package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.1.tar.gz
md5=0cfaa70f569be9494d24c829e6555d46
sha512=8ee967c636b67b22a4f34115871d8f9b9114df309afc9ddf5f61275251088c6e21f6cf745811df75554d30f4cebb6682f23eeb2e88b771330c4b60ce3f6bf5e2
doc/src/micromega_plugin/coq_micromega.ml.html
Source file coq_micromega.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* ** Toplevel definition of tactics ** *) (* *) (* - Modules Mc, Env, Cache, CacheZ *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-2019 *) (* *) (************************************************************************) open Pp open Names open Goptions open Mutils open Constr open Context open Tactypes open McPrinter module ERelevance = EConstr.ERelevance (** * Debug flag *) let debug = false (* Limit the proof search *) let max_depth = max_int let since_8_14 = Deprecation.make ~since:"8.14" () (* Search limit for provers over Q R *) let { Goptions.get = lra_proof_depth } = declare_int_option_and_ref ~depr:since_8_14 ~key:["Lra"; "Depth"] ~value:max_depth () (* Search limit for provers over Z *) let { Goptions.get = lia_enum } = declare_bool_option_and_ref ~depr:since_8_14 ~key:["Lia"; "Enum"] ~value:true () let { Goptions.get = lia_proof_depth } = declare_int_option_and_ref ~depr:since_8_14 ~key:["Lia"; "Depth"] ~value:max_depth () let get_lia_option () = (true, lia_enum (), lia_proof_depth ()) (* Enable/disable caches *) let { Goptions.get = use_lia_cache } = declare_bool_option_and_ref ~key:["Lia"; "Cache"] ~value:true () let { Goptions.get = use_nia_cache } = declare_bool_option_and_ref ~key:["Nia"; "Cache"] ~value:true () let { Goptions.get = use_nra_cache } = declare_bool_option_and_ref ~key:["Nra"; "Cache"] ~value:true () let use_csdp_cache () = true (** * Initialize a tag type to the Tag module declaration (see Mutils). *) type tag = Tag.t module Mc = Micromega (** * An atom is of the form: * pExpr1 \{<,>,=,<>,<=,>=\} pExpr2 * where pExpr1, pExpr2 are polynomial expressions (see Micromega). pExprs are * parametrized by 'cst, which is used as the type of constants. *) type 'cst atom = 'cst Mc.formula type 'cst formula = ('cst atom, EConstr.constr, tag * EConstr.constr, Names.Id.t) Mc.gFormula type 'cst clause = ('cst Mc.nFormula, tag * EConstr.constr) Mc.clause type 'cst cnf = ('cst Mc.nFormula, tag * EConstr.constr) Mc.cnf let pp_kind o = function | Mc.IsProp -> output_string o "Prop" | Mc.IsBool -> output_string o "bool" let kind_is_prop = function Mc.IsProp -> true | Mc.IsBool -> false let rec pp_formula o (f : 'cst formula) = Mc.( match f with | TT k -> output_string o (if kind_is_prop k then "True" else "true") | FF k -> output_string o (if kind_is_prop k then "False" else "false") | X (k, c) -> Printf.fprintf o "X %a" pp_kind k | A (_, _, (t, _)) -> Printf.fprintf o "A(%a)" Tag.pp t | AND (_, f1, f2) -> Printf.fprintf o "AND(%a,%a)" pp_formula f1 pp_formula f2 | OR (_, f1, f2) -> Printf.fprintf o "OR(%a,%a)" pp_formula f1 pp_formula f2 | IMPL (_, f1, n, f2) -> Printf.fprintf o "IMPL(%a,%s,%a)" pp_formula f1 (match n with Some id -> Names.Id.to_string id | None -> "") pp_formula f2 | NOT (_, f) -> Printf.fprintf o "NOT(%a)" pp_formula f | IFF (_, f1, f2) -> Printf.fprintf o "IFF(%a,%a)" pp_formula f1 pp_formula f2 | EQ (f1, f2) -> Printf.fprintf o "EQ(%a,%a)" pp_formula f1 pp_formula f2) (** * Given a set of integers s=\{i0,...,iN\} and a list m, return the list of * elements of m that are at position i0,...,iN. *) let selecti s m = let rec xselecti i m = match m with | [] -> [] | e :: m -> if ISet.mem i s then e :: xselecti (i + 1) m else xselecti (i + 1) m in xselecti 0 m (** * MODULE: Mapping of the Coq data-strustures into Caml and Caml extracted * code. This includes initializing Caml variables based on Coq terms, parsing * various Coq expressions into Caml, and dumping Caml expressions into Coq. * * Opened here and in csdpcert.ml. *) (** * Initialization : a large amount of Caml symbols are derived from * ZMicromega.v *) let constr_of_ref str = EConstr.of_constr (UnivGen.constr_of_monomorphic_global (Global.env ()) (Coqlib.lib_ref str)) let coq_and = lazy (constr_of_ref "core.and.type") let coq_or = lazy (constr_of_ref "core.or.type") let coq_not = lazy (constr_of_ref "core.not.type") let coq_iff = lazy (constr_of_ref "core.iff.type") let coq_True = lazy (constr_of_ref "core.True.type") let coq_False = lazy (constr_of_ref "core.False.type") let coq_bool = lazy (constr_of_ref "core.bool.type") let coq_true = lazy (constr_of_ref "core.bool.true") let coq_false = lazy (constr_of_ref "core.bool.false") let coq_andb = lazy (constr_of_ref "core.bool.andb") let coq_orb = lazy (constr_of_ref "core.bool.orb") let coq_implb = lazy (constr_of_ref "core.bool.implb") let coq_eqb = lazy (constr_of_ref "core.bool.eqb") let coq_negb = lazy (constr_of_ref "core.bool.negb") let coq_cons = lazy (constr_of_ref "core.list.cons") let coq_nil = lazy (constr_of_ref "core.list.nil") let coq_list = lazy (constr_of_ref "core.list.type") let coq_O = lazy (constr_of_ref "num.nat.O") let coq_S = lazy (constr_of_ref "num.nat.S") let coq_nat = lazy (constr_of_ref "num.nat.type") let coq_unit = lazy (constr_of_ref "core.unit.type") (* let coq_option = lazy (init_constant "option")*) let coq_None = lazy (constr_of_ref "core.option.None") let coq_tt = lazy (constr_of_ref "core.unit.tt") let coq_Inl = lazy (constr_of_ref "core.sum.inl") let coq_Inr = lazy (constr_of_ref "core.sum.inr") let coq_N0 = lazy (constr_of_ref "num.N.N0") let coq_Npos = lazy (constr_of_ref "num.N.Npos") let coq_xH = lazy (constr_of_ref "num.pos.xH") let coq_xO = lazy (constr_of_ref "num.pos.xO") let coq_xI = lazy (constr_of_ref "num.pos.xI") let coq_Z = lazy (constr_of_ref "num.Z.type") let coq_ZERO = lazy (constr_of_ref "num.Z.Z0") let coq_POS = lazy (constr_of_ref "num.Z.Zpos") let coq_NEG = lazy (constr_of_ref "num.Z.Zneg") let coq_Q = lazy (constr_of_ref "rat.Q.type") let coq_Qmake = lazy (constr_of_ref "rat.Q.Qmake") let coq_R = lazy (constr_of_ref "reals.R.type") let coq_Rcst = lazy (constr_of_ref "micromega.Rcst.type") let coq_C0 = lazy (constr_of_ref "micromega.Rcst.C0") let coq_C1 = lazy (constr_of_ref "micromega.Rcst.C1") let coq_CQ = lazy (constr_of_ref "micromega.Rcst.CQ") let coq_CZ = lazy (constr_of_ref "micromega.Rcst.CZ") let coq_CPlus = lazy (constr_of_ref "micromega.Rcst.CPlus") let coq_CMinus = lazy (constr_of_ref "micromega.Rcst.CMinus") let coq_CMult = lazy (constr_of_ref "micromega.Rcst.CMult") let coq_CPow = lazy (constr_of_ref "micromega.Rcst.CPow") let coq_CInv = lazy (constr_of_ref "micromega.Rcst.CInv") let coq_COpp = lazy (constr_of_ref "micromega.Rcst.COpp") let coq_R0 = lazy (constr_of_ref "reals.R.R0") let coq_R1 = lazy (constr_of_ref "reals.R.R1") let coq_proofTerm = lazy (constr_of_ref "micromega.ZArithProof.type") let coq_doneProof = lazy (constr_of_ref "micromega.ZArithProof.DoneProof") let coq_ratProof = lazy (constr_of_ref "micromega.ZArithProof.RatProof") let coq_cutProof = lazy (constr_of_ref "micromega.ZArithProof.CutProof") let coq_splitProof = lazy (constr_of_ref "micromega.ZArithProof.SplitProof") let coq_enumProof = lazy (constr_of_ref "micromega.ZArithProof.EnumProof") let coq_ExProof = lazy (constr_of_ref "micromega.ZArithProof.ExProof") let coq_IsProp = lazy (constr_of_ref "micromega.kind.isProp") let coq_IsBool = lazy (constr_of_ref "micromega.kind.isBool") let coq_Zgt = lazy (constr_of_ref "num.Z.gt") let coq_Zge = lazy (constr_of_ref "num.Z.ge") let coq_Zle = lazy (constr_of_ref "num.Z.le") let coq_Zlt = lazy (constr_of_ref "num.Z.lt") let coq_Zgtb = lazy (constr_of_ref "num.Z.gtb") let coq_Zgeb = lazy (constr_of_ref "num.Z.geb") let coq_Zleb = lazy (constr_of_ref "num.Z.leb") let coq_Zltb = lazy (constr_of_ref "num.Z.ltb") let coq_Zeqb = lazy (constr_of_ref "num.Z.eqb") let coq_eq = lazy (constr_of_ref "core.eq.type") let coq_Zplus = lazy (constr_of_ref "num.Z.add") let coq_Zminus = lazy (constr_of_ref "num.Z.sub") let coq_Zopp = lazy (constr_of_ref "num.Z.opp") let coq_Zmult = lazy (constr_of_ref "num.Z.mul") let coq_Zpower = lazy (constr_of_ref "num.Z.pow") let coq_Qle = lazy (constr_of_ref "rat.Q.Qle") let coq_Qlt = lazy (constr_of_ref "rat.Q.Qlt") let coq_Qeq = lazy (constr_of_ref "rat.Q.Qeq") let coq_Qplus = lazy (constr_of_ref "rat.Q.Qplus") let coq_Qminus = lazy (constr_of_ref "rat.Q.Qminus") let coq_Qopp = lazy (constr_of_ref "rat.Q.Qopp") let coq_Qmult = lazy (constr_of_ref "rat.Q.Qmult") let coq_Qpower = lazy (constr_of_ref "rat.Q.Qpower") let coq_Rgt = lazy (constr_of_ref "reals.R.Rgt") let coq_Rge = lazy (constr_of_ref "reals.R.Rge") let coq_Rle = lazy (constr_of_ref "reals.R.Rle") let coq_Rlt = lazy (constr_of_ref "reals.R.Rlt") let coq_Rplus = lazy (constr_of_ref "reals.R.Rplus") let coq_Rminus = lazy (constr_of_ref "reals.R.Rminus") let coq_Ropp = lazy (constr_of_ref "reals.R.Ropp") let coq_Rmult = lazy (constr_of_ref "reals.R.Rmult") let coq_Rinv = lazy (constr_of_ref "reals.R.Rinv") let coq_Rpower = lazy (constr_of_ref "reals.R.pow") let coq_powerZR = lazy (constr_of_ref "reals.R.powerRZ") let coq_IZR = lazy (constr_of_ref "reals.R.IZR") let coq_IQR = lazy (constr_of_ref "reals.R.Q2R") let coq_PEX = lazy (constr_of_ref "micromega.PExpr.PEX") let coq_PEc = lazy (constr_of_ref "micromega.PExpr.PEc") let coq_PEadd = lazy (constr_of_ref "micromega.PExpr.PEadd") let coq_PEopp = lazy (constr_of_ref "micromega.PExpr.PEopp") let coq_PEmul = lazy (constr_of_ref "micromega.PExpr.PEmul") let coq_PEsub = lazy (constr_of_ref "micromega.PExpr.PEsub") let coq_PEpow = lazy (constr_of_ref "micromega.PExpr.PEpow") let coq_PX = lazy (constr_of_ref "micromega.Pol.PX") let coq_Pc = lazy (constr_of_ref "micromega.Pol.Pc") let coq_Pinj = lazy (constr_of_ref "micromega.Pol.Pinj") let coq_OpEq = lazy (constr_of_ref "micromega.Op2.OpEq") let coq_OpNEq = lazy (constr_of_ref "micromega.Op2.OpNEq") let coq_OpLe = lazy (constr_of_ref "micromega.Op2.OpLe") let coq_OpLt = lazy (constr_of_ref "micromega.Op2.OpLt") let coq_OpGe = lazy (constr_of_ref "micromega.Op2.OpGe") let coq_OpGt = lazy (constr_of_ref "micromega.Op2.OpGt") let coq_PsatzLet = lazy (constr_of_ref "micromega.Psatz.PsatzLet") let coq_PsatzIn = lazy (constr_of_ref "micromega.Psatz.PsatzIn") let coq_PsatzSquare = lazy (constr_of_ref "micromega.Psatz.PsatzSquare") let coq_PsatzMulE = lazy (constr_of_ref "micromega.Psatz.PsatzMulE") let coq_PsatzMultC = lazy (constr_of_ref "micromega.Psatz.PsatzMulC") let coq_PsatzAdd = lazy (constr_of_ref "micromega.Psatz.PsatzAdd") let coq_PsatzC = lazy (constr_of_ref "micromega.Psatz.PsatzC") let coq_PsatzZ = lazy (constr_of_ref "micromega.Psatz.PsatzZ") (* let coq_GT = lazy (m_constant "GT")*) let coq_DeclaredConstant = lazy (constr_of_ref "micromega.DeclaredConstant.type") let coq_TT = lazy (constr_of_ref "micromega.GFormula.TT") let coq_FF = lazy (constr_of_ref "micromega.GFormula.FF") let coq_AND = lazy (constr_of_ref "micromega.GFormula.AND") let coq_OR = lazy (constr_of_ref "micromega.GFormula.OR") let coq_NOT = lazy (constr_of_ref "micromega.GFormula.NOT") let coq_Atom = lazy (constr_of_ref "micromega.GFormula.A") let coq_X = lazy (constr_of_ref "micromega.GFormula.X") let coq_IMPL = lazy (constr_of_ref "micromega.GFormula.IMPL") let coq_IFF = lazy (constr_of_ref "micromega.GFormula.IFF") let coq_EQ = lazy (constr_of_ref "micromega.GFormula.EQ") let coq_Formula = lazy (constr_of_ref "micromega.BFormula.type") let coq_eKind = lazy (constr_of_ref "micromega.eKind") (** * Initialization : a few Caml symbols are derived from other libraries; * QMicromega, ZArithRing, RingMicromega. *) let coq_QWitness = lazy (constr_of_ref "micromega.QWitness.type") let coq_Build = lazy (constr_of_ref "micromega.Formula.Build_Formula") let coq_Cstr = lazy (constr_of_ref "micromega.Formula.type") (** * Parsing and dumping : transformation functions between Caml and Coq * data-structures. * * dump_* functions go from Micromega to Coq terms * undump_* functions go from Coq to Micromega terms (reverse of dump_) * parse_* functions go from Coq to Micromega terms * pp_* functions pretty-print Coq terms. *) exception ParseError (* A simple but useful getter function *) let get_left_construct sigma term = match EConstr.kind sigma term with | Construct ((_, i), _) -> (i, [||]) | App (l, rst) -> ( match EConstr.kind sigma l with | Construct ((_, i), _) -> (i, rst) | _ -> raise ParseError ) | _ -> raise ParseError (* Access the Micromega module *) (* parse/dump/print from numbers up to expressions and formulas *) let rec parse_nat sigma term = let i, c = get_left_construct sigma term in match i with | 1 -> Mc.O | 2 -> Mc.S (parse_nat sigma c.(0)) | i -> raise ParseError let rec dump_nat x = match x with | Mc.O -> Lazy.force coq_O | Mc.S p -> EConstr.mkApp (Lazy.force coq_S, [|dump_nat p|]) let rec parse_positive sigma term = let i, c = get_left_construct sigma term in match i with | 1 -> Mc.XI (parse_positive sigma c.(0)) | 2 -> Mc.XO (parse_positive sigma c.(0)) | 3 -> Mc.XH | i -> raise ParseError let rec dump_positive x = match x with | Mc.XH -> Lazy.force coq_xH | Mc.XO p -> EConstr.mkApp (Lazy.force coq_xO, [|dump_positive p|]) | Mc.XI p -> EConstr.mkApp (Lazy.force coq_xI, [|dump_positive p|]) let parse_n sigma term = let i, c = get_left_construct sigma term in match i with | 1 -> Mc.N0 | 2 -> Mc.Npos (parse_positive sigma c.(0)) | i -> raise ParseError let dump_n x = match x with | Mc.N0 -> Lazy.force coq_N0 | Mc.Npos p -> EConstr.mkApp (Lazy.force coq_Npos, [|dump_positive p|]) (** [is_ground_term env sigma term] holds if the term [term] is an instance of the typeclass [DeclConstant.GT term] i.e. built from user-defined constants and functions. NB: This mechanism can be used to customise the reification process to decide what to consider as a constant (see [parse_constant]) *) let is_declared_term env evd t = match EConstr.kind evd t with | Const _ | Construct _ -> ( (* Restrict typeclass resolution to trivial cases *) let typ = Retyping.get_type_of env evd t in try ignore (Typeclasses.resolve_one_typeclass env evd (EConstr.mkApp (Lazy.force coq_DeclaredConstant, [|typ; t|]))); true with Not_found -> false ) | _ -> false let rec is_ground_term env evd term = match EConstr.kind evd term with | App (c, args) -> is_declared_term env evd c && Array.for_all (is_ground_term env evd) args | Const _ | Construct _ -> is_declared_term env evd term | _ -> false let parse_z sigma term = let i, c = get_left_construct sigma term in match i with | 1 -> Mc.Z0 | 2 -> Mc.Zpos (parse_positive sigma c.(0)) | 3 -> Mc.Zneg (parse_positive sigma c.