package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.15.0.tar.gz
sha256=73466e61f229b23b4daffdd964be72bd7a110963b9d84bd4a86bb05c5dc19ef3
doc/src/coq-core.kernel/cooking.ml.html
Source file cooking.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jean-Christophe Filliâtre out of V6.3 file constants.ml as part of the rebuilding of Coq around a purely functional abstract type-checker, Nov 1999 *) (* This module implements kernel-level discharching of local declarations over global constants and inductive types *) open Util open Names open Term open Constr open Declarations open Univ open Context module NamedDecl = Context.Named.Declaration module RelDecl = Context.Rel.Declaration (*s Cooking the constants. *) type my_global_reference = | ConstRef of Constant.t | IndRef of inductive | ConstructRef of constructor module RefHash = struct type t = my_global_reference let equal gr1 gr2 = match gr1, gr2 with | ConstRef c1, ConstRef c2 -> Constant.SyntacticOrd.equal c1 c2 | IndRef i1, IndRef i2 -> Ind.SyntacticOrd.equal i1 i2 | ConstructRef c1, ConstructRef c2 -> Construct.SyntacticOrd.equal c1 c2 | _ -> false open Hashset.Combine let hash = function | ConstRef c -> combinesmall 1 (Constant.SyntacticOrd.hash c) | IndRef i -> combinesmall 2 (Ind.SyntacticOrd.hash i) | ConstructRef c -> combinesmall 3 (Construct.SyntacticOrd.hash c) end module RefTable = Hashtbl.Make(RefHash) let instantiate_my_gr gr u = match gr with | ConstRef c -> mkConstU (c, u) | IndRef i -> mkIndU (i, u) | ConstructRef c -> mkConstructU (c, u) let cache r (cstl,knl) = try RefTable.find cache r with Not_found -> let (u,l) = match r with | IndRef (kn,_i) -> Mindmap.find kn knl | ConstructRef ((kn,_i),_j) -> Mindmap.find kn knl | ConstRef cst -> Cmap.find cst cstl in let c = (u, Array.map mkVar l) in RefTable.add cache r c; c let cache r u l = let (u', args) = share cache r l in mkApp (instantiate_my_gr r (Instance.append u' u), args) let is_empty_modlist (cm, mm) = Cmap.is_empty cm && Mindmap.is_empty mm let expmod_constr cache modlist c = let = share_univs cache in let rec substrec c = match kind c with | Case (ci, u, pms, p, iv, t, br) -> begin match share cache (IndRef ci.ci_ind) modlist with | (u', prefix) -> let u = Instance.append u' u in let pms = Array.append prefix pms in let ci = { ci with ci_npar = ci.ci_npar + Array.length prefix } in Constr.map substrec (mkCase (ci,u,pms,p,iv,t,br)) | exception Not_found -> Constr.map substrec c end | Ind (ind,u) -> (try share_univs (IndRef ind) u modlist with | Not_found -> Constr.map substrec c) | Construct (cstr,u) -> (try share_univs (ConstructRef cstr) u modlist with | Not_found -> Constr.map substrec c) | Const (cst,u) -> (try share_univs (ConstRef cst) u modlist with | Not_found -> Constr.map substrec c) | Proj (p, c') -> let map cst npars = let _, newpars = Mindmap.find cst (snd modlist) in (cst, npars + Array.length newpars) in let p' = try Projection.map_npars map p with Not_found -> p in let c'' = substrec c' in if p == p' && c' == c'' then c else mkProj (p', c'') | _ -> Constr.map substrec c in if is_empty_modlist modlist then c else substrec c (** Transforms a named context into a rel context. Also returns the list of variables [id1 ... idn] that need to be replaced by [Rel 1 ... Rel n] to abstract a term that lived in that context. *) let abstract_context hyps = let fold decl (ctx, subst) = let id, decl = match decl with | NamedDecl.LocalDef (id, b, t) -> let b = Vars.subst_vars subst b in let t = Vars.subst_vars subst t in id, RelDecl.LocalDef (map_annot Name.mk_name id, b, t) | NamedDecl.LocalAssum (id, t) -> let t = Vars.subst_vars subst t in id, RelDecl.LocalAssum (map_annot Name.mk_name id, t) in (decl :: ctx, id.binder_name :: subst) in Context.Named.fold_outside fold hyps ~init:([], []) let abstract_as_type t (hyps, subst) = let t = Vars.subst_vars subst t in List.fold_left (fun c d -> mkProd_wo_LetIn d c) t hyps let abstract_as_body c (hyps, subst) = let c = Vars.subst_vars subst c in it_mkLambda_or_LetIn c hyps type recipe = { from : constant_body; info : cooking_info } type inline = bool type 'opaque result = { cook_body : (constr, 'opaque) constant_def; cook_type : types; cook_universes : universes; cook_relevance : Sorts.relevance; cook_inline : inline; cook_context : Id.Set.t option; cook_flags : typing_flags; } let expmod_constr_subst cache modlist subst c = let subst = Univ.make_instance_subst subst in let c = expmod_constr cache modlist c in Vars.subst_univs_level_constr subst c let discharge_abstract_universe_context subst abs_ctx auctx = (** Given a named instance [subst := u₀ ... uₙ₋₁] together with an abstract context [auctx0 := 0 ... n - 1 |= C{0, ..., n - 1}] of the same length, and another abstract context relative to the former context [auctx := 0 ... m - 1 |= C'{u₀, ..., uₙ₋₁, 0, ..., m - 1}], construct the lifted abstract universe context [0 ... n - 1 n ... n + m - 1 |= C{0, ... n - 1} ∪ C'{0, ..., n - 1, n, ..., n + m - 1} ] together with the instance [u₀ ... uₙ₋₁ Var(0) ... Var (m - 1)]. *) if (Univ.Instance.is_empty subst) then (** Still need to take the union for the constraints between globals *) subst, (AbstractContext.union abs_ctx auctx) else let open Univ in let ainst = make_abstract_instance auctx in let subst = Instance.append subst ainst in let substf = make_instance_subst subst in let auctx = Univ.subst_univs_level_abstract_universe_context substf auctx in subst, (AbstractContext.union abs_ctx auctx) let lift_univs subst auctx0 = function | Monomorphic -> assert (AbstractContext.is_empty auctx0); subst, Monomorphic | Polymorphic auctx -> let subst, auctx = discharge_abstract_universe_context subst auctx0 auctx in subst, (Polymorphic auctx) let cook_constr { modlist; abstract = {abstr_ctx; abstr_subst; abstr_uctx;}; } (c, priv) = let cache = RefTable.create 13 in let abstr_subst, priv = match priv with | Opaqueproof.PrivateMonomorphic () -> let () = assert (AbstractContext.is_empty abstr_uctx) in let () = assert (Instance.is_empty abstr_subst) in abstr_subst, priv | Opaqueproof.PrivatePolymorphic (univs, ctx) -> let ainst = Instance.of_array (Array.init univs Level.var) in let abstr_subst = Instance.append abstr_subst ainst in let ctx = on_snd (Univ.subst_univs_level_constraints (Univ.make_instance_subst abstr_subst)) ctx in let univs = univs + AbstractContext.size abstr_uctx in abstr_subst, Opaqueproof.PrivatePolymorphic (univs, ctx) in let expmod = expmod_constr_subst cache modlist abstr_subst in let hyps = Context.Named.map expmod abstr_ctx in let hyps = abstract_context hyps in let c = abstract_as_body (expmod c) hyps in (c, priv) let cook_constr infos c = let fold info c = cook_constr info c in List.fold_right fold infos c let cook_constant { from = cb; info } = let { modlist; abstract={abstr_ctx; abstr_subst; abstr_uctx;}; } = info in let cache = RefTable.create 13 in let abstr_subst, univs = lift_univs abstr_subst abstr_uctx cb.const_universes in let expmod = expmod_constr_subst cache modlist abstr_subst in let hyps0 = Context.Named.map expmod abstr_ctx in let hyps = abstract_context hyps0 in let map c = abstract_as_body (expmod c) hyps in let body = match cb.const_body with | Undef _ as x -> x | Def cs -> Def (map cs) | OpaqueDef o -> OpaqueDef (Opaqueproof.discharge_opaque info o) | Primitive _ -> CErrors.anomaly (Pp.str "Primitives cannot be cooked") in let const_hyps = Id.Set.diff (Context.Named.to_vars cb.const_hyps) (Context.Named.to_vars hyps0) in let typ = abstract_as_type (expmod cb.const_type) hyps in { cook_body = body; cook_type = typ; cook_universes = univs; cook_relevance = cb.const_relevance; cook_inline = cb.const_inline_code; cook_context = Some const_hyps; cook_flags = cb.const_typing_flags; } (********************************) (* Discharging mutual inductive *) let it_mkProd_wo_LetIn = List.fold_left (fun c d -> mkProd_wo_LetIn d c) let abstract_rel_ctx (section_decls,subst) ctx = (* Dealing with substitutions between contexts is too annoying, so we reify [ctx] into a big [forall] term and work on that. *) let t = it_mkProd_or_LetIn mkProp ctx in let t = Vars.subst_vars subst t in let t = it_mkProd_wo_LetIn t section_decls in let ctx, t = decompose_prod_assum t in assert (Constr.equal t mkProp); ctx let abstract_lc ~ntypes expmod (newparams,subst) c = let args = Array.rev_of_list (CList.map_filter (fun d -> if RelDecl.is_local_def d then None else match RelDecl.get_name d with | Anonymous -> assert