package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/micromega_plugin/mutils.ml.html
Source file mutils.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* ** Utility functions ** *) (* *) (* - Modules CoqToCaml, CamlToCoq *) (* - Modules Cmp, Tag, TagSet *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-2008 *) (* *) (************************************************************************) open NumCompat module Z_ = NumCompat.Z module Int = struct type t = int let compare : int -> int -> int = compare let equal : int -> int -> bool = ( = ) end module ISet = struct include Set.Make (Int) let pp o s = iter (fun i -> Printf.fprintf o "%i " i) s end module IMap = struct include Map.Make (Int) let from k m = let _, _, r = split (k - 1) m in r end let rec pp_list s f o l = match l with | [] -> () | [e] -> f o e | e :: l -> f o e; output_string o s; pp_list s f o l let finally f rst = try let res = f () in rst (); res with reraise -> (try rst () with any -> raise reraise); raise reraise let rec try_any l x = match l with | [] -> None | (f, s) :: l -> ( match f x with None -> try_any l x | x -> x ) let all_pairs f l = let pair_with acc e l = List.fold_left (fun acc x -> f e x :: acc) acc l in let rec xpairs acc l = match l with [] -> acc | e :: lx -> xpairs (pair_with acc e l) lx in xpairs [] l let rec is_sublist f l1 l2 = match (l1, l2) with | [], _ -> true | e :: l1', [] -> false | e :: l1', e' :: l2' -> if f e e' then is_sublist f l1' l2' else is_sublist f l1 l2' let extract pred l = List.fold_left (fun (fd, sys) e -> match fd with | None -> ( match pred e with None -> (fd, e :: sys) | Some v -> (Some (v, e), sys) ) | _ -> (fd, e :: sys)) (None, []) l let extract_best red lt l = let rec extractb c e rst l = match l with | [] -> (Some (c, e), rst) | e' :: l' -> ( match red e' with | None -> extractb c e (e' :: rst) l' | Some c' -> if lt c' c then extractb c' e' (e :: rst) l' else extractb c e (e' :: rst) l' ) in match extract red l with | None, _ -> (None, l) | Some (c, e), rst -> extractb c e [] rst let rec find_option pred l = match l with | [] -> raise Not_found | e :: l -> ( match pred e with Some r -> r | None -> find_option pred l ) let find_some pred l = try Some (find_option pred l) with Not_found -> None let extract_all pred l = List.fold_left (fun (s1, s2) e -> match pred e with None -> (s1, e :: s2) | Some v -> (v :: s1, s2)) ([], []) l let simplify f sys = let sys', b = List.fold_left (fun (sys', b) c -> match f c with None -> (c :: sys', b) | Some c' -> (c' :: sys', true)) ([], false) sys in if b then Some sys' else None let generate_acc f acc sys = List.fold_left (fun sys' c -> match f c with None -> sys' | Some c' -> c' :: sys') acc sys let generate f sys = generate_acc f [] sys let saturate p f sys = let rec sat acc l = match extract p l with | None, _ -> acc | Some r, l' -> let n = generate (f r) (l' @ acc) in sat (n @ acc) l' in try sat [] sys with x -> Printexc.print_backtrace stdout; raise x let saturate_bin (type a) (module Set : Set.S with type elt = a) (f : a -> a -> a option) (l : a list) = let rec map_with (acc : Set.t) e l = match l with | [] -> acc | e' :: l -> ( match f e e' with | None -> map_with acc e l | Some r -> map_with (Set.add r acc) e l ) in let map2_with acc l' = Set.fold (fun e' acc -> map_with acc e' l) l' acc in let rec iterate acc l' = let res = map2_with Set.empty l' in if Set.is_empty res then Set.union l' acc else iterate (Set.union l' acc) res in let s0 = List.fold_left (fun acc e -> Set.add e acc) Set.empty l in Set.elements (Set.diff (iterate Set.empty s0) s0) let iterate_until_stable f x = let rec iter x = match f x with None -> x | Some x' -> iter x' in iter x let rec app_funs l x = match l with | [] -> None | f :: fl -> ( match f x with None -> app_funs fl x | Some x' -> Some x' ) (** * MODULE: Coq to Caml data-structure mappings *) module CoqToCaml = struct open Micromega let rec nat = function O -> 0 | S n -> nat n + 1 let rec positive p = match p with | XH -> 1 | XI p -> 1 + (2 * positive p) | XO p -> 2 * positive p let n nt = match nt with N0 -> 0 | Npos p -> positive p let rec index i = (* Swap left-right ? *) match i with XH -> 1 | XI i -> 1 + (2 * index i) | XO i -> 2 * index i let rec positive_big_int p = match p with | XH -> Z_.one | XI p -> Z_.add Z_.one (Z_.mul Z_.two (positive_big_int p)) | XO p -> Z_.mul Z_.two (positive_big_int p) let z_big_int x = match x with | Z0 -> Z_.zero | Zpos p -> positive_big_int p | Zneg p -> Z_.neg (positive_big_int p) let z x = match x with Z0 -> 0 | Zpos p -> index p | Zneg p -> -index p let q_to_num {qnum = x; qden = y} = let open Q.Notations in Q.of_bigint (z_big_int x) // Q.of_bigint (z_big_int (Zpos y)) end (** * MODULE: Caml to Coq data-structure mappings *) module CamlToCoq = struct open Micromega let rec nat = function 0 -> O | n -> S (nat (n - 1)) let rec positive n = if Int.equal n 1 then XH else if Int.equal (n land 1) 1 then XI (positive (n lsr 1)) else XO (positive (n lsr 1)) let n nt = if nt < 0 then assert false else if Int.equal nt 0 then N0 else Npos (positive nt) let rec index n = if Int.equal n 1 then XH else if Int.equal (n land 1) 1 then XI (index (n lsr 1)) else XO (index (n lsr 1)) let z x = match compare x 0 with | 0 -> Z0 | 1 -> Zpos (positive x) | _ -> (* this should be -1 *) Zneg (positive (-x)) let positive_big_int n = let rec _pos n = if Z_.equal n Z_.one then XH else let q, m = Z_.quomod n Z_.two in if Z_.equal Z_.one m then XI (_pos q) else XO (_pos q) in _pos n let bigint x = match Z_.sign x with | 0 -> Z0 | 1 -> Zpos (positive_big_int x) | _ -> Zneg (positive_big_int (Z_.neg x)) let q n = { Micromega.qnum = bigint (Q.num n) ; Micromega.qden = positive_big_int (Q.den n) } end (** * MODULE: Comparisons on lists: by evaluating the elements in a single list, * between two lists given an ordering, and using a hash computation *) module Cmp = struct let rec compare_lexical l = match l with | [] -> 0 (* Equal *) | f :: l -> let cmp = f () in if Int.equal cmp 0 then compare_lexical l else cmp let rec compare_list cmp l1 l2 = match (l1, l2) with | [], [] -> 0 | [], _ -> -1 | _, [] -> 1 | e1 :: l1, e2 :: l2 -> let c = cmp e1 e2 in if Int.equal c 0 then compare_list cmp l1 l2 else c end (** * MODULE: Labels for atoms in propositional formulas. * Tags are used to identify unused atoms in CNFs, and propagate them back to * the original formula. The translation back to Coq then ignores these * superfluous items, which speeds the translation up a bit. *) module type Tag = sig type t = int val from : int -> t val next : t -> t val pp : out_channel -> t -> unit val compare : t -> t -> int val max : t -> t -> t val to_int : t -> int end module Tag : Tag = struct type t = int let from i = i let next i = i + 1 let max : int -> int -> int = max let pp o i = output_string o (string_of_int i) let compare : int -> int -> int = Int.compare let