(0)) | i -> raise ParseError let dump_z x = match x with | Mc.Z0 -> Lazy.force coq_ZERO | Mc.Zpos p -> EConstr.mkApp (Lazy.force coq_POS, [|dump_positive p|]) | Mc.Zneg p -> EConstr.mkApp (Lazy.force coq_NEG, [|dump_positive p|]) let dump_q q = EConstr.mkApp ( Lazy.force coq_Qmake , [|dump_z q.Micromega.qnum; dump_positive q.Micromega.qden|] ) let parse_q sigma term = match EConstr.kind sigma term with | App (c, args) -> if EConstr.eq_constr sigma c (Lazy.force coq_Qmake) then {Mc.qnum = parse_z sigma args.(0); Mc.qden = parse_positive sigma args.(1)} else raise ParseError | _ -> raise ParseError let rec pp_Rcst o cst = match cst with | Mc.C0 -> output_string o "C0" | Mc.C1 -> output_string o "C1" | Mc.CQ q -> output_string o "CQ _" | Mc.CZ z -> pp_z o z | Mc.CPlus (x, y) -> Printf.fprintf o "(%a + %a)" pp_Rcst x pp_Rcst y | Mc.CMinus (x, y) -> Printf.fprintf o "(%a - %a)" pp_Rcst x pp_Rcst y | Mc.CMult (x, y) -> Printf.fprintf o "(%a * %a)" pp_Rcst x pp_Rcst y | Mc.CPow (x, y) -> Printf.fprintf o "(%a ^ _)" pp_Rcst x | Mc.CInv t -> Printf.fprintf o "(/ %a)" pp_Rcst t | Mc.COpp t -> Printf.fprintf o "(- %a)" pp_Rcst t let rec dump_Rcst cst = match cst with | Mc.C0 -> Lazy.force coq_C0 | Mc.C1 -> Lazy.force coq_C1 | Mc.CQ q -> EConstr.mkApp (Lazy.force coq_CQ, [|dump_q q|]) | Mc.CZ z -> EConstr.mkApp (Lazy.force coq_CZ, [|dump_z z|]) | Mc.CPlus (x, y) -> EConstr.mkApp (Lazy.force coq_CPlus, [|dump_Rcst x; dump_Rcst y|]) | Mc.CMinus (x, y) -> EConstr.mkApp (Lazy.force coq_CMinus, [|dump_Rcst x; dump_Rcst y|]) | Mc.CMult (x, y) -> EConstr.mkApp (Lazy.force coq_CMult, [|dump_Rcst x; dump_Rcst y|]) | Mc.CPow (x, y) -> EConstr.mkApp ( Lazy.force coq_CPow , [| dump_Rcst x ; ( match y with | Mc.Inl z -> EConstr.mkApp ( Lazy.force coq_Inl , [|Lazy.force coq_Z; Lazy.force coq_nat; dump_z z|] ) | Mc.Inr n -> EConstr.mkApp ( Lazy.force coq_Inr , [|Lazy.force coq_Z; Lazy.force coq_nat; dump_nat n|] ) ) |] ) | Mc.CInv t -> EConstr.mkApp (Lazy.force coq_CInv, [|dump_Rcst t|]) | Mc.COpp t -> EConstr.mkApp (Lazy.force coq_COpp, [|dump_Rcst t|]) let rec dump_list typ dump_elt l = match l with | [] -> EConstr.mkApp (Lazy.force coq_nil, [|typ|]) | e :: l -> EConstr.mkApp (Lazy.force coq_cons, [|typ; dump_elt e; dump_list typ dump_elt l|]) let undump_var = parse_positive let dump_var = dump_positive let undump_expr undump_constant sigma e = let is c c' = EConstr.eq_constr sigma c (Lazy.force c') in let rec xundump e = match EConstr.kind sigma e with | App (c, [|_; n|]) when is c coq_PEX -> Mc.PEX (undump_var sigma n) | App (c, [|_; z|]) when is c coq_PEc -> Mc.PEc (undump_constant sigma z) | App (c, [|_; e1; e2|]) when is c coq_PEadd -> Mc.PEadd (xundump e1, xundump e2) | App (c, [|_; e1; e2|]) when is c coq_PEsub -> Mc.PEsub (xundump e1, xundump e2) | App (c, [|_; e|]) when is c coq_PEopp -> Mc.PEopp (xundump e) | App (c, [|_; e1; e2|]) when is c coq_PEmul -> Mc.PEmul (xundump e1, xundump e2) | App (c, [|_; e; n|]) when is c coq_PEpow -> Mc.PEpow (xundump e, parse_n sigma n) | _ -> raise ParseError in xundump e let dump_expr typ dump_z e = let rec dump_expr e = match e with | Mc.PEX n -> EConstr.mkApp (Lazy.force coq_PEX, [|typ; dump_var n|]) | Mc.PEc z -> EConstr.mkApp (Lazy.force coq_PEc, [|typ; dump_z z|]) | Mc.PEadd (e1, e2) -> EConstr.mkApp (Lazy.force coq_PEadd, [|typ; dump_expr e1; dump_expr e2|]) | Mc.PEsub (e1, e2) -> EConstr.mkApp (Lazy.force coq_PEsub, [|typ; dump_expr e1; dump_expr e2|]) | Mc.PEopp e -> EConstr.mkApp (Lazy.force coq_PEopp, [|typ; dump_expr e|]) | Mc.PEmul (e1, e2) -> EConstr.mkApp (Lazy.force coq_PEmul, [|typ; dump_expr e1; dump_expr e2|]) | Mc.PEpow (e, n) -> EConstr.mkApp (Lazy.force coq_PEpow, [|typ; dump_expr e; dump_n n|]) in dump_expr e let dump_pol typ dump_c e = let rec dump_pol e = match e with | Mc.Pc n -> EConstr.mkApp (Lazy.force coq_Pc, [|typ; dump_c n|]) | Mc.Pinj (p, pol) -> EConstr.mkApp (Lazy.force coq_Pinj, [|typ; dump_positive p; dump_pol pol|]) | Mc.PX (pol1, p, pol2) -> EConstr.mkApp ( Lazy.force coq_PX , [|typ; dump_pol pol1; dump_positive p; dump_pol pol2|] ) in dump_pol e (* let pp_clause pp_c o (f: 'cst clause) = List.iter (fun ((p,_),(t,_)) -> Printf.fprintf o "(%a @%a)" (pp_pol pp_c) p Tag.pp t) f *) let pp_clause_tag o (f : 'cst clause) = List.iter (fun ((p, _), (t, _)) -> Printf.fprintf o "(_ @%a)" Tag.pp t) f (* let pp_cnf pp_c o (f:'cst cnf) = List.iter (fun l -> Printf.fprintf o "[%a]" (pp_clause pp_c) l) f *) let pp_cnf_tag o (f : 'cst cnf) = List.iter (fun l -> Printf.fprintf o "[%a]" pp_clause_tag l) f let dump_psatz typ dump_z e = let z = Lazy.force typ in let rec dump_cone e = match e with | Mc.PsatzLet (e1, e2) -> EConstr.mkApp (Lazy.force coq_PsatzLet, [|z; dump_cone e1; dump_cone e2|]) | Mc.PsatzIn n -> EConstr.mkApp (Lazy.force coq_PsatzIn, [|z; dump_nat n|]) | Mc.PsatzMulC (e, c) -> EConstr.mkApp (Lazy.force coq_PsatzMultC, [|z; dump_pol z dump_z e; dump_cone c|]) | Mc.PsatzSquare e -> EConstr.mkApp (Lazy.force coq_PsatzSquare, [|z; dump_pol z dump_z e|]) | Mc.PsatzAdd (e1, e2) -> EConstr.mkApp (Lazy.force coq_PsatzAdd, [|z; dump_cone e1; dump_cone e2|]) | Mc.PsatzMulE (e1, e2) -> EConstr.mkApp (Lazy.force coq_PsatzMulE, [|z; dump_cone e1; dump_cone e2|]) | Mc.PsatzC p -> EConstr.mkApp (Lazy.force coq_PsatzC, [|z; dump_z p|]) | Mc.PsatzZ -> EConstr.mkApp (Lazy.force coq_PsatzZ, [|z|]) in dump_cone e let undump_op sigma c = let i, c = get_left_construct sigma c in match i with | 1 -> Mc.OpEq | 2 -> Mc.OpNEq | 3 -> Mc.OpLe | 4 -> Mc.OpGe | 5 -> Mc.OpLt | 6 -> Mc.OpGt | _ -> raise ParseError let dump_op = function | Mc.OpEq -> Lazy.force coq_OpEq | Mc.OpNEq -> Lazy.force coq_OpNEq | Mc.OpLe -> Lazy.force coq_OpLe | Mc.OpGe -> Lazy.force coq_OpGe | Mc.OpGt -> Lazy.force coq_OpGt | Mc.OpLt -> Lazy.force coq_OpLt let undump_cstr undump_constant sigma c = let is c c' = EConstr.eq_constr sigma c (Lazy.force c') in match EConstr.kind sigma c with | App (c, [|_; e1; o; e2|]) when is c coq_Build -> {Mc.flhs = undump_expr undump_constant sigma e1; Mc.fop = undump_op sigma o; Mc.frhs = undump_expr undump_constant sigma e2} | _ -> raise ParseError let dump_cstr typ dump_constant {Mc.flhs = e1; Mc.fop = o; Mc.frhs = e2} = EConstr.mkApp ( Lazy.force coq_Build , [| typ ; dump_expr typ dump_constant e1 ; dump_op o ; dump_expr typ dump_constant e2 |] ) let assoc_const sigma x l = try snd (List.find (fun (x', y) -> EConstr.eq_constr sigma x (Lazy.force x')) l) with Not_found -> raise ParseError let zop_table_prop = [ (coq_Zgt, Mc.OpGt) ; (coq_Zge, Mc.OpGe) ; (coq_Zlt, Mc.OpLt) ; (coq_Zle, Mc.OpLe) ] let zop_table_bool = [ (coq_Zgtb, Mc.OpGt) ; (coq_Zgeb, Mc.OpGe) ; (coq_Zltb, Mc.OpLt) ; (coq_Zleb, Mc.OpLe) ; (coq_Zeqb, Mc.OpEq) ] let rop_table_prop = [ (coq_Rgt, Mc.OpGt) ; (coq_Rge, Mc.OpGe) ; (coq_Rlt, Mc.OpLt) ; (coq_Rle, Mc.OpLe) ] let rop_table_bool = [] let qop_table_prop = [(coq_Qlt, Mc.OpLt); (coq_Qle, Mc.OpLe); (coq_Qeq, Mc.OpEq)] let qop_table_bool = [] type gl = Environ.env * Evd.evar_map let is_convertible env sigma t1 t2 = Reductionops.is_conv env sigma t1 t2 let parse_operator table_prop table_bool has_equality typ (env, sigma) k (op, args) = match args with | [|a1; a2|] -> ( assoc_const sigma op (match k with Mc.IsProp -> table_prop | Mc.IsBool -> table_bool) , a1 , a2 ) | [|ty; a1; a2|] -> if has_equality && EConstr.eq_constr sigma op (Lazy.force coq_eq) && is_convertible env sigma ty (Lazy.force typ) then (Mc.OpEq, args.(1), args.