package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.1.tar.gz
sha256=3cbfc1e1a72b16d4744f5b64ede59586071e31d9c11c811a0372060727bfd9c3
doc/src/coq-core.kernel/uGraph.ml.html
Source file uGraph.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Univ module G = AcyclicGraph.Make(struct type t = Level.t module Set = LSet module Map = LMap module Constraint = Constraint let equal = Level.equal let compare = Level.compare type explanation = Univ.explanation let error_inconsistency d u v p = raise (UniverseInconsistency (d,Universe.make u, Universe.make v, p)) let pr = Level.pr end) [@@inlined] (* without inline, +1% ish on HoTT, compcert. See jenkins 594 vs 596 *) (* Do not include G to make it easier to control universe specific code (eg add_universe with a constraint vs G.add with no constraint) *) type t = { graph: G.t; sprop_cumulative : bool; type_in_type : bool; } type 'a check_function = t -> 'a -> 'a -> bool let g_map f g = let g' = f g.graph in if g.graph == g' then g else {g with graph=g'} let set_cumulative_sprop b g = {g with sprop_cumulative=b} let set_type_in_type b g = {g with type_in_type=b} let type_in_type g = g.type_in_type let check_smaller_expr g (u,n) (v,m) = let diff = n - m in match diff with | 0 -> G.check_leq g.graph u v | 1 -> G.check_lt g.graph u v | x when x < 0 -> G.check_leq g.graph u v | _ -> false let exists_bigger g ul l = Universe.exists (fun ul' -> check_smaller_expr g ul ul') l let real_check_leq g u v = Universe.for_all (fun ul -> exists_bigger g ul v) u let check_leq g u v = type_in_type g || Universe.equal u v || (g.sprop_cumulative && Universe.is_sprop u) || (not (Universe.is_sprop u) && not (Universe.is_sprop v) && (is_type0m_univ u || real_check_leq g u v)) let check_eq g u v = type_in_type g || Universe.equal u v || (not (Universe.is_sprop u || Universe.is_sprop v) && (real_check_leq g u v && real_check_leq g v u)) let check_eq_level g u v = u == v || type_in_type g || (not (Level.is_sprop u || Level.is_sprop v) && G.check_eq g.graph u v) let empty_universes = {graph=G.empty; sprop_cumulative=false; type_in_type=false} let initial_universes = let big_rank = 1000000 in let g = G.empty in let g = G.add ~rank:big_rank Level.prop g in let g = G.add ~rank:big_rank Level.set g in {empty_universes with graph=G.enforce_lt Level.prop Level.set g} let initial_universes_with g = {g with graph=initial_universes.graph} let enforce_constraint (u,d,v) g = match d with | Le -> G.enforce_leq u v g | Lt -> G.enforce_lt u v g | Eq -> G.enforce_eq u v g let enforce_constraint (u,d,v as cst) g = match Level.is_sprop u, d, Level.is_sprop v with | false, _, false -> g_map (enforce_constraint cst) g | true, (Eq|Le), true -> g | true, Le, false when g.sprop_cumulative -> g | _ -> raise (UniverseInconsistency (d,Universe.make u, Universe.make v, None)) let enforce_constraint cst g = if not (type_in_type g) then enforce_constraint cst g else try enforce_constraint cst g with UniverseInconsistency _ -> g let merge_constraints csts g = Constraint.fold enforce_constraint csts g let check_constraint g (u,d,v) = match d with | Le -> G.check_leq g u v | Lt -> G.check_lt g u v | Eq -> G.check_eq g u v let check_constraint g (u,d,v as cst) = match Level.is_sprop u, d, Level.is_sprop v with | false, _, false -> check_constraint g.graph cst | true, (Eq|Le), true -> true | true, Le, false -> g.sprop_cumulative || type_in_type g | _ -> type_in_type g let check_constraints csts g = Constraint.for_all (check_constraint g) csts let leq_expr (u,m) (v,n) = let d = match m - n with | 1 -> Lt | diff -> assert (diff <= 