package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/coq-core.library/libobject.ml.html
Source file libobject.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open Names module Dyn = Dyn.Make () type 'a substitutivity = Dispose | Substitute of 'a | Keep of 'a | Anticipate of 'a type object_name = Libnames.full_path * Names.KerName.t module NSet = Globnames.ExtRefSet type open_filter = | Unfiltered | Names of NSet.t let simple_open f filter i o = match filter with | Unfiltered -> f i o | Names _ -> () let filter_and f1 f2 = match f1, f2 with | Unfiltered, f | f, Unfiltered -> Some f | Names n1, Names n2 -> let n = NSet.inter n1 n2 in if NSet.is_empty n then None else Some (Names n) let filter_or f1 f2 = match f1, f2 with | Unfiltered, f | f, Unfiltered -> Unfiltered | Names n1, Names n2 -> Names (NSet.union n1 n2) let in_filter_ref gr = function | Unfiltered -> true | Names ns -> NSet.mem (Globnames.TrueGlobal gr) ns type 'a object_declaration = { object_name : string; cache_function : object_name * 'a -> unit; load_function : int -> object_name * 'a -> unit; open_function : open_filter -> int -> object_name * 'a -> unit; classify_function : 'a -> 'a substitutivity; subst_function : Mod_subst.substitution * 'a -> 'a; discharge_function : object_name * 'a -> 'a option; rebuild_function : 'a -> 'a } let default_object s = { object_name = s; cache_function = (fun _ -> ()); load_function = (fun _ _ -> ()); open_function = (fun _ _ _ -> ()); subst_function = (fun _ -> CErrors.anomaly (str "The object " ++ str s ++ str " does not know how to substitute!")); classify_function = (fun atomic_obj -> Keep atomic_obj); discharge_function = (fun _ -> None); rebuild_function = (fun x -> x)} (* The suggested object declaration is the following: declare_object { (default_object "MY OBJECT") with cache_function = fun (sp,a) -> Mytbl.add sp a} and the listed functions are only those which definitions actually differ from the default. This helps introducing new functions in objects. *) let ident_subst_function (_,a) = a type obj = Dyn.t (* persistent dynamic objects *) (** {6 Substitutive objects} - The list of bound identifiers is nonempty only if the objects are owned by a functor - Then comes either the object segment itself (for interactive modules), or a compact way to store derived objects (path to a earlier module + substitution). *) type algebraic_objects = | Objs of objects | Ref of Names.ModPath.t * Mod_subst.substitution and t = | ModuleObject of substitutive_objects | ModuleTypeObject of substitutive_objects | IncludeObject of algebraic_objects | KeepObject of objects | ExportObject of { mpl : (open_filter * ModPath.t) list } | AtomicObject of obj and objects = (Names.Id.t * t) list and substitutive_objects = MBId.t list * algebraic_objects module DynMap = Dyn.Map (struct type 'a t = 'a object_declaration end) let cache_tab = ref DynMap.empty let declare_object_full odecl = let na = odecl.object_name in let tag = Dyn.create na in let () = cache_tab := DynMap.add tag odecl !cache_tab in tag let declare_object odecl = let tag = declare_object_full odecl in let infun v = Dyn.Dyn (tag, v) in infun let cache_object (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.cache_function (sp, v) let load_object i (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.load_function i (sp, v) let open_object f i (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.open_function f i (sp, v) let subst_object (subs, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in Dyn.Dyn (tag, decl.subst_function (subs, v)) let classify_object (Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in match decl.classify_function v with | Dispose -> Dispose | Substitute v -> Substitute (Dyn.Dyn (tag, v)) | Keep v -> Keep (Dyn.Dyn (tag, v)) | Anticipate v -> Anticipate (Dyn.Dyn (tag, v)) let discharge_object (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in match decl.discharge_function (sp, v) with | None -> None | Some v -> Some (Dyn.Dyn (tag, v)) let rebuild_object (Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in Dyn.Dyn (tag, decl.rebuild_function v) let dump = Dyn.dump let local_object_nodischarge s ~cache = { (default_object s) with cache_function = cache; classify_function = (fun _ -> Dispose); } let local_object s ~cache ~discharge = { (local_object_nodischarge s ~cache) with discharge_function = discharge } let global_object_nodischarge s ~cache ~subst = let import i o = if Int.equal i 1 then cache o in { (default_object s) with cache_function = cache; open_function = simple_open import; subst_function = (match subst with | None -> fun _ -> CErrors.anomaly (str "The object " ++ str s ++ str " does not know how to substitute!") | Some subst -> subst; ); classify_function = if Option.has_some subst then (fun o -> Substitute o) else (fun o -> Keep o); } let global_object s ~cache ~subst ~discharge = { (global_object_nodischarge s ~cache ~subst) with discharge_function = discharge } let superglobal_object_nodischarge s ~cache ~subst = { (default_object s) with load_function = (fun _ x -> cache x); cache_function = cache; subst_function = (match subst with | None -> fun _ -> CErrors.anomaly (str "The object " ++ str s ++ str " does not know how to substitute!") | Some subst -> subst; ); classify_function = if Option.has_some subst then (fun o -> Substitute o) else (fun o -> Keep o); } let superglobal_object s ~cache ~subst ~discharge = { (superglobal_object_nodischarge s ~cache ~subst) with discharge_function = discharge }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>