(2)) else raise ParseError | _ -> raise ParseError let parse_zop = parse_operator zop_table_prop zop_table_bool true coq_Z let parse_rop = parse_operator rop_table_prop [] true coq_R let parse_qop = parse_operator qop_table_prop [] false coq_R type 'a op = | Binop of ('a Mc.pExpr -> 'a Mc.pExpr -> 'a Mc.pExpr) | Opp | Power | Ukn of string let assoc_ops sigma x l = try snd (List.find (fun (x', y) -> EConstr.eq_constr sigma x (Lazy.force x')) l) with Not_found -> Ukn "Oups" (** * MODULE: Env is for environment. *) module Env = struct type t = { vars : (EConstr.t * Mc.kind) list ; (* The list represents a mapping from EConstr.t to indexes. *) gl : gl (* The evar_map may be updated due to unification of universes *) } let empty gl = {vars = []; gl} (** [eq_constr gl x y] returns an updated [gl] if x and y can be unified *) let eq_constr (env, sigma) x y = match EConstr.eq_constr_universes_proj env sigma x y with | Some csts -> ( let csts = UnivProblem.Set.force csts in match Evd.add_universe_constraints sigma csts with | sigma -> Some (env, sigma) | exception UGraph.UniverseInconsistency _ -> None ) | None -> None let compute_rank_add env v is_prop = let rec add gl vars n v = match vars with | [] -> (gl, [(v, is_prop)], n) | (e, b) :: l -> ( match eq_constr gl e v with | Some gl' -> (gl', vars, n) | None -> let gl, l', n = add gl l (n + 1) v in (gl, (e, b) :: l', n) ) in let gl', vars', n = add env.gl env.vars 1 v in ({vars = vars'; gl = gl'}, CamlToCoq.positive n) let get_rank env v = let gl = env.gl in let rec get_rank env n = match env with | [] -> raise (Invalid_argument "get_rank") | (e, _) :: l -> ( match eq_constr gl e v with Some _ -> n | None -> get_rank l (n + 1) ) in get_rank env.vars 1 let elements env = env.vars (* let string_of_env gl env = let rec string_of_env i env acc = match env with | [] -> acc | e::env -> string_of_env (i+1) env (IMap.add i (Pp.string_of_ppcmds (Printer.pr_econstr_env gl.env gl.sigma e)) acc) in string_of_env 1 env IMap.empty *) let pp (genv, sigma) env = let ppl = List.mapi (fun i (e, _) -> Pp.str "x" ++ Pp.int (i + 1) ++ Pp.str ":" ++ Printer.pr_econstr_env genv sigma e) env in List.fold_right (fun e p -> e ++ Pp.str " ; " ++ p) ppl (Pp.str "\n") end (* MODULE END: Env *) (** * This is the big generic function for expression parsers. *) let parse_expr (genv, sigma) parse_constant parse_exp ops_spec env term = if debug then Feedback.msg_debug (Pp.str "parse_expr: " ++ Printer.pr_leconstr_env genv sigma term); let parse_variable env term = let env, n = Env.compute_rank_add env term Mc.IsBool in (Mc.PEX n, env) in let rec parse_expr env term = let combine env op (t1, t2) = let expr1, env = parse_expr env t1 in let expr2, env = parse_expr env t2 in (op expr1 expr2, env) in try (Mc.PEc (parse_constant (genv, sigma) term), env) with ParseError -> ( match EConstr.kind sigma term with | App (t, args) -> ( match EConstr.kind sigma t with | Const c -> ( match assoc_ops sigma t ops_spec with | Binop f -> combine env f (args.(0), args.(1)) | Opp -> let expr, env = parse_expr env args.(0) in (Mc.PEopp expr, env) | Power -> ( try let expr, env = parse_expr env args.(0) in let power = parse_exp expr args.(1) in (power, env) with ParseError -> (* if the exponent is a variable *) let env, n = Env.compute_rank_add env term Mc.IsBool in (Mc.PEX n, env) ) | Ukn s -> if debug then ( Printf.printf "unknown op: %s\n" s; flush stdout ); let env, n = Env.compute_rank_add env term Mc.IsBool in (Mc.PEX n, env) ) | _ -> parse_variable env term ) | _ -> parse_variable env term ) in parse_expr env term let zop_spec = [ (coq_Zplus, Binop (fun x y -> Mc.PEadd (x, y))) ; (coq_Zminus, Binop (fun x y -> Mc.PEsub (x, y))) ; (coq_Zmult, Binop (fun x y -> Mc.PEmul (x, y))) ; (coq_Zopp, Opp) ; (coq_Zpower, Power) ] let qop_spec = [ (coq_Qplus, Binop (fun x y -> Mc.PEadd (x, y))) ; (coq_Qminus, Binop (fun x y -> Mc.PEsub (x, y))) ; (coq_Qmult, Binop (fun x y -> Mc.PEmul (x, y))) ; (coq_Qopp, Opp) ; (coq_Qpower, Power) ] let rop_spec = [ (coq_Rplus, Binop (fun x y -> Mc.PEadd (x, y))) ; (coq_Rminus, Binop (fun x y -> Mc.PEsub (x, y))) ; (coq_Rmult, Binop (fun x y -> Mc.PEmul (x, y))) ; (coq_Ropp, Opp) ; (coq_Rpower, Power) ] let parse_constant parse ((genv : Environ.env), sigma) t = parse sigma t (** [parse_more_constant parse gl t] returns the reification of term [t]. If [t] is a ground term, then it is first reduced to normal form before using a 'syntactic' parser *) let parse_more_constant parse (genv, sigma) t = try parse (genv, sigma) t with ParseError -> if debug then Feedback.msg_debug Pp.(str "try harder"); if is_ground_term genv sigma t then parse (genv, sigma) (Redexpr.cbv_vm genv sigma t) else raise ParseError let zconstant = parse_constant parse_z let qconstant = parse_constant parse_q let nconstant = parse_constant parse_nat (** [parse_more_zexpr parse_constant gl] improves the parsing of exponent which can be arithmetic expressions (without variables). [parse_constant_expr] returns a constant if the argument is an expression without variables. *) let rec parse_zexpr gl = parse_expr gl zconstant (fun expr (x : EConstr.t) -> let z = parse_zconstant gl x in match z with | Mc.Zneg _ -> Mc.PEc Mc.Z0 | _ -> Mc.PEpow (expr, Mc.Z.to_N z)) zop_spec and parse_zconstant gl e = let e, _ = parse_zexpr gl (Env.empty gl) e in match Mc.zeval_const e with None -> raise ParseError | Some z -> z (* NB: R is a different story. Because it is axiomatised, reducing would not be effective. Therefore, there is a specific parser for constant over R *) let rconst_assoc = [ (coq_Rplus, fun x y -> Mc.CPlus (x, y)) ; (coq_Rminus, fun x y -> Mc.CMinus (x, y)) ; (coq_Rmult, fun x y -> Mc.CMult (x, y)) (* coq_Rdiv , (fun x y -> Mc.CMult(x,Mc.CInv y)) ;*) ] let rconstant (genv, sigma) term = let rec rconstant term = match EConstr.kind sigma term with | Const x -> if EConstr.eq_constr sigma term (Lazy.force coq_R0) then Mc.C0 else if EConstr.eq_constr sigma term (Lazy.force coq_R1) then Mc.C1 else raise ParseError | App (op, args) -> ( try (* the evaluation order is important in the following *) let f = assoc_const sigma op rconst_assoc in let a = rconstant args.(0) in let b = rconstant args.(1) in f a b with ParseError -> ( match op with | op when EConstr.eq_constr sigma op (Lazy.force coq_Rinv) -> let arg = rconstant args.(0) in if Mc.qeq_bool (Mc.q_of_Rcst arg) {Mc.qnum = Mc.Z0; Mc.qden = Mc.XH} then raise ParseError (* This is a division by zero -- no semantics *) else Mc.CInv arg | op when EConstr.eq_constr sigma op (Lazy.force coq_Rpower) -> Mc.CPow ( rconstant args.(0) , Mc.Inr (parse_more_constant nconstant (genv, sigma) args.(1)) ) | op when EConstr.eq_constr sigma op (Lazy.force coq_IQR) -> Mc.CQ (qconstant (genv, sigma) args.(0)) | op when EConstr.eq_constr sigma op (Lazy.force coq_IZR) -> Mc.CZ (parse_more_constant zconstant (genv, sigma) args.