0); Le in (u,d,v) let enforce_leq_alg u v g = let open Util in let enforce_one (u,v) = function | Inr _ as orig -> orig | Inl (cstrs,g) as orig -> if check_smaller_expr g u v then orig else (let c = leq_expr u v in match enforce_constraint c g with | g -> Inl (Constraint.add c cstrs,g) | exception (UniverseInconsistency _ as e) -> Inr e) in (* max(us) <= max(vs) <-> forall u in us, exists v in vs, u <= v *) let c = List.map (fun u -> List.map (fun v -> (u,v)) (Universe.repr v)) (Universe.repr u) in let c = List.cartesians enforce_one (Inl (Constraint.empty,g)) c in (* We pick a best constraint: smallest number of constraints, not an error if possible. *) let order x y = match x, y with | Inr _, Inr _ -> 0 | Inl _, Inr _ -> -1 | Inr _, Inl _ -> 1 | Inl (c,_), Inl (c',_) -> Int.compare (Constraint.cardinal c) (Constraint.cardinal c') in match List.min order c with | Inl x -> x | Inr e -> raise e let enforce_leq_alg u v g = match Universe.is_sprop u, Universe.is_sprop v with | true, true -> Constraint.empty, g | false, false -> enforce_leq_alg u v g | left, _ -> if left && g.sprop_cumulative then Constraint.empty, g else raise (UniverseInconsistency (Le, u, v, None)) (* sanity check wrapper *) let enforce_leq_alg u v g = let _,g as cg = enforce_leq_alg u v g in assert (check_leq g u v); cg module Bound = struct type t = Prop | Set end exception AlreadyDeclared = G.AlreadyDeclared let add_universe u ~lbound ~strict g = let lbound = match lbound with Bound.Prop -> Level.prop | Bound.Set -> Level.set in let graph = G.add u g.graph in let d = if strict then Lt else Le in enforce_constraint (lbound,d,u) {g with graph} let add_universe_unconstrained u g = {g with graph=G.add u g.graph} exception UndeclaredLevel = G.Undeclared let check_declared_universes g l = G.check_declared g.graph (LSet.remove Level.sprop l) let constraints_of_universes g = G.constraints_of g.graph let constraints_for ~kept g = G.constraints_for ~kept:(LSet.remove Level.sprop kept) g.graph (** Subtyping of polymorphic contexts *) let check_subtype ~lbound univs ctxT ctx = if AUContext.size ctxT == AUContext.size ctx then let (inst, cst) = UContext.dest (AUContext.repr ctx) in let cstT = UContext.constraints (AUContext.repr ctxT) in let push accu v = add_universe v ~lbound ~strict:false accu in let univs = Array.fold_left push univs (Instance.to_array inst) in let univs = merge_constraints cstT univs in check_constraints cst univs else false (** Instances *) let check_eq_instances g t1 t2 = let t1 = Instance.to_array t1 in let t2 = Instance.to_array t2 in t1 == t2 || (Int.equal (Array.length t1) (Array.length t2) && let rec aux i = (Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1)) in aux 0) let domain g = LSet.add Level.sprop (G.domain g.graph) let choose p g u = if Level.is_sprop u then if p u then Some u else None else G.choose p g.graph u let check_universes_invariants g = G.check_invariants ~required_canonical:Level.is_small g.graph (** Pretty-printing *) let pr_pmap sep pr map = let cmp (u,_) (v,_) = Level.compare u v in Pp.prlist_with_sep sep pr (List.sort cmp (LMap.bindings map)) let pr_arc prl = let open Pp in function | u, G.Node ltle -> if LMap.is_empty ltle then mt () else prl u ++ str " " ++ v 0 (pr_pmap spc (fun (v, strict) -> (if strict then str "< " else str "<= ") ++ prl v) ltle) ++ fnl () | u, G.Alias v -> prl u ++ str " = " ++ prl v ++ fnl () type node = G.node = | Alias of Level.t | Node of bool LMap.t let repr g = G.repr g.graph let pr_universes prl g = pr_pmap Pp.mt (pr_arc prl) g
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>