) = HConstr.add table t i let get () = let l = HConstr.fold (fun k i acc -> (k, i) :: acc) table [] in HConstr.clear table; l (** [gen_cstr table] asserts (cstr k) for each element of the table (k,cstr). NB: the constraint is only asserted if it does not already exist in the context. *) let gen_cstr table = Proofview.Goal.enter (fun gl -> let evd = Tacmach.project gl in (* Build the table of existing hypotheses *) let has_hyp = let hyps_table = HConstr.create 20 in List.iter (fun (_, (t : EConstr.types)) -> HConstr.add hyps_table t ()) (Tacmach.pf_hyps_types gl); fun c -> let m = HConstr.mem hyps_table c in if not m then HConstr.add hyps_table c (); m in (* Add the constraint (cstr k) if it is not already present *) let gen k cstr = Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let term = EConstr.mkApp (cstr, [|k|]) in let types = get_type_of env evd term in if has_hyp types then Tacticals.tclIDTAC else let n = Tactics.fresh_id_in_env Id.Set.empty (Names.Id.of_string "cstr") env in Tactics.pose_proof (Names.Name n) term) in List.fold_left (fun acc (k, i) -> Tacticals.tclTHEN (gen k i) acc) Tacticals.tclIDTAC table) end type prf = | Term (* source is built from constructors. target = compute(inj source) inj source == target *) | Same (* target = source inj source == inj target *) | Conv of EConstr.t (* inj source == target *) | Prf of EConstr.t * EConstr.t (** [eq_proof typ source target] returns (target = target : source = target) *) let eq_proof typ source target = EConstr.mkCast ( EConstr.mkApp (force eq_refl, [|typ; target|]) , DEFAULTcast , EConstr.mkApp (force eq, [|typ; source; target|]) ) let interp_prf evd inj source prf = let inj_source = if inj.EInjT.isid then source else EConstr.mkApp (inj.EInjT.inj, [|source|]) in match prf with | Term -> let target = Tacred.compute (Global.env ()) evd inj_source in (target, EConstr.mkApp (force eq_refl, [|inj.target; target|])) | Same -> (inj_source, EConstr.mkApp (force eq_refl, [|inj.target; inj_source|])) | Conv trm -> (trm, eq_proof inj.target inj_source trm) | Prf (target, prf) -> (target, prf) let pp_prf prf = match prf with | Term -> Pp.str "Term" | Same -> Pp.str "Same" | Conv t -> Pp.(str "Conv " ++ gl_pr_constr t) | Prf (_, _) -> Pp.str "Prf " let interp_prf evd inj source prf = let t, prf' = interp_prf evd inj source prf in debug_zify (fun () -> Pp.( str "interp_prf " ++ gl_pr_constr inj.EInjT.inj ++ str " " ++ gl_pr_constr source ++ str " = " ++ gl_pr_constr t ++ str " by " ++ gl_pr_constr prf' ++ str " from " ++ pp_prf prf ++ fnl ())); (t, prf') let mkvar evd inj e = (match inj.cstr with None -> () | Some ctr -> CstrTable.register evd e ctr); Same let pp_prf evd inj src prf = let t, prf' = interp_prf evd inj src prf in Pp.( gl_pr_constr inj.EInjT.inj ++ str " " ++ gl_pr_constr src ++ str " = " ++ gl_pr_constr t ++ str " by " ++ match prf with | Term -> Pp.str "Term" | Same -> Pp.str "Same" | Conv t -> Pp.str "Conv" | Prf (_, p) -> Pp.str "Prf " ++ gl_pr_constr p) let conv_of_term evd op isid arg = Tacred.compute (Global.env ()) evd (if isid then arg else EConstr.mkApp (op, [|arg|])) let app_unop evd src unop arg prf = let cunop = unop.EUnOpT.classify_unop in let default a' prf' = let target = EConstr.mkApp (unop.EUnOpT.tuop, [|a'|]) in EUnOpT.