(0)) | _ -> raise ParseError ) ) | _ -> raise ParseError in rconstant term let rconstant (genv, sigma) term = if debug then Feedback.msg_debug (Pp.str "rconstant: " ++ Printer.pr_leconstr_env genv sigma term ++ fnl ()); let res = rconstant (genv, sigma) term in if debug then ( Printf.printf "rconstant -> %a\n" pp_Rcst res; flush stdout ); res let parse_qexpr gl = parse_expr gl qconstant (fun expr x -> let exp = zconstant gl x in match exp with | Mc.Zneg _ -> ( match expr with | Mc.PEc q -> Mc.PEc (Mc.qpower q exp) | _ -> raise ParseError ) | _ -> let exp = Mc.Z.to_N exp in Mc.PEpow (expr, exp)) qop_spec let parse_rexpr (genv, sigma) = parse_expr (genv, sigma) rconstant (fun expr x -> let exp = Mc.N.of_nat (parse_nat sigma x) in Mc.PEpow (expr, exp)) rop_spec let parse_arith parse_op parse_expr (k : Mc.kind) env cstr (genv, sigma) = if debug then Feedback.msg_debug ( Pp.str "parse_arith: " ++ Printer.pr_leconstr_env genv sigma cstr ++ fnl () ); match EConstr.kind sigma cstr with | App (op, args) -> let op, lhs, rhs = parse_op (genv, sigma) k (op, args) in let e1, env = parse_expr (genv, sigma) env lhs in let e2, env = parse_expr (genv, sigma) env rhs in ({Mc.flhs = e1; Mc.fop = op; Mc.frhs = e2}, env) | _ -> failwith "error : parse_arith(2)" let parse_zarith = parse_arith parse_zop parse_zexpr let parse_qarith = parse_arith parse_qop parse_qexpr let parse_rarith = parse_arith parse_rop parse_rexpr (* generic parsing of arithmetic expressions *) let mkAND b f1 f2 = Mc.AND (b, f1, f2) let mkOR b f1 f2 = Mc.OR (b, f1, f2) let mkIff b f1 f2 = Mc.IFF (b, f1, f2) let mkIMPL b f1 f2 = Mc.IMPL (b, f1, None, f2) let mkEQ f1 f2 = Mc.EQ (f1, f2) let mkformula_binary b g term f1 f2 = match (f1, f2) with | Mc.X (b1, _), Mc.X (b2, _) -> Mc.X (b, term) | _ -> g f1 f2 (** * This is the big generic function for formula parsers. *) let is_prop env sigma term = let sort = Retyping.get_sort_of env sigma term in EConstr.ESorts.is_prop sigma sort type formula_op = { op_impl : EConstr.t option (* only for booleans *) ; op_and : EConstr.t ; op_or : EConstr.t ; op_iff : EConstr.t ; op_not : EConstr.t ; op_tt : EConstr.t ; op_ff : EConstr.t } let prop_op = lazy { op_impl = None (* implication is Prod *) ; op_and = Lazy.force coq_and ; op_or = Lazy.force coq_or ; op_iff = Lazy.force coq_iff ; op_not = Lazy.force coq_not ; op_tt = Lazy.force coq_True ; op_ff = Lazy.force coq_False } let bool_op = lazy { op_impl = Some (Lazy.force coq_implb) ; op_and = Lazy.force coq_andb ; op_or = Lazy.force coq_orb ; op_iff = Lazy.force coq_eqb ; op_not = Lazy.force coq_negb ; op_tt = Lazy.force coq_true ; op_ff = Lazy.force coq_false } let is_implb sigma l o = match o with None -> false | Some c -> EConstr.eq_constr sigma l c let parse_formula (genv, sigma) parse_atom env tg term = let parse_atom b env tg t = try let at, env = parse_atom b env t (genv, sigma) in (Mc.A (b, at, (tg, t)), env, Tag.next tg) with ParseError -> (Mc.X (b, t), env, tg) in let prop_op = Lazy.force prop_op in let bool_op = Lazy.force bool_op in let eq = Lazy.force coq_eq in let bool = Lazy.force coq_bool in let rec xparse_formula op k env tg term = match EConstr.kind sigma term with | App (l, rst) -> ( match rst with | [|a; b|] when is_implb sigma l op.op_impl -> let f, env, tg = xparse_formula op k env tg a in let g, env, tg = xparse_formula op k env tg b in (mkformula_binary k (mkIMPL k) term f g, env, tg) | [|a; b|] when EConstr.eq_constr sigma l op.op_and -> let f, env, tg = xparse_formula op k env tg a in let g, env, tg = xparse_formula op k env tg b in (mkformula_binary k (mkAND k) term f g, env, tg) | [|a; b|] when EConstr.eq_constr sigma l op.op_or -> let f, env, tg = xparse_formula op k env tg a in let g, env, tg = xparse_formula op k env tg b in (mkformula_binary k (mkOR k) term f g, env, tg) | [|a; b|] when EConstr.eq_constr sigma l op.op_iff -> let f, env, tg = xparse_formula op k env tg a in let g, env, tg = xparse_formula op k env tg b in (mkformula_binary k (mkIff k) term f g, env, tg) | [|ty; a; b|] when EConstr.eq_constr sigma l eq && is_convertible genv sigma ty bool -> let f, env, tg = xparse_formula bool_op Mc.IsBool env tg a in let g, env, tg = xparse_formula bool_op Mc.IsBool env tg b in (mkformula_binary Mc.IsProp mkEQ term f g, env, tg) | [|a|] when EConstr.eq_constr sigma l op.op_not -> let f, env, tg = xparse_formula op k env tg a in (Mc.NOT (k, f), env, tg) | _ -> parse_atom k env tg term ) | Prod (typ, a, b) when kind_is_prop k && (typ.binder_name = Anonymous || EConstr.Vars.noccurn sigma 1 b) -> let f, env, tg = xparse_formula op k env tg a in let g, env, tg = xparse_formula op k env tg b in (mkformula_binary Mc.IsProp (mkIMPL Mc.IsProp) term f g, env, tg) | _ -> if EConstr.eq_constr sigma term op.op_tt then (Mc.TT k, env, tg) else if EConstr.eq_constr sigma term op.op_ff then Mc.(FF k, env, tg) else (Mc.X (k, term), env, tg) in xparse_formula prop_op Mc.IsProp env tg (*Reductionops.whd_zeta*) term (* let dump_bool b = Lazy.force (if b then coq_true else coq_false)*) let undump_kind sigma k = if EConstr.eq_constr sigma k (Lazy.force coq_IsProp) then Mc.IsProp else Mc.IsBool let dump_kind k = Lazy.force (match k with Mc.IsProp -> coq_IsProp | Mc.IsBool -> coq_IsBool) let undump_formula undump_atom tg sigma f = let is c c' = EConstr.eq_constr sigma c (Lazy.force c') in let kind k = undump_kind sigma k in let rec xundump f = match EConstr.kind sigma f with | App (c, [|_; _; _; _; k|]) when is c coq_TT -> Mc.TT (kind k) | App (c, [|_; _; _; _; k|]) when is c coq_FF -> Mc.FF (kind k) | App (c, [|_; _; _; _; k; f1; f2|]) when is c coq_AND -> Mc.AND (kind k, xundump f1, xundump f2) | App (c, [|_; _; _; _; k; f1; f2|]) when is c coq_OR -> Mc.OR (kind k, xundump f1, xundump f2) | App (c, [|_; _; _; _; k; f1; _; f2|]) when is c coq_IMPL -> Mc.IMPL (kind k, xundump f1, None, xundump f2) | App (c, [|_; _; _; _; k; f|]) when is c coq_NOT -> Mc.NOT (kind k, xundump f) | App (c, [|_; _; _; _; k; f1; f2|]) when is c coq_IFF -> Mc.IFF (kind k, xundump f1, xundump f2) | App (c, [|_; _; _; _; f1; f2|]) when is c coq_EQ -> Mc.EQ (xundump f1, xundump f2) | App (c, [|_; _; _; _; k; x; _|]) when is c coq_Atom -> Mc.A (kind k, undump_atom sigma x, tg) | App (c, [|_; _; _; _; k; x|]) when is c coq_X -> Mc.X (kind k, x) | _ -> raise ParseError in xundump f let dump_formula typ dump_atom f = let app_ctor c args = EConstr.mkApp ( Lazy.force c , Array.of_list ( typ :: Lazy.force coq_eKind :: Lazy.force coq_unit :: Lazy.force coq_unit :: args ) ) in let rec xdump f = match f with | Mc.TT k -> app_ctor coq_TT [dump_kind k] | Mc.FF k -> app_ctor coq_FF [dump_kind k] | Mc.AND (k, x, y) -> app_ctor coq_AND [dump_kind k; xdump x; xdump y] | Mc.OR (k, x, y) -> app_ctor coq_OR [dump_kind k; xdump x; xdump y] | Mc.IMPL (k, x, _, y) -> app_ctor coq_IMPL [ dump_kind k ; xdump x ; EConstr.mkApp (Lazy.force coq_None, [|Lazy.force coq_unit|]) ; xdump y ] | Mc.NOT (k, x) -> app_ctor coq_NOT [dump_kind k; xdump x] | Mc.IFF (k, x, y) -> app_ctor coq_IFF [dump_kind k; xdump x; xdump y] | Mc.EQ (x, y) -> app_ctor coq_EQ [xdump x; xdump y] | Mc.A (k, x, _) -> app_ctor coq_Atom [dump_kind k; dump_atom x; Lazy.force coq_tt] | Mc.X (k, t) -> app_ctor coq_X [dump_kind k; t] in xdump f let prop_env_of_formula gl form = Mc.( let rec doit env = function | TT _ | FF _ | A (_, _, _) -> env | X (b, t) -> fst (Env.compute_rank_add env t b) | AND (b, f1, f2) | OR (b, f1, f2) | IMPL (b, f1, _, f2) | IFF (b, f1, f2) -> doit (doit env f1) f2 | NOT (b, f) -> doit env f | EQ (f1, f2) -> doit (doit env f1) f2 in doit (Env.empty gl) form) let var_env_of_formula form = let rec vars_of_expr = function | Mc.PEX n -> ISet.singleton (CoqToCaml.positive n) | Mc.PEc z -> ISet.empty | Mc.PEadd (e1, e2) | Mc.PEmul (e1, e2) | Mc.PEsub (e1, e2) -> ISet.union (vars_of_expr e1) (vars_of_expr e2) | Mc.PEopp e | Mc.PEpow (e, _) -> vars_of_expr e in let vars_of_atom {Mc.flhs; Mc.fop; Mc.frhs} = ISet.union (vars_of_expr flhs) (vars_of_expr frhs) in Mc.