package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.15.0.tar.gz
sha256=73466e61f229b23b4daffdd964be72bd7a110963b9d84bd4a86bb05c5dc19ef3
doc/src/micromega_plugin/sos_lib.ml.html
Source file sos_lib.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
(* ========================================================================= *) (* - This code originates from John Harrison's HOL LIGHT 2.30 *) (* (see file LICENSE.sos for license, copyright and disclaimer) *) (* This code is the HOL LIGHT library code used by sos.ml *) (* - Laurent Théry (thery@sophia.inria.fr) has isolated the HOL *) (* independent bits *) (* - Frédéric Besson (fbesson@irisa.fr) is using it to feed micromega *) (* ========================================================================= *) (* ------------------------------------------------------------------------- *) (* Comparisons that are reflexive on NaN and also short-circuiting. *) (* ------------------------------------------------------------------------- *) (** FIXME *) let cmp = compare let ( =? ) x y = cmp x y = 0 let ( <? ) x y = cmp x y < 0 let ( <=? ) x y = cmp x y <= 0 let ( >? ) x y = cmp x y > 0 (* ------------------------------------------------------------------------- *) (* Combinators. *) (* ------------------------------------------------------------------------- *) let o f g x = f (g x) (* ------------------------------------------------------------------------- *) (* Various versions of list iteration. *) (* ------------------------------------------------------------------------- *) let rec end_itlist f l = match l with | [] -> failwith "end_itlist" | [x] -> x | h :: t -> f h (end_itlist f t) (* ------------------------------------------------------------------------- *) (* All pairs arising from applying a function over two lists. *) (* ------------------------------------------------------------------------- *) let rec allpairs f l1 l2 = match l1 with | h1 :: t1 -> List.fold_right (fun x a -> f h1 x :: a) l2 (allpairs f t1 l2) | [] -> [] (* ------------------------------------------------------------------------- *) (* String operations (surely there is a better way...) *) (* ------------------------------------------------------------------------- *) let implode l = List.fold_right ( ^ ) l "" let explode s = let rec exap n l = if n < 0 then l else exap (n - 1) (String.sub s n 1 :: l) in exap (String.length s - 1) [] (* ------------------------------------------------------------------------- *) (* Repetition of a function. *) (* ------------------------------------------------------------------------- *) let rec funpow n f x = if n < 1 then x else funpow (n - 1) f (f x) (* ------------------------------------------------------------------------- *) (* Sequences. *) (* ------------------------------------------------------------------------- *) let rec ( -- ) m n = if m > n then [] else m :: (m + 1 -- n) (* ------------------------------------------------------------------------- *) (* Various useful list operations. *) (* ------------------------------------------------------------------------- *) let rec tryfind f l = match l with | [] -> failwith "tryfind" | h :: t -> ( try f h with Failure _ -> tryfind f t ) (* ------------------------------------------------------------------------- *) (* "Set" operations on lists. *) (* ------------------------------------------------------------------------- *) let rec mem x lis = match lis with [] -> false | h :: t -> x =? h || mem x t let insert x l = if mem x l then l else x :: l let union l1 l2 = List.fold_right insert l1 l2 let subtract l1 l2 = List.filter (fun x -> not (mem x l2)) l1 (* ------------------------------------------------------------------------- *) (* Common measure predicates to use with "sort". *) (* ------------------------------------------------------------------------- *) let increasing f x y = f x <? f y (* ------------------------------------------------------------------------- *) (* Iterating functions over