package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/number_string_notation_plugin/number.ml.html
Source file number.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open Util open Names open Libnames open Constrexpr open Constrexpr_ops open Notation module CSet = CSet.Make (Constr) module CMap = CMap.Make (Constr) (** * Number notation *) type number_string_via = qualid * (bool * qualid * qualid) list type number_option = | After of numnot_option | Via of number_string_via let warn_abstract_large_num_no_op = CWarnings.create ~name:"abstract-large-number-no-op" ~category:"numbers" (fun f -> strbrk "The 'abstract after' directive has no effect when " ++ strbrk "the parsing function (" ++ Nametab.pr_global_env (Termops.vars_of_env (Global.env ())) f ++ strbrk ") targets an " ++ strbrk "option type.") let get_constructors ind = let mib,oib = Global.lookup_inductive ind in let mc = oib.Declarations.mind_consnames in Array.to_list (Array.mapi (fun j c -> GlobRef.ConstructRef (ind, j + 1)) mc) let qualid_of_ref n = n |> Coqlib.lib_ref |> Nametab.shortest_qualid_of_global Id.Set.empty let q_option () = qualid_of_ref "core.option.type" let unsafe_locate_ind q = match Nametab.locate q with | GlobRef.IndRef i -> i | _ -> raise Not_found let locate_z () = let zn = "num.Z.type" in let pn = "num.pos.type" in if Coqlib.has_ref zn && Coqlib.has_ref pn then let q_z = qualid_of_ref zn in let q_pos = qualid_of_ref pn in Some ({ z_ty = unsafe_locate_ind q_z; pos_ty = unsafe_locate_ind q_pos; }, mkRefC q_z) else None let locate_number () = let dint = "num.int.type" in let duint = "num.uint.type" in let dec = "num.decimal.type" in let hint = "num.hexadecimal_int.type" in let huint = "num.hexadecimal_uint.type" in let hex = "num.hexadecimal.type" in let int = "num.num_int.type" in let uint = "num.num_uint.type" in let num = "num.number.type" in if Coqlib.has_ref dint && Coqlib.has_ref duint && Coqlib.has_ref dec && Coqlib.has_ref hint && Coqlib.has_ref huint && Coqlib.has_ref hex && Coqlib.has_ref int && Coqlib.has_ref uint && Coqlib.has_ref num then let q_dint = qualid_of_ref dint in let q_duint = qualid_of_ref duint in let q_dec = qualid_of_ref dec in let q_hint = qualid_of_ref hint in let q_huint = qualid_of_ref huint in let q_hex = qualid_of_ref hex in let q_int = qualid_of_ref int in let q_uint = qualid_of_ref uint in let q_num = qualid_of_ref num in let int_ty = { dec_int = unsafe_locate_ind q_dint; dec_uint = unsafe_locate_ind q_duint; hex_int = unsafe_locate_ind q_hint; hex_uint = unsafe_locate_ind q_huint; int = unsafe_locate_ind q_int; uint = unsafe_locate_ind q_uint; } in let num_ty = { int = int_ty; decimal = unsafe_locate_ind q_dec; hexadecimal = unsafe_locate_ind q_hex; number = unsafe_locate_ind q_num; } in Some (int_ty, mkRefC q_int, mkRefC q_uint, mkRefC q_dint, mkRefC q_duint, num_ty, mkRefC q_num, mkRefC q_dec) else None let locate_int63 () = let int63n = "num.int63.type" in let pos_neg_int63n = "num.int63.pos_neg_int63" in if Coqlib.has_ref int63n && Coqlib.has_ref pos_neg_int63n then let q_pos_neg_int63 = qualid_of_ref pos_neg_int63n in Some ({pos_neg_int63_ty = unsafe_locate_ind q_pos_neg_int63}, mkRefC q_pos_neg_int63) else None let has_type env sigma f ty = let c = mkCastC (mkRefC f, Glob_term.CastConv ty) in try let _ = Constrintern.interp_constr env sigma c in true with Pretype_errors.PretypeError _ -> false let type_error_to f ty = CErrors.user_err (pr_qualid f ++ str " should go from Number.int to " ++ pr_qualid ty ++ str " or (option " ++ pr_qualid ty ++ str ")." ++ fnl () ++ str "Instead of Number.int, the types Number.uint or Z or PrimInt63.pos_neg_int63 or Number.number could be used (you may need to require BinNums or Number or PrimInt63 first).") let type_error_of g ty = CErrors.user_err (pr_qualid g ++ str " should go from " ++ pr_qualid ty ++ str " to Number.int or (option Number.int)." ++ fnl () ++ str "Instead of Number.int, the