( let rec doit = function | TT _ | FF _ | X _ -> ISet.empty | A (_, a, (t, c)) -> vars_of_atom a | AND (_, f1, f2) |OR (_, f1, f2) |IMPL (_, f1, _, f2) |IFF (_, f1, f2) |EQ (f1, f2) -> ISet.union (doit f1) (doit f2) | NOT (_, f) -> doit f in doit form) type 'cst dump_expr = { (* 'cst is the type of the syntactic constants *) interp_typ : EConstr.constr ; dump_cst : 'cst -> EConstr.constr ; dump_add : EConstr.constr ; dump_sub : EConstr.constr ; dump_opp : EConstr.constr ; dump_mul : EConstr.constr ; dump_pow : EConstr.constr ; dump_pow_arg : Mc.n -> EConstr.constr ; dump_op_prop : (Mc.op2 * EConstr.constr) list ; dump_op_bool : (Mc.op2 * EConstr.constr) list } let dump_zexpr = lazy { interp_typ = Lazy.force coq_Z ; dump_cst = dump_z ; dump_add = Lazy.force coq_Zplus ; dump_sub = Lazy.force coq_Zminus ; dump_opp = Lazy.force coq_Zopp ; dump_mul = Lazy.force coq_Zmult ; dump_pow = Lazy.force coq_Zpower ; dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n))) ; dump_op_prop = List.map (fun (x, y) -> (y, Lazy.force x)) zop_table_prop ; dump_op_bool = List.map (fun (x, y) -> (y, Lazy.force x)) zop_table_bool } let dump_qexpr = lazy { interp_typ = Lazy.force coq_Q ; dump_cst = dump_q ; dump_add = Lazy.force coq_Qplus ; dump_sub = Lazy.force coq_Qminus ; dump_opp = Lazy.force coq_Qopp ; dump_mul = Lazy.force coq_Qmult ; dump_pow = Lazy.force coq_Qpower ; dump_pow_arg = (fun n -> dump_z (CamlToCoq.z (CoqToCaml.n n))) ; dump_op_prop = List.map (fun (x, y) -> (y, Lazy.force x)) qop_table_prop ; dump_op_bool = List.map (fun (x, y) -> (y, Lazy.force x)) qop_table_bool } let rec dump_Rcst_as_R cst = match cst with | Mc.C0 -> Lazy.force coq_R0 | Mc.C1 -> Lazy.force coq_R1 | Mc.CQ q -> EConstr.mkApp (Lazy.force coq_IQR, [|dump_q q|]) | Mc.CZ z -> EConstr.mkApp (Lazy.force coq_IZR, [|dump_z z|]) | Mc.CPlus (x, y) -> EConstr.mkApp (Lazy.force coq_Rplus, [|dump_Rcst_as_R x; dump_Rcst_as_R y|]) | Mc.CMinus (x, y) -> EConstr.mkApp (Lazy.force coq_Rminus, [|dump_Rcst_as_R x; dump_Rcst_as_R y|]) | Mc.CMult (x, y) -> EConstr.mkApp (Lazy.force coq_Rmult, [|dump_Rcst_as_R x; dump_Rcst_as_R y|]) | Mc.CPow (x, y) -> ( match y with | Mc.Inl z -> EConstr.mkApp (Lazy.force coq_powerZR, [|dump_Rcst_as_R x; dump_z z|]) | Mc.Inr n -> EConstr.mkApp (Lazy.force coq_Rpower, [|dump_Rcst_as_R x; dump_nat n|]) ) | Mc.CInv t -> EConstr.mkApp (Lazy.force coq_Rinv, [|dump_Rcst_as_R t|]) | Mc.COpp t -> EConstr.mkApp (Lazy.force coq_Ropp, [|dump_Rcst_as_R t|]) let dump_rexpr = lazy { interp_typ = Lazy.force coq_R ; dump_cst = dump_Rcst_as_R ; dump_add = Lazy.force coq_Rplus ; dump_sub = Lazy.force coq_Rminus ; dump_opp = Lazy.force coq_Ropp ; dump_mul = Lazy.force coq_Rmult ; dump_pow = Lazy.force coq_Rpower ; dump_pow_arg = (fun n -> dump_nat (CamlToCoq.nat (CoqToCaml.n n))) ; dump_op_prop = List.map (fun (x, y) -> (y, Lazy.force x)) rop_table_prop ; dump_op_bool = List.map (fun (x, y) -> (y, Lazy.force x)) rop_table_bool } let prodn n env b = let rec prodrec = function | 0, env, b -> b | n, (v, t) :: l, b -> prodrec (n - 1, l, EConstr.mkProd (make_annot v ERelevance.relevant, t, b)) | _ -> assert false in prodrec (n, env, b) (** [make_goal_of_formula depxr vars props form] where - vars is an environment for the arithmetic variables occurring in form - props is an environment for the propositions occurring in form @return a goal where all the variables and propositions of the formula are quantified *) let eKind = function | Mc.IsProp -> EConstr.mkProp | Mc.IsBool -> Lazy.force coq_bool let make_goal_of_formula gl dexpr form = let vars_idx = List.mapi (fun i v -> (v, i + 1)) (ISet.elements (var_env_of_formula form)) in (* List.iter (fun (v,i) -> Printf.fprintf stdout "var %i has index %i\n" v i) vars_idx ;*) let props = prop_env_of_formula gl form in let fresh_var str i = Names.Id.of_string (str ^ string_of_int i) in let fresh_prop str i = Names.Id.of_string (str ^ string_of_int i) in let vars_n = List.map (fun (_, i) -> (fresh_var "__x" i, dexpr.interp_typ)) vars_idx in let props_n = List.mapi (fun i (_, k) -> (fresh_prop "__p" (i + 1), eKind k)) (Env.elements props) in let var_name_pos = List.fold_left2 (fun acc (idx, _) (id, _) -> (id, idx) :: acc) [] vars_idx vars_n in let dump_expr i e = let rec dump_expr = function | Mc.PEX n -> EConstr.mkRel (i + List.assoc (CoqToCaml.positive n) vars_idx) | Mc.PEc z -> dexpr.dump_cst z | Mc.PEadd (e1, e2) -> EConstr.mkApp (dexpr.dump_add, [|dump_expr e1; dump_expr e2|]) | Mc.PEsub (e1, e2) -> EConstr.mkApp (dexpr.dump_sub, [|dump_expr e1; dump_expr e2|]) | Mc.PEopp e -> EConstr.mkApp (dexpr.dump_opp, [|dump_expr e|]) | Mc.PEmul (e1, e2) -> EConstr.mkApp (dexpr.dump_mul, [|dump_expr e1; dump_expr e2|]) | Mc.PEpow (e, n) -> EConstr.mkApp (dexpr.dump_pow, [|dump_expr e; dexpr.dump_pow_arg n|]) in dump_expr e in let mkop_prop op e1 e2 = try EConstr.mkApp (List.assoc op dexpr.dump_op_prop, [|e1; e2|]) with Not_found -> EConstr.mkApp (Lazy.force coq_eq, [|dexpr.interp_typ; e1; e2|]) in let dump_cstr_prop i {Mc.flhs; Mc.fop; Mc.frhs} = mkop_prop fop (dump_expr i flhs) (dump_expr i frhs) in let mkop_bool op e1 e2 = try EConstr.mkApp (List.assoc op dexpr.dump_op_bool, [|e1; e2|]) with Not_found -> EConstr.mkApp (Lazy.force coq_eq, [|dexpr.interp_typ; e1; e2|]) in let dump_cstr_bool i {Mc.flhs; Mc.fop; Mc.frhs} = mkop_bool fop (dump_expr i flhs) (dump_expr i frhs) in let rec xdump_prop pi xi f = match f with | Mc.TT _ -> Lazy.force coq_True | Mc.FF _ -> Lazy.force coq_False | Mc.AND (_, x, y) -> EConstr.mkApp (Lazy.force coq_and, [|xdump_prop pi xi x; xdump_prop pi xi y|]) | Mc.OR (_, x, y) -> EConstr.mkApp (Lazy.force coq_or, [|xdump_prop pi xi x; xdump_prop pi xi y|]) | Mc.IFF (_, x, y) -> EConstr.mkApp (Lazy.force coq_iff, [|xdump_prop pi xi x; xdump_prop pi xi y|]) | Mc.IMPL (_, x, _, y) -> EConstr.mkArrow (xdump_prop pi xi x) ERelevance.relevant (xdump_prop (pi + 1) (xi + 1) y) | Mc.NOT (_, x) -> EConstr.mkArrow (xdump_prop pi xi x) ERelevance.relevant (Lazy.force coq_False) | Mc.EQ (x, y) -> EConstr.mkApp ( Lazy.force coq_eq , [|Lazy.force coq_bool; xdump_bool pi xi x; xdump_bool pi xi y|] ) | Mc.A (_, x, _) -> dump_cstr_prop xi x | Mc.X (_, t) -> let idx = Env.get_rank props t in EConstr.mkRel (pi + idx) and xdump_bool pi xi f = match f with | Mc.TT _ -> Lazy.force coq_true | Mc.FF _ -> Lazy.force coq_false | Mc.AND (_, x, y) -> EConstr.mkApp (Lazy.force coq_andb, [|xdump_bool pi xi x; xdump_bool pi xi y|]) | Mc.OR (_, x, y) -> EConstr.mkApp (Lazy.force coq_orb, [|xdump_bool pi xi x; xdump_bool pi xi y|]) | Mc.IFF (_, x, y) -> EConstr.mkApp (Lazy.force coq_eqb, [|xdump_bool pi xi x; xdump_bool pi xi y|]) | Mc.IMPL (_, x, _, y) -> EConstr.mkApp (Lazy.force coq_implb, [|xdump_bool pi xi x; xdump_bool pi xi y|]) | Mc.NOT (_, x) -> EConstr.mkApp (Lazy.force coq_negb, [|xdump_bool pi xi x|]) | Mc.EQ (x, y) -> assert false | Mc.A (_, x, _) -> dump_cstr_bool xi x | Mc.X (_, t) -> let idx = Env.get_rank props t in EConstr.mkRel (pi + idx) in let nb_vars = List.length vars_n in let nb_props = List.length props_n in (* Printf.fprintf stdout "NBProps : %i\n" nb_props ;*) let subst_prop p = let idx = Env.get_rank props p in EConstr.mkVar (Names.Id.of_string (Printf.sprintf "__p%i" idx)) in let form' = Mc.mapX (fun _ p -> subst_prop p) Mc.IsProp form in ( prodn