lists. *) (* ------------------------------------------------------------------------- *) let rec do_list f l = match l with [] -> () | h :: t -> f h; do_list f t (* ------------------------------------------------------------------------- *) (* Sorting. *) (* ------------------------------------------------------------------------- *) let rec sort cmp lis = match lis with | [] -> [] | piv :: rest -> let r, l = List.partition (cmp piv) rest in sort cmp l @ (piv :: sort cmp r) (* ------------------------------------------------------------------------- *) (* Removing adjacent (NB!) equal elements from list. *) (* ------------------------------------------------------------------------- *) let rec uniq l = match l with | x :: (y :: _ as t) -> let t' = uniq t in if x =? y then t' else if t' == t then l else x :: t' | _ -> l (* ------------------------------------------------------------------------- *) (* Convert list into set by eliminating duplicates. *) (* ------------------------------------------------------------------------- *) let setify s = uniq (sort ( <=? ) s) (* ------------------------------------------------------------------------- *) (* Polymorphic finite partial functions via Patricia trees. *) (* *) (* The point of this strange representation is that it is canonical (equal *) (* functions have the same encoding) yet reasonably efficient on average. *) (* *) (* Idea due to Diego Olivier Fernandez Pons (OCaml list, 2003/11/10). *) (* ------------------------------------------------------------------------- *) type ('a, 'b) func = | Empty | Leaf of int * ('a * 'b) list | Branch of int * int * ('a, 'b) func * ('a, 'b) func (* ------------------------------------------------------------------------- *) (* Undefined function. *) (* ------------------------------------------------------------------------- *) let undefined = Empty (* ------------------------------------------------------------------------- *) (* In case of equality comparison worries, better use this. *) (* ------------------------------------------------------------------------- *) let is_undefined f = match f with Empty -> true | _ -> false (* ------------------------------------------------------------------------- *) (* Operation analogous to "map" for lists. *) (* ------------------------------------------------------------------------- *) let mapf = let rec map_list f l = match l with [] -> [] | (x, y) :: t -> (x, f y) :: map_list f t in let rec mapf f t = match t with | Empty -> Empty | Leaf (h, l) -> Leaf (h, map_list f l) | Branch (p, b, l, r) -> Branch (p, b, mapf f l, mapf f r) in mapf (* ------------------------------------------------------------------------- *) (* Operations analogous to "fold" for lists. *) (* ------------------------------------------------------------------------- *) let foldl = let rec foldl_list f a l = match l with [] -> a | (x, y) :: t -> foldl_list f (f a x y) t in let rec foldl f a t = match t with | Empty -> a | Leaf (h, l) -> foldl_list f a l | Branch (p, b, l, r) -> foldl f (foldl f a l) r in foldl let foldr = let rec foldr_list f l a = match l with [] -> a | (x, y) :: t -> f x y (foldr_list f t a) in let rec foldr f t a = match t with | Empty -> a | Leaf (h, l) -> foldr_list f l a | Branch (p, b, l, r) -> foldr f l (foldr f r a) in foldr (* ------------------------------------------------------------------------- *) (* Redefinition and combination. *) (* ------------------------------------------------------------------------- *) let ( |-> ), combine = let ldb x y = let z = x lxor y in z land -z in let newbranch p1 t1 p2 t2 = let b = ldb p1 p2 in let p = p1 land (b - 1) in if p1 land b = 0 then Branch (p, b, t1, t2) else Branch (p, b, t2, t1) in let rec define_list ((x, y) as xy) l = match l with | ((a, b) as ab) :: t -> if x =? a then xy :: t else if x <? a then xy :: l else ab :: define_list xy t | [] -> [xy] and combine_list op z l1 l2 = match (l1, l2) with | [], _ -> l2 | _, [] -> l1 | ((x1, y1) as xy1) :: t1, ((x2, y2) as xy2) :: t2 -> if x1 <? x2 then xy1 :: combine_list