package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.15.2.tar.gz
sha256=13a67c0a4559ae22e9765c8fdb88957b16c2b335a2d5f47e4d6d9b4b8b299926
doc/src/micromega_plugin/mfourier.ml.html
Source file mfourier.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open NumCompat open Q.Notations open Util open Polynomial open Vect let debug = false let compare_float (p : float) q = pervasives_compare p q (** Implementation of intervals *) open Itv type vector = Vect.t (** 'cstr' is the type of constraints. {coeffs = v ; bound = (l,r) } models the constraints l <= v <= r **) module ISet = Set.Make (Int) module System = Hashtbl.Make (Vect) type proof = Assum of int | Elim of var * proof * proof | And of proof * proof type system = {sys : cstr_info ref System.t; vars : ISet.t} and cstr_info = {bound : interval; prf : proof; pos : int; neg : int} (** A system of constraints has the form [\{sys = s ; vars = v\}]. [s] is a hashtable mapping a normalised vector to a [cstr_info] record where - [bound] is an interval - [prf_idx] is the set of hypothesis indexes (i.e. constraints in the initial system) used to obtain the current constraint. In the initial system, each constraint is given an unique singleton proof_idx. When a new constraint c is computed by a function f(c1,...,cn), its proof_idx is ISet.fold union (List.map (fun x -> x.proof_idx) [c1;...;cn] - [pos] is the number of positive values of the vector - [neg] is the number of negative values of the vector ( [neg] + [pos] is therefore the length of the vector) [v] is an upper-bound of the set of variables which appear in [s]. *) (** To be thrown when a system has no solution *) exception SystemContradiction of proof (** Pretty printing *) let rec pp_proof o prf = match prf with | Assum i -> Printf.fprintf o "H%i" i | Elim (v, prf1, prf2) -> Printf.fprintf o "E(%i,%a,%a)" v pp_proof prf1 pp_proof prf2 | And (prf1, prf2) -> Printf.fprintf o "A(%a,%a)" pp_proof prf1 pp_proof prf2 let pp_cstr o (vect, bnd) = let l, r = bnd in ( match l with | None -> () | Some n -> Printf.fprintf o "%s <= " (Q.to_string n) ); Vect.pp o vect; match r with | None -> output_string o "\n" | Some n -> Printf.fprintf o "<=%s\n" (Q.to_string n) let pp_system o sys = System.iter (fun vect ibnd -> pp_cstr o (vect, !ibnd.bound)) sys (** [merge_cstr_info] takes: - the intersection of bounds and - the union of proofs - [pos] and [neg] fields should be identical *) let merge_cstr_info i1 i2 = let {pos = p1; neg = n1; bound = i1; prf = prf1} = i1 and {pos = p2; neg = n2; bound = i2; prf = prf2} = i2 in assert (Int.equal p1 p2 && Int.equal n1 n2); match inter i1 i2 with | None -> None (* Could directly raise a system contradiction exception *) | Some bnd -> Some {pos = p1; neg = n1; bound = bnd; prf = And (prf1, prf2)} (** [xadd_cstr vect cstr_info] loads an constraint into the system. The constraint is neither redundant nor contradictory. @raise SystemContradiction if [cstr_info] returns [None] *) let xadd_cstr vect cstr_info sys = try let info = System.find sys vect in match merge_cstr_info cstr_info !info with | None -> raise (SystemContradiction (And (cstr_info.prf, !info.prf))) | Some info' -> info := info' with Not_found -> System.replace sys vect (ref cstr_info) exception TimeOut let xadd_cstr vect cstr_info sys = if debug && Int.equal (System.length sys mod 1000) 0 then ( print_string "*"; flush stdout ); if System.length sys < !max_nb_cstr then xadd_cstr vect cstr_info sys else raise TimeOut type cstr_ext = | Contradiction (** The constraint is contradictory. Typically, a [SystemContradiction] exception will be raised. *) | Redundant (** The constrain is redundant. Typically, the constraint will be dropped *) | Cstr of vector * cstr_info (** Taken alone, the constraint is neither contradictory