types Number.uint or Z or PrimInt63.pos_neg_int63 or Number.number could be used (you may need to require BinNums or Number or PrimInt63 first).") let error_params ind = CErrors.user_err (str "Wrong number of parameters for inductive" ++ spc () ++ Printer.pr_global (GlobRef.IndRef ind) ++ str ".") let remapping_error ?loc ty ty' ty'' = CErrors.user_err ?loc (Printer.pr_global ty ++ str " was already mapped to" ++ spc () ++ Printer.pr_global ty' ++ str " and cannot be remapped to" ++ spc () ++ Printer.pr_global ty'' ++ str ".") let error_missing c = CErrors.user_err (str "Missing mapping for constructor " ++ Printer.pr_global c ++ str ".") let pr_constr env sigma c = let c = Constrextern.extern_constr env sigma (EConstr.of_constr c) in Ppconstr.pr_constr_expr env sigma c let warn_via_remapping = CWarnings.create ~name:"via-type-remapping" ~category:"numbers" (fun (env, sigma, ty, ty', ty'') -> let constr = pr_constr env sigma in constr ty ++ str " was already mapped to" ++ spc () ++ constr ty' ++ str ", mapping it also to" ++ spc () ++ constr ty'' ++ str " might yield ill typed terms when using the notation.") let warn_via_type_mismatch = CWarnings.create ~name:"via-type-mismatch" ~category:"numbers" (fun (env, sigma, g, g', exp, actual) -> let constr = pr_constr env sigma in str "Type of" ++ spc() ++ Printer.pr_global g ++ str " seems incompatible with the type of" ++ spc () ++ Printer.pr_global g' ++ str "." ++ spc () ++ str "Expected type is: " ++ constr exp ++ spc () ++ str "instead of " ++ constr actual ++ str "." ++ spc () ++ str "This might yield ill typed terms when using the notation.") let multiple_via_error () = CErrors.user_err (Pp.str "Multiple 'via' options.") let multiple_after_error () = CErrors.user_err (Pp.str "Multiple 'warning after' or 'abstract after' options.") let via_abstract_error () = CErrors.user_err (Pp.str "'via' and 'abstract' cannot be used together.") let locate_global_sort_inductive_or_constant sigma qid = let locate_sort qid = match Nametab.locate_extended qid with | Globnames.TrueGlobal _ -> raise Not_found | Globnames.SynDef kn -> match Syntax_def.search_syntactic_definition kn with | [], Notation_term.NSort r -> let sigma,c = Evd.fresh_sort_in_family sigma (Glob_ops.glob_sort_family r) in sigma,Constr.mkSort c | _ -> raise Not_found in try locate_sort qid with Not_found -> match Smartlocate.global_with_alias qid with | GlobRef.IndRef i -> sigma, Constr.mkInd i | _ -> sigma, Constr.mkConst (Smartlocate.global_constant_with_alias qid) let locate_global_constructor_inductive_or_constant qid = let g = Smartlocate.global_with_alias qid in match g with | GlobRef.ConstructRef c -> g, Constr.mkConstruct c | GlobRef.IndRef i -> g, Constr.mkInd i | _ -> g, Constr.mkConst (Smartlocate.global_constant_with_alias qid) (* [get_type env sigma c] retrieves the type of [c] and returns a pair [l, t] such that [c : l_0 -> ... -> l_n -> t]. *) let get_type env sigma c = (* inspired from [compute_implicit_names] in "interp/impargs.ml" *) let rec aux env acc t = let t = Reductionops.whd_all env sigma t in match EConstr.kind sigma t with | Constr.Prod (na, a, b) -> let a = Reductionops.whd_all env sigma a in let rel = Context.Rel.Declaration.LocalAssum (na, a) in aux (EConstr.push_rel rel env) ((na, a) :: acc) b | _ -> List.rev acc, t in let t = Retyping.get_type_of env sigma (EConstr.of_constr c) in let l, t = aux env [] t in List.map (fun (na, a) -> na, EConstr.Unsafe.to_constr a) l, EConstr.Unsafe.to_constr t (* [elaborate_to_post_params env sigma ty_ind params] builds the [to_post] translation (c.f., interp/notation.mli) for the numeral notation to parse/print type [ty_ind]. This translation is the identity ([ToPostCopy]) except that it checks ([ToPostCheck]) that the parameters of the inductive type [ty_ind] match the ones given in [params]. *) let elaborate_to_post_params env sigma ty_ind params = let to_post_for_constructor indc = let sigma, c = match indc with | GlobRef.ConstructRef c -> let sigma,c = Evd.fresh_constructor_instance env sigma c in sigma, Constr.mkConstructU c | _ -> assert false in (* c.f. get_constructors *) let args, t = get_type env sigma c in let params_indc = match Constr.kind t with | Constr.App (_, a) -> Array.to_list a | _ -> [] in let sz = List.length args in let a = Array.make sz ToPostCopy in if List.length params <> List.length params_indc then error_params ty_ind; List.iter2 (fun param param_indc -> match param, Constr.kind param_indc with | Some p, Constr.Rel i when i <= sz -> a.