op z t1 l2 else if x2 <? x1 then xy2 :: combine_list op z l1 t2 else let y = op y1 y2 and l = combine_list op z t1 t2 in if z y then l else (x1, y) :: l in let ( |-> ) x y = let k = Hashtbl.hash x in let rec upd t = match t with | Empty -> Leaf (k, [(x, y)]) | Leaf (h, l) -> if h = k then Leaf (h, define_list (x, y) l) else newbranch h t k (Leaf (k, [(x, y)])) | Branch (p, b, l, r) -> if k land (b - 1) <> p then newbranch p t k (Leaf (k, [(x, y)])) else if k land b = 0 then Branch (p, b, upd l, r) else Branch (p, b, l, upd r) in upd in let rec combine op z t1 t2 = match (t1, t2) with | Empty, _ -> t2 | _, Empty -> t1 | Leaf (h1, l1), Leaf (h2, l2) -> if h1 = h2 then let l = combine_list op z l1 l2 in if l = [] then Empty else Leaf (h1, l) else newbranch h1 t1 h2 t2 | (Leaf (k, lis) as lf), (Branch (p, b, l, r) as br) |(Branch (p, b, l, r) as br), (Leaf (k, lis) as lf) -> if k land (b - 1) = p then if k land b = 0 then let l' = combine op z lf l in if is_undefined l' then r else Branch (p, b, l', r) else let r' = combine op z lf r in if is_undefined r' then l else Branch (p, b, l, r') else newbranch k lf p br | Branch (p1, b1, l1, r1), Branch (p2, b2, l2, r2) -> if b1 < b2 then if p2 land (b1 - 1) <> p1 then newbranch p1 t1 p2 t2 else if p2 land b1 = 0 then let l = combine op z l1 t2 in if is_undefined l then r1 else Branch (p1, b1, l, r1) else let r = combine op z r1 t2 in if is_undefined r then l1 else Branch (p1, b1, l1, r) else if b2 < b1 then if p1 land (b2 - 1) <> p2 then newbranch p1 t1 p2 t2 else if p1 land b2 = 0 then let l = combine op z t1 l2 in if is_undefined l then r2 else Branch (p2, b2, l, r2) else let r = combine op z t1 r2 in if is_undefined r then l2 else Branch (p2, b2, l2, r) else if p1 = p2 then let l = combine op z l1 l2 and r = combine op z r1 r2 in if is_undefined l then r else if is_undefined r then l else Branch (p1, b1, l, r) else newbranch p1 t1 p2 t2 in (( |-> ), combine) (* ------------------------------------------------------------------------- *) (* Special case of point function. *) (* ------------------------------------------------------------------------- *) let ( |=> ) x y = (x |-> y) undefined (* ------------------------------------------------------------------------- *) (* Grab an arbitrary element. *) (* ------------------------------------------------------------------------- *) let rec choose t = match t with | Empty -> failwith "choose: completely undefined function" | Leaf (h, l) -> List.hd l | Branch (b, p, t1, t2) -> choose t1 (* ------------------------------------------------------------------------- *) (* Application. *) (* ------------------------------------------------------------------------- *) let applyd = let rec apply_listd l d x = match l with | (a, b) :: t -> if x =? a then b else if x >? a then apply_listd t d x else d x | [] -> d x in fun f d x -> let k = Hashtbl.hash x in let rec look t = match t with | Leaf (h, l) when h = k -> apply_listd l d x | Branch (p, b, l, r) -> look (if k land b = 0 then l else r) | _ -> d x in look f let apply f = applyd f (fun x -> failwith "apply") let tryapplyd f a d = applyd f (fun x -> d) a (* ------------------------------------------------------------------------- *) (* Undefinition. *) (* ------------------------------------------------------------------------- *) let undefine = let rec undefine_list x l = match l with | ((a, b) as ab) :: t -> if x =? a then t else if x <? a then l else let t' = undefine_list x t in if t' == t then l else ab :: t' | [] -> [] in fun x -> let k = Hashtbl.hash x in let rec und t = match t with | Leaf (h, l) when h = k -> let l' = undefine_list x l in if l' == l then t else if l' = [] then Empty else Leaf (h, l') | Branch (p, b, l, r) when k land (b - 1) = p -> if k land b = 0 then let l' = und l in if l' == l then t else if is_undefined l' then r else Branch (p, b, l', r) else let r' = und r in if r' == r then t else if is_undefined r' then l else Branch (p, b, l, r') | _ -> t in und (* ------------------------------------------------------------------------- *) (* Mapping to sorted-list representation of the graph, domain and range. *) (* ------------------------------------------------------------------------- *) let graph f = setify (foldl (fun a x y -> (x, y) :: a) [] f) let dom f = setify (foldl (fun a x y -> x :: a) [] f) (* ------------------------------------------------------------------------- *) (* More parser basics. *) (* ------------------------------------------------------------------------- *) exception Noparse let isspace, isnum = let charcode s = Char.code s.