to_int x = x end (** * MODULE: Ordered sets of tags. *) module TagSet = struct include Set.Make (Tag) end (** As for Unix.close_process, our Unix.waipid will ignore all EINTR *) let rec waitpid_non_intr pid = try snd (Unix.waitpid [] pid) with Unix.Unix_error (Unix.EINTR, _, _) -> waitpid_non_intr pid (** * Forking routine, plumbing the appropriate pipes where needed. *) let command exe_path args vl = (* creating pipes for stdin, stdout, stderr *) let stdin_read, stdin_write = Unix.pipe () and stdout_read, stdout_write = Unix.pipe () and stderr_read, stderr_write = Unix.pipe () in (* Create the process *) let pid = Unix.create_process exe_path args stdin_read stdout_write stderr_write in (* Write the data on the stdin of the created process *) let outch = Unix.out_channel_of_descr stdin_write in output_value outch vl; flush outch; (* Wait for its completion *) let status = waitpid_non_intr pid in finally (* Recover the result *) (fun () -> match status with | Unix.WEXITED 0 -> ( let inch = Unix.in_channel_of_descr stdout_read in try Marshal.from_channel inch with any -> failwith (Printf.sprintf "command \"%s\" exited %s" exe_path (Printexc.to_string any)) ) | Unix.WEXITED i -> failwith (Printf.sprintf "command \"%s\" exited %i" exe_path i) | Unix.WSIGNALED i -> failwith (Printf.sprintf "command \"%s\" killed %i" exe_path i) | Unix.WSTOPPED i -> failwith (Printf.sprintf "command \"%s\" stopped %i" exe_path i)) (* Cleanup *) (fun () -> List.iter (fun x -> try Unix.close x with any -> ()) [ stdin_read ; stdin_write ; stdout_read ; stdout_write ; stderr_read ; stderr_write ]) (** Hashing utilities *) module Hash = struct module Mc = Micromega open Hashset.Combine let int_of_eq_op1 = Mc.(function Equal -> 0 | NonEqual -> 1 | Strict -> 2 | NonStrict -> 3) let int_of_eq_op2 = Mc.( function | OpEq -> 0 | OpNEq -> 1 | OpLe -> 2 | OpGe -> 3 | OpLt -> 4 | OpGt -> 5) let eq_op1 o1 o2 = Int.equal (int_of_eq_op1 o1) (int_of_eq_op1 o2) let eq_op2 o1 o2 = Int.equal (int_of_eq_op2 o1) (int_of_eq_op2 o2) let hash_op1 h o = combine h (int_of_eq_op1 o) let rec eq_positive p1 p2 = match (p1, p2) with | Mc.XH, Mc.XH -> true | Mc.XI p1, Mc.XI p2 -> eq_positive p1 p2 | Mc.XO p1, Mc.XO p2 -> eq_positive p1 p2 | _, _ -> false let eq_z z1 z2 = match (z1, z2) with | Mc.Z0, Mc.Z0 -> true | Mc.Zpos p1, Mc.Zpos p2 | Mc.Zneg p1, Mc.Zneg p2 -> eq_positive p1 p2 | _, _ -> false let eq_q {Mc.qnum = qn1; Mc.qden = qd1} {Mc.qnum = qn2; Mc.qden = qd2} = eq_z qn1 qn2 && eq_positive qd1 qd2 let rec eq_pol eq p1 p2 = match (p1, p2) with | Mc.Pc c1, Mc.Pc c2 -> eq c1 c2 | Mc.Pinj (i1, p1), Mc.Pinj (i2, p2) -> eq_positive i1 i2 && eq_pol eq p1 p2 | Mc.PX (p1, i1, p1'), Mc.PX (p2, i2, p2') -> eq_pol eq p1 p2 && eq_positive i1 i2 && eq_pol eq p1' p2' | _, _ -> false let eq_pair eq1 eq2 (x1, y1) (x2, y2) = eq1 x1 x2 && eq2 y1 y2 let hash_pol helt = let rec hash acc = function | Mc.Pc c -> helt (combine acc 1) c | Mc.Pinj (p, c) -> hash (combine (combine acc 1) (CoqToCaml.index p)) c | Mc.PX (p1, i, p2) -> hash (hash (combine (combine acc 2) (CoqToCaml.index i)) p1) p2 in hash let hash_pair h1 h2 h (e1, e2) = h2 (h1 h e1) e2 let hash_elt f h e = combine h (f e) let hash_string h (e : string) = hash_elt Hashtbl.hash h e let hash_z = hash_elt CoqToCaml.z let hash_q = hash_elt (fun q -> Hashtbl.hash (CoqToCaml.q_to_num q)) end (* Local Variables: *) (* coding: utf-8 *) (* End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>