nor redundant. Typically, it will be added to the constraint system. *) (** [normalise_cstr] : vector -> cstr_info -> cstr_ext *) let normalise_cstr vect cinfo = match norm_itv cinfo.bound with | None -> Contradiction | Some (l, r) -> ( match Vect.choose vect with | None -> if Itv.in_bound (l, r) Q.zero then Redundant else Contradiction | Some (_, n, _) -> Cstr ( Vect.div n vect , let divn x = x // n in if Int.equal (Q.sign n) 1 then {cinfo with bound = (Option.map divn l, Option.map divn r)} else { cinfo with pos = cinfo.neg ; neg = cinfo.pos ; bound = (Option.map divn r, Option.map divn l) } ) ) (** For compatibility, there is an external representation of constraints *) let count v = Vect.fold (fun (n, p) _ vl -> let sg = Q.sign vl in assert (sg <> 0); if Int.equal sg 1 then (n, p + 1) else (n + 1, p)) (0, 0) v let norm_cstr {coeffs = v; op = o; cst = c} idx = let n, p = count v in normalise_cstr v { pos = p ; neg = n ; bound = ( match o with | Eq -> (Some c, Some c) | Ge -> (Some c, None) | Gt -> raise Polynomial.Strict ) ; prf = Assum idx } (** [load_system l] takes a list of constraints of type [cstr_compat] @return a system of constraints @raise SystemContradiction if a contradiction is found *) let load_system l = let sys = System.create 1000 in let li = List.mapi (fun i e -> (e, i)) l in let vars = List.fold_left (fun vrs (cstr, i) -> match norm_cstr cstr i with | Contradiction -> raise (SystemContradiction (Assum i)) | Redundant -> vrs | Cstr (vect, info) -> xadd_cstr vect info sys; Vect.fold (fun s v _ -> ISet.add v s) vrs cstr.coeffs) ISet.empty li in {sys; vars} let system_list sys = let {sys = s; vars = v} = sys in System.fold (fun k bi l -> (k, !bi) :: l) s [] (** [add (v1,c1) (v2,c2) ] precondition: (c1 <>/ Q.zero && c2 <>/ Q.zero) @return a pair [(v,ln)] such that [v] is the sum of vector [v1] divided by [c1] and vector [v2] divided by [c2] Note that the resulting vector is not normalised. *) let add (v1, c1) (v2, c2) = assert (c1 <>/ Q.zero && c2 <>/ Q.zero); (* XXX Can use Q.inv now *) let res = mul_add (Q.one // c1) v1 (Q.one // c2) v2 in (res, count res) let add (v1, c1) (v2, c2) = let res = add (v1, c1) (v2, c2) in (* Printf.printf "add(%a,%s,%a,%s) -> %a\n" pp_vect v1 (Q.to_string c1) pp_vect v2 (Q.to_string c2) pp_vect (fst res) ;*) res (** To perform Fourier elimination, constraints are categorised depending on the sign of the variable to eliminate. *) (** [split x vect info (l,m,r)] @param v is the variable to eliminate @param l contains constraints such that (e + a*x) // a >= c / a @param r contains constraints such that (e + a*x) // - a >= c / -a @param m contains constraints which do not mention [x] *) let split x (vect : vector) info (l, m, r) = let vl = get x vect in if Q.zero =/ vl then (* The constraint does not mention [x], store it in m *) (l, (vect, info) :: m, r) else (* otherwise *) let cons_bound lst bd = match bd with | None -> lst | Some bnd -> (vl, vect, {info with bound = (Some bnd, None)}) :: lst in let lb, rb = info.bound in if Int.equal (Q.sign vl) 1 then (cons_bound l lb, m, cons_bound r rb) else (* sign_num vl = -1 *) (cons_bound l rb, m, cons_bound r lb) (** [project vr sys] projects system [sys] over the set of variables [ISet.remove vr sys.vars ]. This is a one step Fourier elimination. *) let project vr sys = let l, m, r = System.fold (fun vect rf l_m_r -> split vr vect !rf l_m_r) sys.sys ([], [], []) in let new_sys = System.create (System.length sys.sys) in (* Constraints in [m] belong to the projection - for those [vr] is already projected out *) List.iter (fun (vect, info) -> System.replace new_sys vect (ref info)) m; let elim (v1, vect1, info1) (v2, vect2, info2) = let {neg = n1; pos = p1; bound = bound1; prf = prf1} = info1 and {neg = n2; pos = p2; bound = bound2; prf = prf2} = info2 in let bnd1 = Option.get (fst bound1) and bnd2 = Option.get (fst bound2) in let bound = (bnd1 // v1) +/ (bnd2 // Q.neg v2) in let vres, (n, p) = add (vect1, v1) (vect2, Q.neg v2) in ( vres , { neg = n ; pos = p ; bound = (Some bound, None) ; prf = Elim (vr, info1.prf, info2.prf) } ) in List.iter (fun l_elem -> List.iter (fun r_elem -> let vect, info = elim l_elem r_elem in match normalise_cstr vect info with | Redundant -> () | Contradiction -> raise (SystemContradiction info.prf) | Cstr (vect, info) -> xadd_cstr vect info new_sys) r) l; {sys = new_sys; vars = ISet.remove vr sys.vars} (** [project_using_eq] performs elimination by pivoting using an equation. This is the counter_part of the [elim] sub-function of [!project]. @param vr is the variable to be used as pivot @param c is the coefficient of variable [vr] in vector [vect] @param len is the length of the equation @param bound is the bound of the equation @param prf is the proof of the equation *) let project_using_eq vr c vect bound prf (vect', info') = let c2 = get vr vect' in if Q.zero =/ c2 then (vect', info') else let c1 = if c2 >=/ Q.zero then Q.neg c else c in let c2 = Q.abs c2 in let vres, (n, p) = add (vect, c1) (vect', c2) in let cst = bound // c1 in let bndres = let f x = cst +/ (x // c2) in let l, r = info'.bound in (Option.map f l, Option.map f r) in (vres, {neg = n; pos = p; bound = bndres; prf = Elim (vr, prf, info'.prf)}) let elim_var_using_eq vr vect cst prf sys = let c = get vr vect in let elim_var = project_using_eq vr c vect cst prf in let new_sys = System.create (System.length sys.sys) in System.iter (fun vect iref -> let vect', info' = elim_var (vect, !iref) in match normalise_cstr vect' info' with | Redundant -> () | Contradiction -> raise (SystemContradiction info'.prf) | Cstr (vect, info') -> xadd_cstr vect info' new_sys) sys.sys; {sys = new_sys; vars = ISet.remove vr sys.vars} (** [size sys] computes the number of entries in the system of constraints *) let size sys = System.fold (fun v iref s -> s + !iref.neg + !iref.pos) sys 0 module IMap = CMap.Make (Int) (** [eval_vect map vect] evaluates vector [vect] using the values of [map]. If [map] binds all the variables of [vect], we get [eval_vect map [(x1,v1);...;(xn,vn)] = (IMap.find x1 map * v1) + ... + (IMap.find xn map) * vn , []] The function returns as second argument, a sub-vector consisting in the variables that are not in [map]. *) let eval_vect map vect = Vect.fold (fun (sum, rst) v vl -> try let val_v = IMap.find v map in (sum +/ (val_v */ vl), rst) with Not_found -> (sum, Vect.set v vl rst)) (Q.zero, Vect.null) vect (** [restrict_bound n sum itv] returns the interval of [x] given that (fst itv) <= x * n + sum <= (snd itv) *) let restrict_bound n sum (itv : interval) = let f x = (x -/ sum) // n in let l, r = itv in match Q.sign n with | 0 -> if in_bound itv sum then (None, None) (* redundant *) else failwith "SystemContradiction" | 1 -> (Option.map f l, Option.map f r) | _ -> (Option.map f r, Option.map f l) (** [bound_of_variable map v sys] computes the interval of [v] in [sys] given a mapping [map] binding all the other variables *) let bound_of_variable map v sys = System.fold (fun vect iref bnd -> let sum, rst = eval_vect map vect in let vl = Vect.get v rst in match inter bnd (restrict_bound vl sum !iref.bound) with | None -> Printf.fprintf stdout "bound_of_variable: eval_vecr %a = %s,%a\n" Vect.pp vect (Q.to_string sum) Vect.pp rst; Printf.fprintf stdout "current interval: %a\n" Itv.pp !iref.bound; failwith "bound_of_variable: impossible" | Some itv -> itv) sys (None, None) (** [pick_small_value bnd] picks a value being closed to zero within the interval *) let pick_small_value bnd = match bnd with | None, None -> Q.zero | None, Some i -> if Q.zero <=/ Q.floor i then Q.zero else Q.floor i | Some i, None -> if i <=/ Q.zero then Q.zero else Q.ceiling i | Some i, Some j -> if i <=/ Q.zero && Q.zero <=/ j then Q.zero else if Q.ceiling i <=/ Q.floor j then Q.ceiling i (* why not *) else i (** [solution s1 sys_l = Some(sn,\[(vn-1,sn-1);...; (v1,s1)\]\@sys_l)] then [sn] is a system which contains only [black_v] -- if it existed in [s1] and [sn+1] is obtained by projecting [vn] out of [sn] @raise SystemContradiction if system [s] has no solution *) let solve_sys black_v choose_eq choose_variable sys sys_l = let rec solve_sys sys sys_l = if debug then Printf.printf "S #%i size %i\n" (System.length sys.sys) (size sys.sys); if debug then Printf.printf "solve_sys :\n %a" pp_system sys.sys; let eqs = choose_eq sys in try let v, vect, cst, ln = fst (List.find (fun ((v, _, _, _), _) -> v <> black_v) eqs) in if debug then ( Printf.printf "\nE %a = %s variable %i\n" Vect.pp vect (Q.to_string cst) v; flush stdout ); let sys' = elim_var_using_eq v vect cst ln sys in solve_sys sys' ((v, sys) :: sys_l) with Not_found -> ( let vars = choose_variable sys in try let v, est = List.find (fun (v, _) -> v <> black_v) vars in if debug then ( Printf.printf "\nV : %i estimate %f\n" v est; flush stdout ); let sys' = project v sys in solve_sys sys' ((v, sys) :: sys_l) with Not_found -> (* we are done *) Inl (sys, sys_l) ) in solve_sys sys sys_l let solve black_v choose_eq choose_variable cstrs = try let sys = load_system cstrs in if debug then Printf.printf "solve :\n %a" pp_system sys.sys; solve_sys black_v choose_eq choose_variable sys [] with SystemContradiction prf -> Inr prf (** The purpose of module [EstimateElimVar] is to try to estimate the cost of eliminating a variable. The output is an ordered list of (variable,cost). *) module EstimateElimVar = struct type sys_list = (vector * cstr_info) list let abstract_partition (v : int) (l : sys_list) = let rec xpart (l : sys_list) (ltl : sys_list) (n : int list) (z : int) (p : int list) = match l with | [] -> (ltl, n, z, p) | (l1, info) :: rl -> ( match Vect.choose l1 with | None -> xpart rl ((Vect.null, info) :: ltl) n (info.neg + info.pos + z) p | Some (vr, vl, rl1) -> if Int.equal v vr then let cons_bound lst bd = match bd with | None -> lst | Some bnd -> (info.neg + info.pos) :: lst in let lb, rb = info.bound in if Int.equal (Q.sign vl) 1 then xpart rl ((rl1, info) :: ltl) (cons_bound n lb) z (cons_bound p rb) else xpart rl ((rl1, info) :: ltl) (cons_bound n rb) z (cons_bound p lb) else (* the variable is greater *) xpart rl ((l1, info) :: ltl) n (info.neg + info.pos + z) p ) in let sys', n, z, p = xpart l [] [] 0 [] in let ln = float_of_int (List.length n) in let sn = float_of_int (List.fold_left ( + ) 0 n) in let lp = float_of_int (List.length p) in let sp = float_of_int (List.fold_left ( + ) 0 p) in (sys', float_of_int z +. (lp *. sn) +. (ln *. sp) -. (lp *. ln)) let choose_variable sys = let {sys = s; vars = v} = sys in let sl = system_list sys in let evals = fst (ISet.fold (fun v (eval, s) -> let ts, vl = abstract_partition v s in ((v, vl) :: eval, ts)) v ([], sl)) in List.sort (fun x y -> compare_float (snd x) (snd y)) evals end open EstimateElimVar (** The module [EstimateElimEq] is similar to [EstimateElimVar] but it orders equations. *) module EstimateElimEq = struct let itv_point bnd = match bnd with Some a, Some b -> a =/ b | _ -> false let rec unroll_until v l = match Vect.choose l with | None -> (false, Vect.null) | Some (i, _, rl) -> if Int.equal i v then (true, rl) else if i < v then unroll_until v rl else (false, l) let rec choose_simple_equation eqs = match eqs with | [] -> None | (vect, a, prf, ln) :: eqs -> ( match Vect.choose vect with | Some (i, v, rst) -> if Vect.is_null rst then Some (i, vect, a, prf, ln) else