(sz - i) <- ToPostCheck p | _ -> ()) params params_indc; indc, indc, Array.to_list a in let pt_refs = get_constructors ty_ind in let to_post_0 = List.map to_post_for_constructor pt_refs in let to_post = let only_copy (_, _, args) = List.for_all ((=) ToPostCopy) args in if (List.for_all only_copy to_post_0) then [||] else [|to_post_0|] in to_post, pt_refs (* [elaborate_to_post_via env sigma ty_name ty_ind l] builds the [to_post] translation (c.f., interp/notation.mli) for the number notation to parse/print type [ty_name] through the inductive [ty_ind] according to the pairs [constant, constructor] in the list [l]. *) let elaborate_to_post_via env sigma ty_name ty_ind l = let sigma, ty_name = locate_global_sort_inductive_or_constant sigma ty_name in let ty_ind = Constr.mkInd ty_ind in (* Retrieve constants and constructors mappings and their type. For each constant [cnst] and inductive constructor [indc] in [l], retrieve: * its location: [lcnst] and [lindc] * its GlobRef: [cnst] and [indc] * its type: [tcnst] and [tindc] (decomposed in product by [get_type] above) * [impls] are the implicit arguments of [cnst] *) let l = let read (consider_implicits, cnst, indc) = let lcnst, lindc = cnst.CAst.loc, indc.CAst.loc in let cnst, ccnst = locate_global_constructor_inductive_or_constant cnst in let indc, cindc = let indc = Smartlocate.global_constructor_with_alias indc in GlobRef.ConstructRef indc, Constr.mkConstruct indc in let get_type_wo_params c = (* ignore parameters of inductive types *) let rm_params c = match Constr.kind c with | Constr.App (c, _) when Constr.isInd c -> c | _ -> c in let lc, tc = get_type env sigma c in List.map (fun (n, c) -> n, rm_params c) lc, rm_params tc in let tcnst, tindc = get_type_wo_params ccnst, get_type_wo_params cindc in let impls = if not consider_implicits then [] else Impargs.(select_stronger_impargs (implicits_of_global cnst)) in lcnst, cnst, tcnst, lindc, indc, tindc, impls in List.map read l in let eq_indc indc (_, _, _, _, indc', _, _) = GlobRef.equal indc indc' in (* Collect all inductive types involved. That is [ty_ind] and all final codomains of [tindc] above. *) let inds = List.fold_left (fun s (_, _, _, _, _, tindc, _) -> CSet.add (snd tindc) s) (CSet.singleton ty_ind) l in (* And for each inductive, retrieve its constructors. *) let constructors = CSet.fold (fun ind m -> let inductive, _ = Constr.destInd ind in CMap.add ind (get_constructors inductive) m) inds CMap.empty in (* Error if one [constructor] in some inductive in [inds] doesn't appear exactly once in [l] *) let _ = (* check_for duplicate constructor and error *) List.fold_left (fun already_seen (_, cnst, _, loc, indc, _, _) -> try let cnst' = List.assoc_f GlobRef.equal indc already_seen in remapping_error ?loc indc cnst' cnst with Not_found -> (indc, cnst) :: already_seen) [] l in let () = (* check for missing constructor and error *) CMap.iter (fun _ -> List.iter (fun cstr -> if not (List.exists (eq_indc cstr) l) then error_missing cstr)) constructors in (* Perform some checks on types and warn if they look strange. These checks are neither sound nor complete, so we only warn. *) let () = (* associate inductives to types, and check that this mapping is one to one and maps [ty_ind] to [ty_name] *) let ind2ty, ty2ind = let add loc ckey cval m = match CMap.find_opt ckey m with | None -> CMap.add ckey cval m | Some old_cval -> if not (Constr.equal old_cval cval) then warn_via_remapping ?loc (env, sigma, ckey, old_cval, cval); m in List.fold_left (fun (ind2ty, ty2ind) (lcnst, _, (_, tcnst), lindc, _, (_, tindc), _) -> add lcnst tindc tcnst ind2ty, add lindc tcnst tindc ty2ind) CMap.