( Prf ( target , EConstr.mkApp ( force mkapp , [| unop.source1 ; unop.source2 ; unop.target1 ; unop.target2 ; unop.uop ; unop.inj1_t.EInjT.inj ; unop.inj2_t.EInjT.inj ; unop.tuop ; unop.tuopinj ; arg ; a' ; prf' |] ) )) in match prf with | Term -> ( if unop.EUnOpT.is_construct then Term (* Keep rebuilding *) else match cunop with | OpInj -> Conv (conv_of_term evd unop.EUnOpT.uop false arg) | OpSame -> Same | _ -> let a', prf = interp_prf evd unop.EUnOpT.inj1_t arg prf in default a' prf ) | Same -> ( match cunop with | OpSame -> Same | OpInj -> Same | OpConv -> Conv (EConstr.mkApp ( unop.EUnOpT.tuop , [|EConstr.mkApp (unop.EUnOpT.inj1_t.EInjT.inj, [|arg|])|] )) | OpOther -> let a', prf' = interp_prf evd unop.EUnOpT.inj1_t arg prf in default a' prf' ) | Conv a' -> ( match cunop with | OpSame | OpConv -> Conv (EConstr.mkApp (unop.EUnOpT.tuop, [|a'|])) | OpInj -> Conv a' | _ -> let a', prf = interp_prf evd unop.EUnOpT.inj1_t arg prf in default a' prf ) | Prf (a', prf') -> default a' prf' let app_unop evd src unop arg prf = let res = app_unop evd src unop arg prf in debug_zify (fun () -> Pp.( str "\napp_unop " ++ pp_prf evd unop.EUnOpT.inj1_t arg prf ++ str " => " ++ pp_prf evd unop.EUnOpT.inj2_t src res)); res let app_binop evd src binop arg1 prf1 arg2 prf2 = EBinOpT.( let mkApp a1 a2 = EConstr.mkApp (binop.tbop, [|a1; a2|]) in let to_conv inj arg = function | Term -> conv_of_term evd inj.EInjT.inj inj.EInjT.isid arg | Same -> if inj.EInjT.isid then arg else EConstr.mkApp (inj.EInjT.inj, [|arg|]) | Conv t -> t | Prf _ -> failwith "Prf is not convertible" in let default a1 prf1 a2 prf2 = let res = mkApp a1 a2 in let prf = EBinOpT.( EConstr.mkApp ( force mkapp2 , [| binop.source1 ; binop.source2 ; binop.source3 ; binop.target1 ; binop.target2 ; binop.target3 ; binop.bop ; binop.inj1.EInjT.inj ; binop.inj2.EInjT.inj ; binop.inj3.EInjT.inj ; binop.tbop ; binop.tbopinj ; arg1 ; a1 ; prf1 ; arg2 ; a2 ; prf2 |] )) in Prf (res, prf) in match (binop.EBinOpT.classify_binop, prf1, prf2) with | OpSame, Same, Same -> Same | OpSame, Term, Same | OpSame, Same, Term -> Same | OpSame, (Term | Same | Conv _), (Term | Same | Conv _) -> let t1 = to_conv binop.EBinOpT.inj1 arg1 prf1 in let t2 = to_conv binop.EBinOpT.inj1 arg2 prf2 in Conv (mkApp t1 t2) | _, _, _ -> let a1, prf1 = interp_prf evd binop.inj1 arg1 prf1 in let a2, prf2 = interp_prf evd binop.inj2 arg2 prf2 in default a1 prf1 a2 prf2) type typed_constr = {constr : EConstr.t; typ : EConstr.t; inj : EInjT.t} let get_injection env evd t = try match snd (ConstrMap.find evd t !table_cache) with | InjTyp i -> i | _ -> raise Not_found with DestKO -> raise Not_found (* [arrow] is the term (fun (x:Prop) (y : Prop) => x -> y) *) let arrow = let name x = Context.make_annot (Name.mk_name (Names.Id.of_string x)) Sorts.Relevant in EConstr.mkLambda ( name "x" , EConstr.mkProp , EConstr.mkLambda ( name "y" , EConstr.mkProp , EConstr.mkProd ( Context.make_annot Names.Anonymous Sorts.Relevant , EConstr.mkRel 2 , EConstr.mkRel 2 ) ) ) let is_prop env sigma term = let sort = Retyping.get_sort_of env sigma term in Sorts.is_prop sort let is_arrow env evd a p1 p2 = is_prop env evd p1 && is_prop (EConstr.push_rel (Context.Rel.Declaration.LocalAssum (a, p1)) env) evd p2 && (a.Context.binder_name = Names.Anonymous || EConstr.Vars.noccurn evd 1 p2) (** [get_operator env evd e] expresses [e] as an application (c a) where c is the head symbol and [a] is the array of arguments. The function also transforms (x -> y) as (arrow x y) *) let get_operator barrow env evd e = let e' = EConstr.whd_evar evd e in match EConstr.kind evd e' with | Prod (a, p1, p2) -> if barrow && is_arrow env evd a p1 p2 then (arrow, [|p1; p2|], false) else raise Not_found | App (c, a) -> ( let c' = EConstr.whd_evar evd c in match EConstr.kind evd c' with | Construct _ (* e.g. Z0 , Z.pos *) | Const _ (* e.g. Z.max *) | Proj _ |Lambda _ (* e.g projections *) | Ind _ (* e.g. eq *) -> (c', a, false) | _ -> raise Not_found ) | Const _ -> (e', [||], false) | Construct _ -> (e', [||], true) | Int _ | Float _ -> (e', [||], true) | _ -> raise Not_found let decompose_app env evd e = match EConstr.kind evd e with | Prod (a, p1, p2) when is_arrow env evd a p1 p2 -> (arrow, [|p1; p2|]) | App (c, a) -> (c, a) | _ -> (EConstr.whd_evar evd e, [||]) type 'op propop = {op : 'op; op_constr : EConstr.t; op_iff : EConstr.t} let mk_propop op c1 c2 = {op; op_constr = c1; op_iff = c2} type prop_binop = AND | OR | IFF | IMPL type prop_unop = NOT type prop_op = | BINOP of prop_binop propop * EConstr.t * EConstr.t | UNOP of prop_unop propop * EConstr.t | OTHEROP of EConstr.t * EConstr.t array let classify_prop env evd e = match EConstr.kind evd e with | Prod (a, p1, p2) when is_arrow env evd a p1 p2 -> BINOP (mk_propop IMPL arrow (force op_impl_morph), p1, p2) | App (c, a) -> ( match Array.length a with | 1 -> if EConstr.eq_constr_nounivs evd (force op_not) c then UNOP (mk_propop NOT c (force op_not_morph), a.(0)) else OTHEROP (c, a) | 2 -> if EConstr.eq_constr_nounivs evd (force op_and) c then BINOP (mk_propop AND c (force op_and_morph), a.(0), a.(1)) else if EConstr.eq_constr_nounivs evd (force op_or) c then BINOP (mk_propop OR c (force op_or_morph), a.(0), a.(1)) else if EConstr.eq_constr_nounivs evd (force op_iff) c then BINOP (mk_propop IFF c (force op_iff_morph), a.(0), a.(1)) else OTHEROP (c, a) | _ -> OTHEROP (c, a) ) | _ -> OTHEROP (e, [||]) (** [match_operator env evd hd arg (t,d)] - hd is head operator of t - If t = OtherTerm _, then t = hd - If t = Application _, then we extract the relevant number of arguments from arg and check for convertibility *) let match_operator env evd hd args (t, d) = let decomp t i = let n = Array.length args in let t' = EConstr.mkApp (hd, Array.sub args 0 (n - i)) in if is_convertible env evd t' t then Some (d, t) else None in match t with | OtherTerm t -> Some (d, t) | Application t -> ( match d with | CstOp _ -> decomp t 0 | UnOp _ -> decomp t 1 | BinOp _ -> decomp t 2 | BinRel _ -> decomp t 2 | PropOp _ -> decomp t 2 | PropUnOp _ -> decomp t 1 | _ -> None ) let pp_trans_expr env evd e res = let {deriv = inj} = get_injection env evd e.typ in debug_zify (fun () -> Pp.(str "\ntrans_expr " ++ pp_prf evd inj e.constr res)); res let declared_term env evd hd args = let match_operator (t, d) = let decomp t i = let n = Array.length args in let t' = EConstr.mkApp (hd, Array.sub args 0 (n - i)) in if is_convertible env evd t' t then Some (t, Array.sub args (n - i) i) else None in match t with | OtherTerm t -> ( match d with InjTyp _ -> None | _ -> Some (t, args) ) | Application t -> ( match d with | CstOp _ -> decomp t 0 | UnOp _ -> decomp t 1 | BinOp _ -> decomp t 2 | BinRel _ -> decomp t 2 | PropOp _ -> decomp t 2 | PropUnOp _ -> decomp t 1 | _ -> None ) in find_option match_operator (ConstrMap.find_all evd hd !table) let rec trans_expr env evd e = let inj = e.inj in let e = e.constr in try let c, a, is_constant = get_operator false env evd e in if is_constant then Term else let k, t = find_option (match_operator env evd c a) (ConstrMap.find_all evd c !table_cache) in let n = Array.length a in match k with | CstOp {deriv = c'} -> ECstOpT.