choose_simple_equation eqs | _ -> choose_simple_equation eqs ) let choose_primal_equation eqs (sys_l : (Vect.t * cstr_info) list) = (* Counts the number of equations referring to variable [v] -- It looks like nb_cst is dead... *) let is_primal_equation_var v = List.fold_left (fun nb_eq (vect, info) -> if fst (unroll_until v vect) then if itv_point info.bound then nb_eq + 1 else nb_eq else nb_eq) 0 sys_l in let rec find_var vect = match Vect.choose vect with | None -> None | Some (i, _, vect) -> let nb_eq = is_primal_equation_var i in if Int.equal nb_eq 2 then Some i else find_var vect in let rec find_eq_var eqs = match eqs with | [] -> None | (vect, a, prf, ln) :: l -> ( match find_var vect with | None -> find_eq_var l | Some r -> Some (r, vect, a, prf, ln) ) in match choose_simple_equation eqs with | None -> find_eq_var eqs | Some res -> Some res let choose_equality_var sys = let sys_l = system_list sys in let equalities = List.fold_left (fun l (vect, info) -> match info.bound with | Some a, Some b -> if a =/ b then (* This an equation *) (vect, a, info.prf, info.neg + info.pos) :: l else l | _ -> l) [] sys_l in let rec estimate_cost v ct sysl acc tlsys = match sysl with | [] -> (acc, tlsys) | (l, info) :: rsys -> ( let ln = info.pos + info.neg in let b, l = unroll_until v l in match b with | true -> if itv_point info.bound then estimate_cost v ct rsys (acc + ln) ((l, info) :: tlsys) (* this is free *) else estimate_cost v ct rsys (acc + ln + ct) ((l, info) :: tlsys) (* should be more ? *) | false -> estimate_cost v ct rsys (acc + ln) ((l, info) :: tlsys) ) in match choose_primal_equation equalities sys_l with | None -> let cost_eq eq const prf ln acc_costs = let rec cost_eq eqr sysl costs = match Vect.choose eqr with | None -> costs | Some (v, _, eqr) -> let cst, tlsys = estimate_cost v (ln - 1) sysl 0 [] in cost_eq eqr tlsys (((v, eq, const, prf), cst) :: costs) in cost_eq eq sys_l acc_costs in let all_costs = List.fold_left (fun all_costs (vect, const, prf, ln) -> cost_eq vect const prf ln all_costs) [] equalities in (* pp_list (fun o ((v,eq,_,_),cst) -> Printf.fprintf o "((%i,%a),%i)\n" v pp_vect eq cst) stdout all_costs ; *) List.sort (fun x y -> Int.compare (snd x) (snd y)) all_costs | Some (v, vect, const, prf, _) -> [((v, vect, const, prf), 0)] end open EstimateElimEq module Fourier = struct let optimise vect l = (* We add a dummy (fresh) variable for vector *) let fresh = List.fold_left (fun fr c -> max fr (Vect.fresh c.coeffs)) 0 l in let cstr = {coeffs = Vect.set fresh Q.minus_one vect; op = Eq; cst = Q.zero} in match solve fresh choose_equality_var choose_variable (cstr :: l) with | Inr prf -> None (* This is an unsatisfiability proof *) | Inl (s, _) -> ( try Some (bound_of_variable IMap.empty fresh s.sys) with x when CErrors.noncritical x -> Printf.printf "optimise Exception : %s" (Printexc.to_string x); None ) let find_point cstrs = match solve max_int choose_equality_var choose_variable cstrs with | Inr prf -> Inr prf | Inl (_, l) -> let rec rebuild_solution l map = match l with | [] -> map | (v, e) :: l -> let itv = bound_of_variable map v e.sys in let map = IMap.add v (pick_small_value itv) map in rebuild_solution l map in let map = rebuild_solution l IMap.empty in let vect = IMap.fold (fun v i vect -> Vect.set v i vect) map Vect.null in if debug then Printf.printf "SOLUTION %a" Vect.pp vect; let res = Inl vect in res end module Proof = struct (** A proof term in the sense of a ZMicromega.RatProof is a positive combination of the hypotheses which leads to a contradiction. The proofs constructed by Fourier elimination are more like execution traces: - certain facts are recorded but are useless - certain inferences are implicit. The following code implements proof reconstruction. *) let