(singleton ty_ind ty_name, singleton ty_name ty_ind) l in (* check that type of constants and constructors mapped in [l] match modulo [ind2ty] *) let rm_impls impls (l, t) = let rec aux impls l = match impls, l with | Some _ :: impls, _ :: b -> aux impls b | None :: impls, (n, a) :: b -> (n, a) :: aux impls b | _ -> l in aux impls l, t in let replace m (l, t) = let apply_m c = try CMap.find c m with Not_found -> c in List.fold_right (fun (na, a) b -> Constr.mkProd (na, (apply_m a), b)) l (apply_m t) in List.iter (fun (_, cnst, tcnst, loc, indc, tindc, impls) -> let tcnst = rm_impls impls tcnst in let tcnst' = replace CMap.empty tcnst in if not (Constr.equal tcnst' (replace ind2ty tindc)) then let actual = replace CMap.empty tindc in let expected = replace ty2ind tcnst in warn_via_type_mismatch ?loc (env, sigma, indc, cnst, expected, actual)) l in (* Associate an index to each inductive, starting from 0 for [ty_ind]. *) let ind2num, num2ind, nb_ind = CMap.fold (fun ind _ (ind2num, num2ind, i) -> CMap.add ind i ind2num, Int.Map.add i ind num2ind, i + 1) (CMap.remove ty_ind constructors) (CMap.singleton ty_ind 0, Int.Map.singleton 0 ty_ind, 1) in (* Finally elaborate [to_post] *) let to_post = let rec map_prod impls tindc = match impls with | Some _ :: impls -> ToPostHole :: map_prod impls tindc | _ -> match tindc with | [] -> [] | (_, a) :: b -> let t = match CMap.find_opt a ind2num with | Some i -> ToPostAs i | None -> ToPostCopy in let impls = match impls with [] -> [] | _ :: t -> t in t :: map_prod impls b in Array.init nb_ind (fun i -> List.map (fun indc -> let _, cnst, _, _, _, tindc, impls = List.find (eq_indc indc) l in indc, cnst, map_prod impls (fst tindc)) (CMap.find (Int.Map.find i num2ind) constructors)) in (* and use constants mapped to constructors of [ty_ind] as triggers. *) let pt_refs = List.map (fun (_, cnst, _) -> cnst) (to_post.(0)) in to_post, pt_refs type target_type = | TargetInd of (inductive * GlobRef.t option list) | TargetPrim of required_module let locate_global_inductive_with_params allow_params qid = if not allow_params then raise Not_found else match Nametab.locate_extended qid with | Globnames.TrueGlobal _ -> raise Not_found | Globnames.SynDef kn -> match Syntax_def.search_syntactic_definition kn with | [], Notation_term.(NApp (NRef (GlobRef.IndRef i,None), l)) -> i, List.map (function | Notation_term.NRef (r,None) -> Some r | Notation_term.NHole _ -> None | _ -> raise Not_found) l | _ -> raise Not_found let locate_global_inductive allow_params qid = try locate_global_inductive_with_params allow_params qid with Not_found -> Smartlocate.global_inductive_with_alias qid, [] let locate_global_inductive_or_int63 allow_params qid = try TargetInd (locate_global_inductive_with_params allow_params qid) with Not_found -> let int63n = "num.int63.type" in if allow_params && Coqlib.has_ref int63n && GlobRef.equal (Smartlocate.global_with_alias qid) (Coqlib.lib_ref int63n) then TargetPrim (Nametab.path_of_global (Coqlib.lib_ref int63n), []) else TargetInd (Smartlocate.global_inductive_with_alias qid, []) let vernac_number_notation local ty f g opts scope = let rec parse_opts = function | [] -> None, Nop | h :: opts -> let via, opts = parse_opts opts in let via = match h, via with | Via _, Some _ -> multiple_via_error () | Via v, None -> Some v | _ -> via in let opts = match h, opts with | After _, (Warning _ | Abstract _) -> multiple_after_error () | After a, Nop -> a | _ -> opts in via, opts in let via, opts = parse_opts opts in (match via, opts with Some _, Abstract _ -> via_abstract_error () | _ -> ()); let env = Global.env () in let