package coq
Formal proof management system
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.14.0.tar.gz
sha256=b1501d686c21836302191ae30f610cca57fb309214c126518ca009363ad2cd3c
doc/src/cc_plugin/ccproof.ml.html
Source file ccproof.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* This file uses the (non-compressed) union-find structure to generate *) (* proof-trees that will be transformed into proof-terms in cctac.mlg *) open CErrors open Constr open Ccalgo open Pp type rule= Ax of constr | SymAx of constr | Refl of term | Trans of proof*proof | Congr of proof*proof | Inject of proof*pconstructor*int*int and proof = {p_lhs:term;p_rhs:term;p_rule:rule} let prefl t = {p_lhs=t;p_rhs=t;p_rule=Refl t} let pcongr p1 p2 = match p1.p_rule,p2.p_rule with Refl t1, Refl t2 -> prefl (Appli (t1,t2)) | _, _ -> {p_lhs=Appli (p1.p_lhs,p2.p_lhs); p_rhs=Appli (p1.p_rhs,p2.p_rhs); p_rule=Congr (p1,p2)} let rec ptrans p1 p3= match p1.p_rule,p3.p_rule with Refl _, _ ->p3 | _, Refl _ ->p1 | Trans(p1,p2), _ ->ptrans p1 (ptrans p2 p3) | Congr(p1,p2), Congr(p3,p4) ->pcongr (ptrans p1 p3) (ptrans p2 p4) | Congr(p1,p2), Trans({p_rule=Congr(p3,p4)},p5) -> ptrans (pcongr (ptrans p1 p3) (ptrans p2 p4)) p5 | _, _ -> if term_equal p1.p_rhs p3.p_lhs then {p_lhs=p1.p_lhs; p_rhs=p3.p_rhs; p_rule=Trans (p1,p3)} else anomaly (Pp.str "invalid cc transitivity.") let rec psym p = match p.p_rule with Refl _ -> p | SymAx s -> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=Ax s} | Ax s-> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=SymAx s} | Inject (p0,c,n,a)-> {p_lhs=p.p_rhs; p_rhs=p.p_lhs; p_rule=Inject (psym p0,c,n,a)} | Trans (p1,p2)-> ptrans (psym p2) (psym p1) | Congr (p1,p2)-> pcongr (psym p1) (psym p2) let pax axioms s = let l,r = Constrhash.find axioms s in {p_lhs=l; p_rhs=r; p_rule=Ax s} let psymax axioms s = let l,r = Constrhash.find axioms s in {p_lhs=r; p_rhs=l; p_rule=SymAx s} let rec nth_arg t n= match t with Appli (t1,t2)-> if n>0 then nth_arg t1 (n-1) else t2 | _ -> anomaly ~label:"nth_arg" (Pp.str "not enough args.") let pinject p c n a = {p_lhs=nth_arg p.p_lhs (n-a); p_rhs=nth_arg p.p_rhs (n-a); p_rule=Inject(p,c,n,a)} let rec equal_proof env sigma uf i j= debug_congruence (fun () -> str "equal_proof " ++ pr_idx_term env sigma uf i ++ brk (1,20) ++ pr_idx_term env sigma uf j); if i=j then prefl (term uf i) else let (li,lj)=join_path uf i j in ptrans (path_proof env sigma uf i li) (psym (path_proof env sigma uf j lj)) and edge_proof env sigma uf ((i,j),eq)= debug_congruence (fun () -> str "edge_proof " ++ pr_idx_term env sigma uf i ++ brk (1,20) ++ pr_idx_term env sigma uf j); let pi=equal_proof env sigma uf i eq.lhs in let pj=psym (equal_proof env sigma uf j eq.rhs) in let pij= match eq.rule with Axiom (s,reversed)-> if reversed then psymax (axioms uf) s else pax (axioms uf) s | Congruence ->congr_proof env sigma uf eq.lhs eq.rhs | Injection (ti,ipac,tj,jpac,k) -> (* pi_k ipac = p_k jpac *) let p=ind_proof env sigma uf ti ipac tj jpac in let cinfo= get_constructor_info uf ipac.cnode in pinject p cinfo.ci_constr cinfo.ci_nhyps k in ptrans (ptrans pi pij) pj and constr_proof env sigma uf i ipac= debug_congruence (fun () -> str "constr_proof " ++ pr_idx_term env sigma uf i ++ brk (1,20)); let t=find_oldest_pac uf i ipac in let eq_it=equal_proof env sigma uf i t in if ipac.args=[] then eq_it else let fipac=tail_pac ipac in let (fi,arg)=subterms uf t in let targ=term uf arg in let p=constr_proof env sigma uf fi fipac in ptrans eq_it (pcongr p (prefl targ)) and path_proof env sigma uf i l= debug_congruence (fun () -> str "path_proof " ++ pr_idx_term env sigma uf i ++ brk (1,20) ++ str "{" ++ (prlist_with_sep (fun () -> str ",") (fun ((_,j),_) -> int j) l) ++ str "}"); match l with | [] -> prefl (term uf i) | x::q->ptrans (path_proof env sigma uf (snd (fst x)) q) (edge_proof env sigma uf x) and congr_proof env sigma uf i j= debug_congruence (fun () -> str "congr_proof " ++ pr_idx_term env sigma uf i ++ brk (1,20) ++ pr_idx_term env sigma uf j); let (i1,i2) = subterms uf i and (j1,j2) = subterms uf j in pcongr (equal_proof env sigma uf i1 j1) (equal_proof env sigma uf i2 j2) and ind_proof env sigma uf i ipac j jpac= debug_congruence (fun () -> str "ind_proof " ++ pr_idx_term env sigma uf i ++ brk (1,20) ++ pr_idx_term env sigma uf j); let p=equal_proof env sigma uf i j and p1=constr_proof env sigma uf i ipac and p2=constr_proof env sigma uf j jpac in ptrans (psym p1) (ptrans p p2) let build_proof env sigma uf= function | `Prove (i,j) -> equal_proof env sigma uf i j | `Discr (i,ci,j,cj)-> ind_proof env sigma uf i ci j cj
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>