add x y = fst (add x y) let forall_pairs f l1 l2 = List.fold_left (fun acc e1 -> List.fold_left (fun acc e2 -> match f e1 e2 with None -> acc | Some v -> v :: acc) acc l2) [] l1 let add_op x y = match (x, y) with Eq, Eq -> Eq | _ -> Ge let pivot v (p1, c1) (p2, c2) = let {coeffs = v1; op = op1; cst = n1} = c1 and {coeffs = v2; op = op2; cst = n2} = c2 in let a, b = (Vect.get v v1, Vect.get v v2) in if Q.zero =/ a || Q.zero =/ b then None else if Int.equal (Q.sign a * Q.sign b) (-1) then Some ( add (p1, Q.abs a) (p2, Q.abs b) , { coeffs = add (v1, Q.abs a) (v2, Q.abs b) ; op = add_op op1 op2 ; cst = (n1 // Q.abs a) +/ (n2 // Q.abs b) } ) else if op1 == Eq then Some ( add (p1, Q.neg (a // b)) (p2, Q.one) , { coeffs = add (v1, Q.neg (a // b)) (v2, Q.one) ; op = add_op op1 op2 ; cst = (n1 // Q.neg (a // b)) +/ (n2 // Q.one) } ) else if op2 == Eq then Some ( add (p2, Q.neg (b // a)) (p1, Q.one) , { coeffs = add (v2, Q.neg (b // a)) (v1, Q.one) ; op = add_op op1 op2 ; cst = (n2 // Q.neg (b // a)) +/ (n1 // Q.one) } ) else None (* op2 could be Eq ... this might happen *) let normalise_proofs l = List.fold_left (fun acc (prf, cstr) -> match acc with | Inr _ -> acc (* I already found a contradiction *) | Inl acc -> ( match norm_cstr cstr 0 with | Redundant -> Inl acc | Contradiction -> Inr (prf, cstr) | Cstr (v, info) -> Inl ((prf, cstr, v, info) :: acc) )) (Inl []) l type oproof = (vector * cstr * Q.t) option let merge_proof (oleft : oproof) (prf, cstr, v, info) (oright : oproof) = let l, r = info.bound in let keep p ob bd = match (ob, bd) with | None, None -> None | None, Some b -> Some (prf, cstr, b) | Some _, None -> ob | Some (prfl, cstrl, bl), Some b -> if p bl b then Some (prf, cstr, b) else ob in let oleft = keep ( <=/ ) oleft l in let oright = keep ( >=/ ) oright r in (* Now, there might be a contradiction *) match (oleft, oright) with | None, _ | _, None -> Inl (oleft, oright) | Some (prfl, cstrl, l), Some (prfr, cstrr, r) -> ( if l <=/ r then Inl (oleft, oright) else (* There is a contradiction - it should show up by scaling up the vectors - any pivot should do*) match Vect.choose cstrr.coeffs with | None -> Inr (add (prfl, Q.one) (prfr, Q.one), cstrr) (* this is wrong *) | Some (v, _, _) -> ( match pivot v (prfl, cstrl) (prfr, cstrr) with | None -> failwith "merge_proof : pivot is not possible" | Some x -> Inr x ) ) let mk_proof hyps prf = (* I am keeping list - I might have a proof for the left bound and a proof for the right bound. If I perform aggressive elimination of redundancies, I expect the list to be of length at most 2. For each proof list, all the vectors should be of the form a.v for different constants a. *) let rec mk_proof prf = match prf with | Assum i -> [(Vect.set i Q.one Vect.null, List.nth hyps i)] | Elim (v, prf1, prf2) -> let prfsl = mk_proof prf1 and prfsr = mk_proof prf2 in (* I take only the pairs for which the elimination is meaningful *) forall_pairs (pivot v) prfsl prfsr | And (prf1, prf2) -> ( let prfsl1 = mk_proof prf1 and prfsl2 = mk_proof prf2 in (* detect trivial redundancies and contradictions *) match normalise_proofs (prfsl1 @ prfsl2) with | Inr x -> [x] (* This is a contradiction - this should be the end of the proof *) | Inl l -> ( (* All the vectors are the same *) let prfs = List.fold_left (fun acc e -> match acc with | Inr _ -> acc (* I have a contradiction *) | Inl (oleft, oright) -> merge_proof oleft e oright) (Inl (None, None)) l in match prfs with | Inr x -> [x] | Inl (oleft, oright) -> ( match (oleft, oright) with | None, None -> [] | None, Some (prf, cstr, _) | Some (prf, cstr, _), None -> [(prf, cstr)] | Some (prf1, cstr1, _), Some (prf2, cstr2, _) -> [(prf1, cstr1); (prf2, cstr2)] ) ) ) in mk_proof prf end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>