sigma = Evd.from_env env in let num_ty = locate_number () in let z_pos_ty = locate_z () in let int63_ty = locate_int63 () in let ty_name = ty in let ty, via = match via with None -> ty, via | Some (ty', a) -> ty', Some (ty, a) in let tyc_params = locate_global_inductive_or_int63 (via = None) ty in let to_ty = Smartlocate.global_with_alias f in let of_ty = Smartlocate.global_with_alias g in let cty = mkRefC ty in let app x y = mkAppC (x,[y]) in let arrow x y = mkProdC ([CAst.make Anonymous],Default Glob_term.Explicit, x, y) in let opt r = app (mkRefC (q_option ())) r in (* Check the type of f *) let to_kind = match num_ty with | Some (int_ty, cint, _, _, _, _, _, _) when has_type env sigma f (arrow cint cty) -> Int int_ty, Direct | Some (int_ty, cint, _, _, _, _, _, _) when has_type env sigma f (arrow cint (opt cty)) -> Int int_ty, Option | Some (int_ty, _, cuint, _, _, _, _, _) when has_type env sigma f (arrow cuint cty) -> UInt int_ty, Direct | Some (int_ty, _, cuint, _, _, _, _, _) when has_type env sigma f (arrow cuint (opt cty)) -> UInt int_ty, Option | Some (_, _, _, _, _, num_ty, cnum, _) when has_type env sigma f (arrow cnum cty) -> Number num_ty, Direct | Some (_, _, _, _, _, num_ty, cnum, _) when has_type env sigma f (arrow cnum (opt cty)) -> Number num_ty, Option | _ -> match z_pos_ty with | Some (z_pos_ty, cZ) when has_type env sigma f (arrow cZ cty) -> Z z_pos_ty, Direct | Some (z_pos_ty, cZ) when has_type env sigma f (arrow cZ (opt cty)) -> Z z_pos_ty, Option | _ -> match int63_ty with | Some (pos_neg_int63_ty, cint63) when has_type env sigma f (arrow cint63 cty) -> Int63 pos_neg_int63_ty, Direct | Some (pos_neg_int63_ty, cint63) when has_type env sigma f (arrow cint63 (opt cty)) -> Int63 pos_neg_int63_ty, Option | _ -> type_error_to f ty in (* Check the type of g *) let cty = match tyc_params with | TargetPrim _ -> mkRefC (qualid_of_string "Coq.Numbers.Cyclic.Int63.PrimInt63.int_wrapper") | TargetInd _ -> cty in let of_kind = match num_ty with | Some (int_ty, cint, _, _, _, _, _, _) when has_type env sigma g (arrow cty cint) -> Int int_ty, Direct | Some (int_ty, cint, _, _, _, _, _, _) when has_type env sigma g (arrow cty (opt cint)) -> Int int_ty, Option | Some (int_ty, _, cuint, _, _, _, _, _) when has_type env sigma g (arrow cty cuint) -> UInt int_ty, Direct | Some (int_ty, _, cuint, _, _, _, _, _) when has_type env sigma g (arrow cty (opt cuint)) -> UInt int_ty, Option | Some (_, _, _, _, _, num_ty, cnum, _) when has_type env sigma g (arrow cty cnum) -> Number num_ty, Direct | Some (_, _, _, _, _, num_ty, cnum, _) when has_type env sigma g (arrow cty (opt cnum)) -> Number num_ty, Option | _ -> match z_pos_ty with | Some (z_pos_ty, cZ) when has_type env sigma g (arrow cty cZ) -> Z z_pos_ty, Direct | Some (z_pos_ty, cZ) when has_type env sigma g (arrow cty (opt cZ)) -> Z z_pos_ty, Option | _ -> match int63_ty with | Some (pos_neg_int63_ty, cint63) when has_type env sigma g (arrow cty cint63) -> Int63 pos_neg_int63_ty, Direct | Some (pos_neg_int63_ty, cint63) when has_type env sigma g (arrow cty (opt cint63)) -> Int63 pos_neg_int63_ty, Option | _ -> type_error_of g ty in let to_post, pt_required, pt_refs = match tyc_params with | TargetPrim path -> [||], path, [Coqlib.lib_ref "num.int63.wrap_int"] | TargetInd (tyc, params) -> let to_post, pt_refs = match via with | None -> elaborate_to_post_params env sigma tyc params | Some (ty, l) -> elaborate_to_post_via env sigma ty tyc l in to_post, (Nametab.path_of_global (GlobRef.IndRef tyc), []), pt_refs in let o = { to_kind; to_ty; to_post; of_kind; of_ty; ty_name; warning = opts } in (match opts, to_kind with | Abstract _, (_, Option) -> warn_abstract_large_num_no_op o.to_ty | _ -> ()); let i = { pt_local = local; pt_scope = scope; pt_interp_info = NumberNotation o; pt_required; pt_refs; pt_in_match = true } in enable_prim_token_interpretation i
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>