false | Name id -> Some (mkVar id)) newparams) in let diff = List.length newparams in let subs = List.init ntypes (fun k -> lift diff (mkApp (mkRel (k+1), args))) in let c = Vars.substl subs c in let c = Vars.subst_vars subst (expmod c) in let c = it_mkProd_wo_LetIn c newparams in c let abstract_projection ~params expmod hyps t = let t = it_mkProd_or_LetIn t params in let t = mkArrowR mkProp t in (* dummy type standing in for the inductive *) let t = abstract_as_type (expmod t) hyps in let _, t = decompose_prod_n_assum (List.length params + 1 + Context.Rel.nhyps (fst hyps)) t in t let cook_one_ind ~ntypes hyps expmod mip = let mind_arity = match mip.mind_arity with | RegularArity {mind_user_arity=arity;mind_sort=sort} -> let arity = abstract_as_type (expmod arity) hyps in let sort = destSort (expmod (mkSort sort)) in RegularArity {mind_user_arity=arity; mind_sort=sort} | TemplateArity {template_level} -> TemplateArity {template_level} in let mind_arity_ctxt = let ctx = Context.Rel.map expmod mip.mind_arity_ctxt in abstract_rel_ctx hyps ctx in let mind_user_lc = Array.map (abstract_lc ~ntypes expmod hyps) mip.mind_user_lc in let mind_nf_lc = Array.map (fun (ctx,t) -> let lc = it_mkProd_or_LetIn t ctx in let lc = abstract_lc ~ntypes expmod hyps lc in decompose_prod_assum lc) mip.mind_nf_lc in { mind_typename = mip.mind_typename; mind_arity_ctxt; mind_arity; mind_consnames = mip.mind_consnames; mind_user_lc; mind_nrealargs = mip.mind_nrealargs; mind_nrealdecls = mip.mind_nrealdecls; mind_kelim = mip.mind_kelim; mind_nf_lc; mind_consnrealargs = mip.mind_consnrealargs; mind_consnrealdecls = mip.mind_consnrealdecls; mind_recargs = mip.mind_recargs; (* TODO is this correct? checker should tell us. *) mind_relevance = mip.mind_relevance; mind_nb_constant = mip.mind_nb_constant; mind_nb_args = mip.mind_nb_args; mind_reloc_tbl = mip.mind_reloc_tbl; } let cook_inductive { modlist; abstract={abstr_ctx; abstr_subst; abstr_uctx;}; } mib = let abstr_subst, mind_universes = lift_univs abstr_subst abstr_uctx mib.mind_universes in let cache = RefTable.create 13 in let expmod = expmod_constr_subst cache modlist abstr_subst in let abstr_ctx = Context.Named.map expmod abstr_ctx in let removed_vars = Context.Named.to_vars abstr_ctx in let abstr_ctx, _ as hyps = abstract_context abstr_ctx in let nnewparams = Context.Rel.nhyps abstr_ctx in let mind_params_ctxt = let ctx = Context.Rel.map expmod mib.mind_params_ctxt in abstract_rel_ctx hyps ctx in let ntypes = mib.mind_ntypes in let mind_packets = Array.map (cook_one_ind ~ntypes hyps expmod) mib.mind_packets in let mind_record = match mib.mind_record with | NotRecord -> NotRecord | FakeRecord -> FakeRecord | PrimRecord data -> let data = Array.map (fun (id,projs,relevances,tys) -> let tys = Array.map (abstract_projection ~params:mib.mind_params_ctxt expmod hyps) tys in (id,projs,relevances,tys)) data in PrimRecord data in let mind_hyps = List.filter (fun d -> not (Id.Set.mem (NamedDecl.get_id d) removed_vars)) mib.mind_hyps in let mind_variance, mind_sec_variance = match mib.mind_variance, mib.mind_sec_variance with | None, None -> None, None | None, Some _ | Some _, None -> assert false | Some variance, Some sec_variance -> let sec_variance, newvariance = Array.chop (Array.length sec_variance - AbstractContext.size abstr_uctx) sec_variance in Some (Array.append newvariance variance), Some sec_variance in let mind_template = match mib.mind_template with | None -> None | Some {template_param_levels=levels; template_context} -> let sec_levels = CList.map_filter (fun d -> if RelDecl.is_local_assum d then Some None else None) abstr_ctx in let levels = List.rev_append sec_levels levels in Some {template_param_levels=levels; template_context} in { mind_packets; mind_record; mind_finite = mib.mind_finite; mind_ntypes = mib.mind_ntypes; mind_hyps; mind_nparams = mib.mind_nparams + nnewparams; mind_nparams_rec = mib.mind_nparams_rec + nnewparams; mind_params_ctxt; mind_universes; mind_template; mind_variance; mind_sec_variance; mind_private = mib.mind_private; mind_typing_flags = mib.mind_typing_flags; } let expmod_constr modlist c = expmod_constr (RefTable.create 13) modlist c
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>