package coq-lsp

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file state.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
type t = Vernacstate.t

(* EJGA: This requires patches to Coq, they are in the lsp_debug branch

   let any_out oc (a : Summary.Frozen.any) = (* let (Summary.Frozen.Any (tag,
   _value)) = a in *) (* let name = Summary.Dyn.repr tag in *) (*
   Lsp.Io.log_error "marshall" name; *) Marshal.to_channel oc a []

   let _frozen_out oc (s : Summary.Frozen.t) = Summary.Frozen.iter (any_out oc)
   s

   let summary_out oc (s : Summary.frozen) = let { Summary.summaries; ml_module
   } = s in (* frozen_out oc summaries; *) Marshal.to_channel oc summaries [];
   Marshal.to_channel oc ml_module []; ()

   let summary_in ic : Summary.frozen = let summaries = Marshal.from_channel ic
   in let ml_module = Marshal.from_channel ic in { Summary.summaries; ml_module
   }

   let system_out oc ((l : Lib.frozen), (s : Summary.frozen)) = (* Both parts of
   system have functional values !! Likely due to Lib.frozen having a
   Summary.frozen inside? *) Marshal.to_channel oc l [ Closures ]; summary_out
   oc s; ()

   let system_in ic : Vernacstate.System.t = let l : Lib.frozen =
   Marshal.from_channel ic in let s : Summary.frozen = summary_in ic in (l, s)

   let _marshal_out oc st = let { Vernacstate.parsing; system; lemmas; program;
   opaques; shallow } = st in Marshal.to_channel oc parsing []; system_out oc
   system; (* lemmas doesn't !! *) Marshal.to_channel oc lemmas [];
   Marshal.to_channel oc program []; Marshal.to_channel oc opaques [];
   Marshal.to_channel oc shallow []; ()

   let _marshal_in ic = let parsing = Marshal.from_channel ic in let system =
   system_in ic in let lemmas = Marshal.from_channel ic in let program =
   Marshal.from_channel ic in let opaques = Marshal.from_channel ic in let
   shallow = Marshal.from_channel ic in { Vernacstate.parsing; system; lemmas;
   program; opaques; shallow } *)

let marshal_in ic : t = Marshal.from_channel ic
let marshal_out oc st = Marshal.to_channel oc st []
let of_coq x = x
let to_coq x = x

(* let compare x y = compare x y *)
let compare (x : t) (y : t) =
  let open Vernacstate in
  let { synterp = ss1
      ; interp = { system = is1; lemmas = l1; program = g1; opaques = o1 }
      } =
    x
  in
  let { synterp = ss2
      ; interp = { system = is2; lemmas = l2; program = g2; opaques = o2 }
      } =
    y
  in
  if ss1 == ss2 && is1 == is2 && l1 == l2 && g1 == g2 && o1 == o2 then 0 else 1

let equal x y = compare x y = 0

let hash x =
  (* OCaml's defaults are 10, 100, but not so good for us, much improved
     settings are below (best try so far) *)
  let meaningful, total = (256, 256) in
  Hashtbl.hash_param meaningful total x

let mode ~st =
  Option.map
    (fun _ -> Synterp.get_default_proof_mode ())
    st.Vernacstate.interp.lemmas

let parsing ~st = Vernacstate.(Synterp.parsing st.synterp)

module Proof_ = Proof

module Proof = struct
  type t = Vernacstate.LemmaStack.t

  let to_coq x = x
  let equal x y = x == y

  (* OCaml's defaults are 10, 100, we use these values as to give better
     precision for petanque-like users, it should not impact interactive use but
     we gotta measure it *)
  let hash x =
    let meaningful, total = (128, 256) in
    Hashtbl.hash_param meaningful total x
end

let lemmas ~st = st.Vernacstate.interp.lemmas

let program ~st =
  NeList.head st.Vernacstate.interp.program |> Declare.OblState.view

let drop_proof ~st =
  let open Vernacstate in
  let interp =
    { st.interp with
      lemmas =
        Option.cata
          (fun s -> snd @@ Vernacstate.LemmaStack.pop s)
          None st.interp.lemmas
    }
  in
  { st with interp }

let drop_all_proofs ~st =
  let open Vernacstate in
  let interp = { st.interp with lemmas = None } in
  { st with interp }

let in_state ~token ~st ~f a =
  let f a =
    Vernacstate.unfreeze_full_state st;
    f a
  in
  Protect.eval ~token ~f a

let in_stateM ~token ~st ~f a =
  let open Protect.E.O in
  let* () = Protect.eval ~token ~f:Vernacstate.unfreeze_full_state st in
  f a

let admit ~st () =
  let () = Vernacstate.unfreeze_full_state st in
  match st.Vernacstate.interp.lemmas with
  | None -> st
  | Some lemmas ->
    let pm = NeList.head st.Vernacstate.interp.program in
    let proof, lemmas = Vernacstate.(LemmaStack.pop lemmas) in
    let pm = Declare.Proof.save_admitted ~pm ~proof in
    let program = NeList.map_head (fun _ -> pm) st.Vernacstate.interp.program in
    let st = Vernacstate.freeze_full_state () in
    { st with interp = { st.interp with lemmas; program } }

let admit ~token ~st = Protect.eval ~token ~f:(admit ~st) ()

let admit_goal ~st () =
  let () = Vernacstate.unfreeze_full_state st in
  match st.Vernacstate.interp.lemmas with
  | None -> st
  | Some lemmas ->
    let f pf = Declare.Proof.by Proofview.give_up pf |> fst in
    let lemmas = Some (Vernacstate.LemmaStack.map_top ~f lemmas) in
    { st with interp = { st.interp with lemmas } }

let admit_goal ~token ~st = Protect.eval ~token ~f:(admit_goal ~st) ()

let count_edges univ =
  let univ = UGraph.repr univ in
  Univ.Level.Map.fold
    (fun _ node acc ->
      acc
      +
      match node with
      | UGraph.Alias _ -> 1
      | Node m -> Univ.Level.Map.cardinal m)
    univ
    (Univ.Level.Map.cardinal univ)

let info_universes ~token ~st =
  let open Protect.E.O in
  let+ univ = in_state ~token ~st ~f:Global.universes () in
  let univs = UGraph.domain univ in
  let nuniv = Univ.Level.Set.cardinal univs in
  let nconst = count_edges univ in
  (nuniv, nconst)
OCaml

Innovation. Community. Security.