nb_props (List.map (fun (x, y) -> (Name.Name x, y)) props_n) (prodn nb_vars (List.map (fun (x, y) -> (Name.Name x, y)) vars_n) (xdump_prop (List.length vars_n) 0 form)) , List.rev props_n , var_name_pos , form' ) (** * Given a conclusion and a list of affectations, rebuild a term prefixed by * the appropriate letins. * TODO: reverse the list of bindings! *) let set sigma l concl = let rec xset acc = function | [] -> acc | e :: l -> let name, expr, typ = e in xset (EConstr.mkNamedLetIn sigma (make_annot (Names.Id.of_string name) ERelevance.relevant) expr typ acc) l in xset concl l let coq_Branch = lazy (constr_of_ref "micromega.VarMap.Branch") let coq_Elt = lazy (constr_of_ref "micromega.VarMap.Elt") let coq_Empty = lazy (constr_of_ref "micromega.VarMap.Empty") let coq_VarMap = lazy (constr_of_ref "micromega.VarMap.type") let rec dump_varmap typ m = match m with | Mc.Empty -> EConstr.mkApp (Lazy.force coq_Empty, [|typ|]) | Mc.Elt v -> EConstr.mkApp (Lazy.force coq_Elt, [|typ; v|]) | Mc.Branch (l, o, r) -> EConstr.mkApp (Lazy.force coq_Branch, [|typ; dump_varmap typ l; o; dump_varmap typ r|]) let vm_of_list env = match env with | [] -> Mc.Empty | (d, _) :: _ -> List.fold_left (fun vm (c, i) -> Mc.vm_add d (CamlToCoq.positive i) c vm) Mc.Empty env let rec dump_proof_term = function | Micromega.DoneProof -> Lazy.force coq_doneProof | Micromega.RatProof (cone, rst) -> EConstr.mkApp ( Lazy.force coq_ratProof , [|dump_psatz coq_Z dump_z cone; dump_proof_term rst|] ) | Micromega.CutProof (cone, prf) -> EConstr.mkApp ( Lazy.force coq_cutProof , [|dump_psatz coq_Z dump_z cone; dump_proof_term prf|] ) | Micromega.SplitProof (p, prf1, prf2) -> EConstr.mkApp ( Lazy.force coq_splitProof , [| dump_pol (Lazy.force coq_Z) dump_z p ; dump_proof_term prf1 ; dump_proof_term prf2 |] ) | Micromega.EnumProof (c1, c2, prfs) -> EConstr.mkApp ( Lazy.force coq_enumProof , [| dump_psatz coq_Z dump_z c1 ; dump_psatz coq_Z dump_z c2 ; dump_list (Lazy.force coq_proofTerm) dump_proof_term prfs |] ) | Micromega.ExProof (p, prf) -> EConstr.mkApp (Lazy.force coq_ExProof, [|dump_positive p; dump_proof_term prf|]) let rec size_of_psatz = function | Micromega.PsatzIn _ -> 1 | Micromega.PsatzSquare _ -> 1 | Micromega.PsatzMulC (_, p) -> 1 + size_of_psatz p | Micromega.PsatzLet (p1, p2) |Micromega.PsatzMulE (p1, p2) |Micromega.PsatzAdd (p1, p2) -> size_of_psatz p1 + size_of_psatz p2 | Micromega.PsatzC _ -> 1 | Micromega.PsatzZ -> 1 let rec size_of_pf = function | Micromega.DoneProof -> 1 | Micromega.RatProof (p, a) -> size_of_pf a + size_of_psatz p | Micromega.CutProof (p, a) -> size_of_pf a + size_of_psatz p | Micromega.SplitProof (_, p1, p2) -> size_of_pf p1 + size_of_pf p2 | Micromega.EnumProof (p1, p2, l) -> size_of_psatz p1 + size_of_psatz p2 + List.fold_left (fun acc p -> size_of_pf p + acc) 0 l | Micromega.ExProof (_, a) -> size_of_pf a + 1 let dump_proof_term t = if debug then Printf.printf "dump_proof_term %i\n" (size_of_pf t); dump_proof_term t let pp_q o q = Printf.fprintf o "%a/%a" pp_z q.Micromega.qnum pp_positive q.Micromega.qden let rec parse_hyps (genv, sigma) parse_arith env tg hyps = match hyps with | [] -> ([], env, tg) | (i, t) :: l -> let lhyps, env, tg = parse_hyps (genv, sigma) parse_arith env tg l in if is_prop genv sigma t then try let c, env, tg = parse_formula (genv, sigma) parse_arith env tg t in ((i, c) :: lhyps, env, tg) with ParseError -> (lhyps, env, tg) else (lhyps, env, tg) let parse_goal gl parse_arith (env : Env.t) hyps term = let f, env, tg = parse_formula gl parse_arith env (Tag.from 0) term in let lhyps, env, tg = parse_hyps gl parse_arith env tg hyps in (lhyps, f, env) (** * The datastructures that aggregate theory-dependent proof values. *) type ('synt_c, 'prf) domain_spec = { typ : EConstr.constr ; (* is the type of the interpretation domain - Z, Q, R*) coeff : EConstr.constr ; (* is the type of the syntactic coeffs - Z , Q , Rcst *) dump_coeff : 'synt_c -> EConstr.constr ; undump_coeff : Evd.evar_map -> EConstr.constr -> 'synt_c ; proof_typ : EConstr.constr ; dump_proof : 'prf -> EConstr.constr ; coeff_eq : 'synt_c -> 'synt_c -> bool } let zz_domain_spec = lazy { typ = Lazy.force coq_Z ; coeff = Lazy.force coq_Z ; dump_coeff = dump_z ; undump_coeff = parse_z ; proof_typ = Lazy.force coq_proofTerm ; dump_proof = dump_proof_term ; coeff_eq = Mc.zeq_bool } let qq_domain_spec = lazy { typ = Lazy.force coq_Q ; coeff = Lazy.force coq_Q ; dump_coeff = dump_q ; undump_coeff = parse_q ; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q ; coeff_eq = Mc.qeq_bool } let max_tag f = 1 + Tag.to_int (Mc.foldA (fun t1 (t2, _) -> Tag.max t1 t2) Mc.IsProp f (Tag.from 0)) (** Naive topological sort of constr according to the subterm-ordering *) (* An element is minimal x is minimal w.r.t y if x <= y or (x and y are incomparable) *) (** * Instantiate the current Coq goal with a Micromega formula, a varmap, and a * witness. *) let micromega_order_change spec cert cert_typ env ff (*: unit Proofview.tactic*) = (* let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *) let formula_typ = EConstr.mkApp (Lazy.force coq_Cstr, [|spec.coeff|]) in let ff = dump_formula formula_typ (dump_cstr spec.coeff spec.dump_coeff) ff in let vm = dump_varmap spec.typ (vm_of_list env) in (* todo : directly generate the proof term - or generalize before conversion? *) Proofview.Goal.enter (fun gl -> let sigma = Proofview.Goal.sigma gl in Tacticals.tclTHENLIST [ Tactics.change_concl (set sigma [ ( "__ff" , ff , EConstr.mkApp ( Lazy.force coq_Formula , [|formula_typ; Lazy.force coq_IsProp|] ) ) ; ( "__varmap" , vm , EConstr.mkApp (Lazy.force coq_VarMap, [|spec.typ|]) ) ; ("__wit", cert, cert_typ) ] (Tacmach.pf_concl gl)) ]) (** * The datastructures that aggregate prover attributes. *) open Certificate type ('option, 'a, 'prf, 'model) prover = { name : string ; (* name of the prover *) get_option : unit -> 'option ; (* find the options of the prover *) prover : 'option * 'a list -> ('prf, 'model) Certificate.res ; (* the prover itself *) hyps : 'prf -> ISet.t ; (* extract the indexes of the hypotheses really used in the proof *) compact : 'prf -> (int -> int) -> 'prf ; (* remap the hyp indexes according to function *) pp_prf : out_channel -> 'prf -> unit ; (* pretting printing of proof *) pp_f : out_channel -> 'a -> unit (* pretty printing of the formulas (polynomials)*) } (** * Given a prover and a disjunction of atoms, find a proof of any of * the atoms. Returns an (optional) pair of a proof and a prover * datastructure. *) let find_witness p polys1 = let polys1 = List.map fst polys1 in p.prover (p.get_option (), polys1) (** * Given a prover and a CNF, find a proof for each of the clauses. * Return the proofs as a list. *) let witness_list prover l = let rec xwitness_list stack l = match stack with | [] -> Prf l | e :: stack -> match find_witness prover e with | Model m -> (Model (m, e)) | Unknown -> Unknown | Prf w -> xwitness_list stack (w :: l) in xwitness_list (List.rev l) [] (* let t1 = System.get_time () in let res = witness_list p g in let t2 = System.get_time () in Feedback.msg_info Pp.