package coq-lsp
Language Server Protocol native server for Coq
Install
Dune Dependency
Authors
Maintainers
Sources
coq-lsp-0.2.3.9.0.tbz
sha256=8776582dddfe768623870cf540ff6ba1e96a44a36e85db18ab93d238d640f92a
sha512=2837889bf99bfe715bd0e752782211a76a14aac71ed37a4fb784f4f0abe338352c9c6d8caa37daf79c036997add1cb306c523f793625b38709f3b5e245380223
doc/src/coq-lsp.fleche/info.ml.html
Source file info.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* <O___,, * (see CREDITS file for the list of authors) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (************************************************************************) (* Coq Language Server Protocol *) (* Copyright (C) 2019 MINES ParisTech -- Dual License LGPL 2.1 / GPL3+ *) (* Copyright (C) 2019-2022 Emilio J. Gallego Arias, INRIA *) (* Copyright (C) 2022-2022 Shachar Itzhaky, Technion *) (************************************************************************) module type Point = sig type t val in_range : ?range:Lang.Range.t -> t -> bool val gt_range : ?range:Lang.Range.t -> t -> bool type offset_table = string val to_offset : t -> offset_table -> int val to_string : t -> string end module LineCol : Point with type t = int * int = struct type t = int * int type offset_table = string let line_length offset text = match String.index_from_opt text offset '\n' with | Some l -> l - offset | None -> String.length text - offset let rec to_offset cur lc (l, c) text = Io.Log.trace "to_offset" "cur: %d | lc: %d | l: %d c: %d" cur lc l c; if lc = l then cur + c else let ll = line_length cur text + 1 in to_offset (cur + ll) (lc + 1) (l, c) text let to_offset (l, c) text = to_offset 0 0 (l, c) text let to_string (l, c) = "(" ^ string_of_int l ^ "," ^ string_of_int c ^ ")" let debug_in_range = false let debug_in_range hdr line col line1 col1 line2 col2 = if debug_in_range then Io.Log.trace hdr "(%d, %d) in (%d,%d)-(%d,%d)" line col line1 col1 line2 col2 let in_range ?range (line, col) = (* Coq starts at 1, lsp at 0 *) match range with | None -> false | Some r -> let line1 = r.Lang.Range.start.line in let col1 = r.start.character in let line2 = r.end_.line in let col2 = r.end_.character in debug_in_range "in_range" line col line1 col1 line2 col2; (line1 < line && line < line2) || if line1 = line && line2 = line then col1 <= col && col < col2 else (line1 = line && col1 <= col) || (line2 = line && col < col2) let gt_range ?range (line, col) = match range with | None -> false | Some r -> let line1 = r.Lang.Range.start.line in let col1 = r.start.character in let line2 = r.end_.line in let col2 = r.end_.character in debug_in_range "gt_range" line col line1 col1 line2 col2; line < line1 || (line = line1 && col < col1) end module Offset : Point with type t = int = struct type t = int type offset_table = string let in_range ?range point = match range with | None -> false | Some range -> range.Lang.Range.start.offset <= point && point < range.Lang.Range.end_.offset let gt_range ?range point = match range with | None -> false | Some range -> point < range.Lang.Range.start.offset let to_offset off _ = off let to_string off = string_of_int off end type approx = | Exact (* Exact on point *) | PrevIfEmpty (* If no match, return prev *) | Prev module type S = sig module P : Point type ('a, 'r) query = doc:Doc.t -> point:P.t -> 'a -> 'r option val node : (approx, Doc.Node.t) query end let some x = Some x module Make (P : Point) : S with module P := P = struct type ('a, 'r) query = doc:Doc.t -> point:P.t -> 'a -> 'r option let find ~doc ~point approx = let rec find prev l = match l with | [] -> prev | node :: xs -> ( let range = node.Doc.Node.range in match approx with | Exact -> if P.in_range ~range point then Some node else find None xs | PrevIfEmpty -> if P.gt_range ~range point then prev else find (Some node) xs | Prev -> if P.gt_range ~range point || P.in_range ~range point then prev else find (Some node) xs) in find None doc.Doc.nodes let node = find end module LC = Make (LineCol) module O = Make (Offset) (* XXX: We need to split this module in two: one that handles the extraction of information from a document, and the other that further processes it, like for goals, possibly executing Coq code. *) (* Related to goal request *) module Goals = struct let get_goals_unit ~st = let ppx _env _sigma _x = () in Coq.State.lemmas ~st |> Option.map (Coq.Goals.reify ~ppx) let get_goals ~st = let ppx env sigma x = (env, sigma, x) in Coq.State.lemmas ~st |> Option.map (Coq.Goals.reify ~ppx) let pr_goal ~token st = let ppx env sigma x = let { Coq.Protect.E.r; feedback } = Coq.Print.pr_letype_env ~token ~goal_concl_style:true env sigma x in (* XXX: We ideally want to thread this in the monad too, but it'd be better if the printer was more functional *) Io.Log.feedback "pr_goal:ppx" feedback; match r with | Coq.Protect.R.Completed (Ok pr) -> pr | Coq.Protect.R.Completed (Error _pr) -> Pp.str "printer failed!" | Interrupted -> Pp.str "printer interrupted!" in let lemmas = Coq.State.lemmas ~st in Option.map (Coq.Goals.reify ~ppx) lemmas (* We need to use [in_state] here due to printing not being pure, but we want a better design here eventually *) let goals ~token ~st = Coq.State.in_state ~token ~st ~f:(pr_goal ~token) st let program ~st = Coq.State.program ~st end module Completion = struct (* XXX: This belongs in Coq *) let pr_extref gr = match gr with | Globnames.TrueGlobal gr -> Printer.pr_global gr | Globnames.Abbrev kn -> Names.KerName.print kn (* XXX This may fail when passed "foo." for example, so more sanitizing is needed *) let to_qualid p = try Some (Libnames.qualid_of_string p) with _ -> None let candidates ~token ~st prefix = let ( let* ) = Option.bind in Coq.State.in_state ~token ~st prefix ~f:(fun prefix -> let* p = to_qualid prefix in Nametab.completion_canditates p |> List.map (fun x -> Pp.string_of_ppcmds (pr_extref x)) |> some) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>