(if c'.is_construct then Term else Prf (c'.cst, c'.cstinj)) | UnOp {deriv = unop} -> let prf = trans_expr env evd { constr = a.(n - 1) ; typ = unop.EUnOpT.source1 ; inj = unop.EUnOpT.inj1_t } in app_unop evd e unop a.(n - 1) prf | BinOp {deriv = binop} -> let prf1 = trans_expr env evd { constr = a.(n - 2) ; typ = binop.EBinOpT.source1 ; inj = binop.EBinOpT.inj1 } in let prf2 = trans_expr env evd { constr = a.(n - 1) ; typ = binop.EBinOpT.source2 ; inj = binop.EBinOpT.inj2 } in app_binop evd e binop a.(n - 2) prf1 a.(n - 1) prf2 | d -> mkvar evd inj e with Not_found | DestKO -> mkvar evd inj e let trans_expr env evd e = try pp_trans_expr env evd e (trans_expr env evd e) with Not_found -> raise (CErrors.user_err ( Pp.str "Missing injection for type " ++ Printer.pr_leconstr_env env evd e.typ )) type prfp = | TProof of EConstr.t * EConstr.t (** Proof of tranformed proposition *) | CProof of EConstr.t (** Transformed proposition is convertible *) | IProof (** Transformed proposition is identical *) let pp_prfp = function | TProof (t, prf) -> Pp.str "TProof " ++ gl_pr_constr t ++ Pp.str " by " ++ gl_pr_constr prf | CProof t -> Pp.str "CProof " ++ gl_pr_constr t | IProof -> Pp.str "IProof" let trans_binrel evd src rop a1 prf1 a2 prf2 = EBinRelT.( match (rop.classify_rel, prf1, prf2) with | OpSame, Same, Same -> IProof | (OpSame | OpConv), Conv t1, Conv t2 -> CProof (EConstr.mkApp (rop.tbrel, [|t1; t2|])) | (OpSame | OpConv), (Same | Term | Conv _), (Same | Term | Conv _) -> let a1', _ = interp_prf evd rop.inj a1 prf1 in let a2', _ = interp_prf evd rop.inj a2 prf2 in CProof (EConstr.mkApp (rop.tbrel, [|a1'; a2'|])) | _, _, _ -> let a1', prf1 = interp_prf evd rop.inj a1 prf1 in let a2', prf2 = interp_prf evd rop.inj a2 prf2 in TProof ( EConstr.mkApp (rop.EBinRelT.tbrel, [|a1'; a2'|]) , EConstr.mkApp ( force mkrel , [| rop.source ; rop.target ; rop.brel ; rop.EBinRelT.inj.EInjT.inj ; rop.EBinRelT.tbrel ; rop.EBinRelT.brelinj ; a1 ; a1' ; prf1 ; a2 ; a2' ; prf2 |] ) )) let trans_binrel evd src rop a1 prf1 a2 prf2 = let res = trans_binrel evd src rop a1 prf1 a2 prf2 in debug_zify (fun () -> Pp.(str "\ntrans_binrel " ++ pp_prfp res)); res let mkprf t p = EConstr.( match p with | IProof -> (t, mkApp (force iff_refl, [|t|])) | CProof t' -> (t', mkApp (force eq_iff, [|t; t'; eq_proof mkProp t t'|])) | TProof (t', p) -> (t', p)) let mkprf t p = let t', p = mkprf t p in debug_zify (fun () -> Pp.( str "mkprf " ++ gl_pr_constr t ++ str " <-> " ++ gl_pr_constr t' ++ str " by " ++ gl_pr_constr p)); (t', p) let trans_bin_prop op_constr op_iff t1 p1 t2 p2 = match (p1, p2) with | IProof, IProof -> IProof | CProof t1', IProof -> CProof (EConstr.mkApp (op_constr, [|t1'; t2|])) | IProof, CProof t2' -> CProof (EConstr.mkApp (op_constr, [|t1; t2'|])) | CProof t1', CProof t2' -> CProof (EConstr.mkApp (op_constr, [|t1'; t2'|])) | _, _ -> let t1', p1 = mkprf t1 p1 in let t2', p2 = mkprf t2 p2 in TProof ( EConstr.mkApp (op_constr, [|t1'; t2'|]) , EConstr.mkApp (op_iff, [|t1; t2; t1'; t2'; p1; p2|]) ) let trans_bin_prop op_constr op_iff t1 p1 t2 p2 = let prf = trans_bin_prop op_constr op_iff t1 p1 t2 p2 in debug_zify (fun () -> pp_prfp prf); prf let trans_un_prop op_constr op_iff p1 prf1 = match prf1 with | IProof -> IProof | CProof p1' -> CProof (EConstr.mkApp (op_constr, [|p1'|])) | TProof (p1', prf) -> TProof ( EConstr.mkApp (op_constr, [|p1'|]) , EConstr.mkApp (op_iff, [|p1; p1'; prf|]) ) let rec trans_prop env evd e = match classify_prop env evd e with | BINOP ({op_constr; op_iff}, p1, p2) -> let prf1 = trans_prop env evd p1 in let prf2 = trans_prop env evd p2 in trans_bin_prop op_constr op_iff p1 prf1 p2 prf2 | UNOP ({op_constr; op_iff}, p1) -> let prf1 = trans_prop env evd p1 in trans_un_prop op_constr op_iff p1 prf1 | OTHEROP (c, a) -> ( try let k, t = find_option (match_operator env evd c a) (ConstrMap.find_all evd c !table_cache) in let n = Array.length a in match k with | BinRel {decl = br; deriv = rop} -> let a1 = trans_expr env evd { constr = a.(n - 2) ; typ = rop.EBinRelT.source ; inj = rop.EBinRelT.inj } in let a2 = trans_expr env evd { constr = a.(n - 1) ; typ = rop.EBinRelT.source ; inj = rop.EBinRelT.inj } in trans_binrel evd e rop a.(n - 2) a1 a.(n - 1) a2 | _ -> IProof with Not_found | DestKO -> IProof ) let trans_check_prop env evd t = if is_prop env evd t then Some (trans_prop env evd t) else None let get_hyp_typ = function | NamedDecl.LocalDef (h, _, ty) | NamedDecl.LocalAssum (h, ty) -> (h.Context.binder_name, EConstr.of_constr ty) let trans_hyps env evd l = List.fold_left (fun acc decl -> let h, ty = get_hyp_typ decl in match trans_check_prop env evd ty with | None -> acc | Some p' -> (h, ty, p') :: acc) [] l let trans_hyp h t0 prfp = debug_zify (fun () -> Pp.(str "trans_hyp: " ++ pp_prfp prfp ++ fnl ())); match prfp with | IProof -> Tacticals.tclIDTAC (* Should detect before *) | CProof t' -> Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in let t' = Reductionops.nf_betaiota env evd t' in Tactics.change_in_hyp ~check:true None (Tactics.make_change_arg t') (h, Locus.InHypTypeOnly)) | TProof (t', prf) -> Tacticals.( Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in let target = Reductionops.nf_betaiota env evd t' in let h' = Tactics.fresh_id_in_env Id.Set.empty h env in let prf = EConstr.mkApp (force rew_iff, [|t0; target; prf; EConstr.mkVar h|]) in tclTHEN (Tactics.pose_proof (Name.Name h') prf) (tclTRY (tclTHEN (Tactics.clear [h]) (Tactics.rename_hyp [(h', h)]))))) let trans_concl prfp = debug_zify (fun () -> Pp.(str "trans_concl: " ++ pp_prfp prfp ++ fnl ())); match prfp with | IProof -> Tacticals.tclIDTAC | CProof t -> Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in let t' = Reductionops.nf_betaiota env evd t in Tactics.change_concl t') | TProof (t, prf) -> Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in let typ = get_type_of env evd prf in match EConstr.kind evd typ with | App (c, a) when Array.length a = 2 -> Tactics.apply (EConstr.mkApp (Lazy.force rew_iff_rev, [|a.(0); a.(1); prf|])) | _ -> raise (CErrors.anomaly Pp.(str "zify cannot transform conclusion"))) let tclTHENOpt e tac tac' = match e with None -> tac' | Some e' -> Tacticals.tclTHEN (tac e') tac' let assert_inj t = init_cache (); Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in try ignore (get_injection env evd t); Tacticals.tclIDTAC with Not_found -> Tacticals.tclFAIL 0 (Pp.str " InjTyp does not exist")) let elim_binding x t ty = Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let h = Tactics.fresh_id_in_env Id.Set.empty (Nameops.add_prefix "heq_" x) env in Tacticals.tclTHEN (Tactics.pose_proof (Name h) (eq_proof ty (EConstr.mkVar x) t)) (Tacticals.tclTRY (Tactics.clear_body [x]))) let do_let tac (h : Constr.named_declaration) = match