[0] in let spaces = " \t\n\r" and separators = ",;" and brackets = "()[]{}" and symbs = "\\!@#$%^&*-+|\\<=>/?~.:" and alphas = "'abcdefghijklmnopqrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ" and nums = "0123456789" in let allchars = spaces ^ separators ^ brackets ^ symbs ^ alphas ^ nums in let csetsize = List.fold_right (o max charcode) (explode allchars) 256 in let ctable = Array.make csetsize 0 in do_list (fun c -> ctable.(charcode c) <- 1) (explode spaces); do_list (fun c -> ctable.(charcode c) <- 2) (explode separators); do_list (fun c -> ctable.(charcode c) <- 4) (explode brackets); do_list (fun c -> ctable.(charcode c) <- 8) (explode symbs); do_list (fun c -> ctable.(charcode c) <- 16) (explode alphas); do_list (fun c -> ctable.(charcode c) <- 32) (explode nums); let isspace c = ctable.(charcode c) = 1 and isnum c = ctable.(charcode c) = 32 in (isspace, isnum) let parser_or parser1 parser2 input = try parser1 input with Noparse -> parser2 input let ( ++ ) parser1 parser2 input = let result1, rest1 = parser1 input in let result2, rest2 = parser2 rest1 in ((result1, result2), rest2) let rec many prs input = try let result, next = prs input in let results, rest = many prs next in (result :: results, rest) with Noparse -> ([], input) let ( >> ) prs treatment input = let result, rest = prs input in (treatment result, rest) let fix err prs input = try prs input with Noparse -> failwith (err ^ " expected") let listof prs sep err = prs ++ many (sep ++ fix err prs >> snd) >> fun (h, t) -> h :: t let possibly prs input = try let x, rest = prs input in ([x], rest) with Noparse -> ([], input) let some p = function | [] -> raise Noparse | h :: t -> if p h then (h, t) else raise Noparse let a tok = some (fun item -> item = tok) let rec atleast n prs i = ( if n <= 0 then many prs else prs ++ atleast (n - 1) prs >> fun (h, t) -> h :: t ) i (* ------------------------------------------------------------------------- *) let temp_path = Filename.get_temp_dir_name () (* ------------------------------------------------------------------------- *) (* Convenient conversion between files and (lists of) strings. *) (* ------------------------------------------------------------------------- *) let strings_of_file filename = let fd = try open_in filename with Sys_error _ -> failwith ("strings_of_file: can't open " ^ filename) in let rec suck_lines acc = try let l = input_line fd in suck_lines (l :: acc) with End_of_file -> List.rev acc in let data = suck_lines [] in close_in fd; data let string_of_file filename = String.concat "\n" (strings_of_file filename) let file_of_string filename s = let fd = open_out filename in output_string fd s; close_out fd (* ------------------------------------------------------------------------- *) (* Iterative deepening. *) (* ------------------------------------------------------------------------- *) let rec deepen f n = try (*print_string "Searching with depth limit "; print_int n; print_newline();*) f n with Failure _ -> deepen f (n + 1) exception TooDeep let deepen_until limit f n = match compare limit 0 with | 0 -> raise TooDeep | -1 -> deepen f n | _ -> let rec d_until f n = try (* if !debugging then (print_string "Searching with depth limit "; print_int n; print_newline()) ;*) f n with Failure x -> (*if !debugging then (Printf.printf "solver error : %s\n" x) ; *) if n = limit then raise TooDeep else d_until f (n + 1) in d_until f n
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>