h with | Context.Named.Declaration.LocalAssum _ -> Tacticals.tclIDTAC | Context.Named.Declaration.LocalDef (id, t, ty) -> Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in try let x = id.Context.binder_name in ignore (let eq = Lazy.force eq in find_option (match_operator env evd eq [|EConstr.of_constr ty; EConstr.mkVar x; EConstr.of_constr t|]) (ConstrMap.find_all evd eq !table_cache)); tac x (EConstr.of_constr t) (EConstr.of_constr ty) with Not_found -> Tacticals.tclIDTAC) let iter_let_aux tac = Proofview.Goal.enter (fun gl -> let env = Tacmach.pf_env gl in let sign = Environ.named_context env in init_cache (); Tacticals.tclMAP (do_let tac) sign) let iter_let (tac : Ltac_plugin.Tacinterp.Value.t) = iter_let_aux (fun (id : Names.Id.t) t ty -> Ltac_plugin.Tacinterp.Value.apply tac [ Ltac_plugin.Tacinterp.Value.of_constr (EConstr.mkVar id) ; Ltac_plugin.Tacinterp.Value.of_constr t ; Ltac_plugin.Tacinterp.Value.of_constr ty ]) let elim_let = iter_let_aux elim_binding let zify_tac = Proofview.Goal.enter (fun gl -> Coqlib.check_required_library ["Coq"; "micromega"; "ZifyClasses"]; Coqlib.check_required_library ["Coq"; "micromega"; "ZifyInst"]; init_cache (); let evd = Tacmach.project gl in let env = Tacmach.pf_env gl in let sign = Environ.named_context env in let concl = trans_check_prop env evd (Tacmach.pf_concl gl) in let hyps = trans_hyps env evd sign in let l = CstrTable.get () in tclTHENOpt concl trans_concl (Tacticals.tclTHEN (Tacticals.tclTHENLIST (List.rev_map (fun (h, p, t) -> trans_hyp h p t) hyps)) (CstrTable.gen_cstr l))) type pscript = Set of Names.Id.t * EConstr.t | Pose of Names.Id.t * EConstr.t type spec_env = { map : Names.Id.t HConstr.t ; spec_name : Names.Id.t ; term_name : Names.Id.t ; fresh : Nameops.Subscript.t ; proofs : pscript list } let register_constr {map; spec_name; term_name; fresh; proofs} c thm = let tname = Nameops.add_subscript term_name fresh in let sname = Nameops.add_subscript spec_name fresh in ( EConstr.mkVar tname , { map = HConstr.add c tname map ; spec_name ; term_name ; fresh = Nameops.Subscript.succ fresh ; proofs = Set (tname, c) :: Pose (sname, thm) :: proofs } ) let fresh_subscript env = let ctx = (Environ.named_context_val env).Environ.env_named_map in Nameops.Subscript.succ (Names.Id.Map.fold (fun id _ s -> let _, s' = Nameops.get_subscript id in let cmp = Nameops.Subscript.compare s s' in if cmp = 0 then s else if cmp < 0 then s' else s) ctx Nameops.Subscript.zero) let init_env sname tname s = { map = HConstr.empty ; spec_name = sname ; term_name = tname ; fresh = s ; proofs = [] } let rec spec_of_term env evd (senv : spec_env) t = let get_name t env = try EConstr.mkVar (HConstr.find t senv.map) with Not_found -> t in let c, a = decompose_app env evd t in if a = [||] then (* The term cannot be decomposed. *) (get_name t senv, senv) else (* recursively analyse the sub-terms *) let a', senv' = Array.fold_right (fun e (l, senv) -> let r, senv = spec_of_term env evd senv e in (r :: l, senv)) a ([], senv) in let a' = Array.of_list a' in let t' = EConstr.mkApp (c, a') in try (EConstr.mkVar (HConstr.find t' senv'.map), senv') with Not_found -> ( try match snd (ConstrMap.find evd c !specs_cache) with | UnOpSpec s | BinOpSpec s -> let thm = EConstr.mkApp (s.deriv.ESpecT.spec, a') in register_constr senv' t' thm | _ -> (get_name t' senv', senv') with Not_found | DestKO -> (t', senv') ) let interp_pscript s = match s with | Set (id, c) -> Tacticals.tclTHEN (Tactics.letin_tac None (Names.Name id) c None {Locus.onhyps = None; Locus.concl_occs = Locus.AllOccurrences}) (Tactics.clear_body [id]) | Pose (id, c) -> Tactics.pose_proof (Names.Name id) c let rec interp_pscripts l = match l with | [] -> Tacticals.tclIDTAC | s :: l -> Tacticals.tclTHEN (interp_pscript s) (interp_pscripts l) let spec_of_hyps = Proofview.Goal.enter (fun gl -> let terms = Tacmach.pf_concl gl :: List.map snd (Tacmach.pf_hyps_types gl) in let env = Tacmach.pf_env gl in let evd = Tacmach.project gl in let s = fresh_subscript env in let env = List.fold_left (fun acc t -> snd (spec_of_term env evd acc t)) (init_env (Names.Id.of_string "H") (Names.Id.of_string "z") s) terms in interp_pscripts (List.rev env.proofs)) let iter_specs = spec_of_hyps let find_hyp evd t l = try Some (EConstr.mkVar (fst (List.find (fun (h, t') -> EConstr.eq_constr evd t t') l))) with Not_found -> None let find_proof evd t l = if EConstr.eq_constr evd t (Lazy.force op_True) then Some (Lazy.force op_I) else find_hyp evd t l (** [sat_constr env evd sub taclist hyps c d]= (sub',taclist',hyps') where - sub' is a fresh subscript obtained from sub - taclist' is obtained from taclist by posing the lemma 'd' applied to 'c' - hyps' is obtained from hyps' taclist and hyps are threaded to avoid adding duplicates *) let sat_constr env evd (sub,taclist, hyps) c d = match EConstr.kind evd c with | App (c, args) -> if Array.length args = 2 then let h1 = Tacred.cbv_beta env evd (EConstr.mkApp (d.ESatT.parg1, [|args.(0)|])) in let h2 = Tacred.cbv_beta env evd (EConstr.mkApp (d.ESatT.parg2, [|args.(1)|])) in let n = Nameops.add_subscript (Names.Id.of_string "__sat") sub in let trm = match (find_proof evd h1 hyps, find_proof evd h2 hyps) with | Some h1, Some h2 -> (EConstr.mkApp (d.ESatT.satOK, [|args.(0); args.(1); h1; h2|])) | Some h1, _ -> EConstr.mkApp (d.ESatT.satOK, [|args.(0); args.(1); h1|]) | _, _ -> EConstr.mkApp (d.ESatT.satOK, [|args.(0); args.(1)|]) in let rtrm = Tacred.cbv_beta env evd trm in let typ = Retyping.get_type_of env evd rtrm in match find_hyp evd typ hyps with | None -> (Nameops.Subscript.succ sub, (Tactics.pose_proof (Names.Name n) rtrm :: taclist) , (n,typ)::hyps) | Some _ -> (sub, taclist, hyps) else (sub,taclist,hyps) | _ -> (sub,taclist,hyps) let get_all_sat env evd c = List.fold_left (fun acc e -> match e with _, Saturate s -> s :: acc | _ -> acc) [] ( try ConstrMap.find_all evd c !saturate_cache with DestKO | Not_found -> [] ) let saturate = Proofview.Goal.enter (fun gl -> init_cache (); let table = CstrTable.HConstr.create 20 in let concl = Tacmach.pf_concl gl in let hyps = Tacmach.pf_hyps_types gl in let evd = Tacmach.project gl in let env = Tacmach.pf_env gl in let rec sat t = match EConstr.kind evd t with | App (c, args) -> sat c; Array.iter sat args; if Array.length args = 2 then let ds = get_all_sat env evd c in if ds = [] || CstrTable.HConstr.mem table t then () else List.iter (fun x -> CstrTable.HConstr.add table t x.deriv) ds else () | Prod (a, t1, t2) when a.Context.binder_name = Names.Anonymous -> sat t1; sat t2 | _ -> () in (* Collect all the potential saturation lemma *) sat concl; List.iter (fun (_, t) -> sat t) hyps; let s0 = fresh_subscript env in let (_,tacs,_) = CstrTable.HConstr.fold (fun c d acc -> sat_constr env evd acc c d) table (s0,[],hyps) in Tacticals.tclTHENLIST tacs)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>