(str "Witness generation "++int (List.length g) ++ str " "++System.fmt_time_difference t1 t2) ; res *) (** * Prune the proof object, according to the 'diff' between two cnf formulas. *) let compact_proofs prover (eq_cst : 'cst -> 'cst -> bool) (cnf_ff : 'cst cnf) res (cnf_ff' : 'cst cnf) = let eq_formula (p1, o1) (p2, o2) = let open Mutils.Hash in eq_pol eq_cst p1 p2 && eq_op1 o1 o2 in let compact_proof (old_cl : 'cst clause) prf (new_cl : 'cst clause) = let new_cl = List.mapi (fun i (f, _) -> (f, i)) new_cl in let remap i = let formula = try fst (List.nth old_cl i) with Failure _ -> failwith "bad old index" in CList.assoc_f eq_formula formula new_cl in (* if debug then begin Printf.printf "\ncompact_proof : %a %a %a" (pp_ml_list prover.pp_f) (List.map fst old_cl) prover.pp_prf prf (pp_ml_list prover.pp_f) (List.map fst new_cl) ; flush stdout end ; *) let res = try prover.compact prf remap with x when CErrors.noncritical x -> ( if debug then Printf.fprintf stdout "Proof compaction %s" (Printexc.to_string x); (* This should not happen -- this is the recovery plan... *) match prover.prover (prover.get_option (), List.map fst new_cl) with | Unknown | Model _ -> failwith "proof compaction error" | Prf p -> p ) in if debug then begin Printf.printf " -> %a\n" prover.pp_prf res; flush stdout end; res in let is_proof_compatible (hyps, (old_cl : 'cst clause), prf) (new_cl : 'cst clause) = let eq (f1, (t1, e1)) (f2, (t2, e2)) = Int.equal (Tag.compare t1 t2) 0 && eq_formula f1 f2 (* We do not have to compare [e1] with [e2] because [t1 = t2] ensures by uid generation that they must be the same *) in is_sublist eq (Lazy.force hyps) new_cl in let map acc cl prf = let hyps = lazy (selecti (prover.hyps prf) cl) in (hyps, cl, prf) :: acc in let cnf_res = List.rev (List.fold_left2 map [] cnf_ff res) in (* we get pairs clause * proof *) if debug then begin Printf.printf "CNFRES\n"; flush stdout; Printf.printf "CNFOLD %a\n" pp_cnf_tag cnf_ff; List.iter (fun (lazy hyps, cl, prf) -> Printf.printf "\nProver %a -> %a\n" pp_clause_tag cl pp_clause_tag hyps; flush stdout) cnf_res; Printf.printf "CNFNEW %a\n" pp_cnf_tag cnf_ff' end; List.map (fun x -> let _, o, p = try List.find (fun p -> is_proof_compatible p x) cnf_res with Not_found -> Printf.printf "ERROR: no compatible proof"; flush stdout; failwith "Cannot find compatible proof" in compact_proof o p x) cnf_ff' (** * "Hide out" tagged atoms of a formula by transforming them into generic * variables. See the Tag module in mutils.ml for more. *) let abstract_formula : TagSet.t -> 'a formula -> 'a formula = fun hyps f -> let to_constr = Mc. { mkTT = (let coq_True = Lazy.force coq_True in let coq_true = Lazy.force coq_true in function Mc.IsProp -> coq_True | Mc.IsBool -> coq_true) ; mkFF = (let coq_False = Lazy.force coq_False in let coq_false = Lazy.force coq_false in function Mc.IsProp -> coq_False | Mc.IsBool -> coq_false) ; mkA = (fun k a (tg, t) -> t) ; mkAND = (let coq_and = Lazy.force coq_and in let coq_andb = Lazy.force coq_andb in fun k x y -> EConstr.mkApp ( (match k with Mc.IsProp -> coq_and | Mc.IsBool -> coq_andb) , [|x; y|] )) ; mkOR = (let coq_or = Lazy.force coq_or in let coq_orb = Lazy.force coq_orb in fun k x y -> EConstr.mkApp ( (match k with Mc.IsProp -> coq_or | Mc.IsBool -> coq_orb) , [|x; y|] )) ; mkIMPL = (fun k x y -> match k with | Mc.IsProp -> EConstr.mkArrow x ERelevance.relevant y | Mc.IsBool -> EConstr.mkApp (Lazy.force coq_implb, [|x; y|])) ; mkIFF = (let coq_iff = Lazy.force coq_iff in let coq_eqb = Lazy.force coq_eqb in fun k x y -> EConstr.mkApp ( (match k with Mc.IsProp -> coq_iff | Mc.IsBool -> coq_eqb) , [|x; y|] )) ; mkNOT = (let coq_not = Lazy.force coq_not in let coq_negb = Lazy.force coq_negb in fun k x -> EConstr.mkApp ( (match k with Mc.IsProp -> coq_not | Mc.IsBool -> coq_negb) , [|x|] )) ; mkEQ = (let coq_eq = Lazy.force coq_eq in fun x y -> EConstr.mkApp (coq_eq, [|Lazy.force coq_bool; x; y|])) } in Mc.abst_form to_constr (fun (t, _) -> TagSet.mem t hyps) true Mc.IsProp f (* [abstract_wrt_formula] is used in contexts whre f1 is already an abstraction of f2 *) let rec abstract_wrt_formula f1 f2 = Mc.( match (f1, f2) with | X (b, c), _ -> X (b, c) | A _, A _ -> f2 | AND (b, f1, f2), AND (_, f1', f2') -> AND (b, abstract_wrt_formula f1 f1', abstract_wrt_formula f2 f2') | OR (b, f1, f2), OR (_, f1', f2') -> OR (b, abstract_wrt_formula f1 f1', abstract_wrt_formula f2 f2') | IMPL (b, f1, _, f2), IMPL (_, f1', x, f2') -> IMPL (b, abstract_wrt_formula f1 f1', x, abstract_wrt_formula f2 f2') | IFF (b, f1, f2), IFF (_, f1', f2') -> IFF (b, abstract_wrt_formula f1 f1', abstract_wrt_formula f2 f2') | EQ (f1, f2), EQ (f1', f2') -> EQ (abstract_wrt_formula f1 f1', abstract_wrt_formula f2 f2') | FF b, FF _ -> FF b | TT b, TT _ -> TT b | NOT (b, x), NOT (_, y) -> NOT (b, abstract_wrt_formula x y) | _ -> failwith "abstract_wrt_formula") (** * This exception is raised by really_call_csdpcert if Coq's configure didn't * find a CSDP executable. *) exception CsdpNotFound let fail_csdp_not_found () = flush stdout; let s = "Skipping the rest of this tactic: the complexity of the \ goal requires the use of an external tool called CSDP. \n\n\ However, the \"csdp\" binary is not present in the search path. \n\n\ Some OS distributions include CSDP (package \"coinor-csdp\" on Debian \ for instance). You can download binaries \ and source code from <https://github.com/coin-or/csdp>." in Tacticals.tclFAIL (Pp.str s) (** * This is the core of Micromega: apply the prover, analyze the result and * prune unused fomulas, and finally modify the proof state. *) let formula_hyps_concl hyps concl = List.fold_right (fun (id, f) (cc, ids) -> match f with | Mc.X _ -> (cc, ids) | _ -> (Mc.IMPL (Mc.IsProp, f, Some id, cc), id :: ids)) hyps (concl, []) (* let time str f x = let t1 = System.get_time () in let res = f x in let t2 = System.get_time () in Feedback.msg_info (Pp.str str ++ Pp.str " " ++ System.fmt_time_difference t1 t2) ; res *) let rec fold_trace f accu tr = let open Micromega in match tr with | Null -> accu | Push (x, t) -> fold_trace f (f accu x) t | Merge (Null, t2) -> fold_trace f accu t2 | Merge (Push (x, t1), t2) -> fold_trace f (f accu x) (Merge (t1, t2)) | Merge (Merge (t1, t2), t3) -> fold_trace f accu (Merge (t1, Merge (t2, t3))) let micromega_tauto ?(abstract=true) pre_process cnf spec prover (polys1 : (Names.Id.t * 'cst formula) list) (polys2 : 'cst formula) = (* Express the goal as one big implication *) let ff, ids = formula_hyps_concl polys1 polys2 in let mt = CamlToCoq.positive (max_tag ff) in (* Construction of cnf *) let pre_ff = pre_process mt (ff : 'a formula) in let cnf_ff, = cnf Mc.IsProp pre_ff in match witness_list prover cnf_ff with | Model m -> Model m | Unknown -> Unknown | Prf res -> (*Printf.printf "\nList %i" (List.length `res); *) let deps = List.fold_left2 (fun s cl prf -> let = ISet.fold (fun i s -> let t = fst (snd (List.nth cl i)) in if debug then Printf.fprintf stdout "T : %i -> %a" i Tag.pp t; (*try*) TagSet.add t s (* with Invalid_argument _ -> s*)) (prover.hyps prf) TagSet.empty in TagSet.union s tags) (fold_trace (fun s (i, _) -> TagSet.add i s) TagSet.empty cnf_ff_tags) cnf_ff res in let ff' = if abstract then abstract_formula deps ff else ff in let pre_ff' = pre_process mt ff' in let cnf_ff', _ = cnf Mc.IsProp pre_ff' in if debug then begin output_string stdout "\n"; Printf.printf "TForm : %a\n" pp_formula ff; flush stdout; Printf.printf "CNF : %a\n" pp_cnf_tag cnf_ff; flush stdout; Printf.printf "TFormAbs : %a\n" pp_formula ff'; flush stdout; Printf.printf "TFormPre : %a\n" pp_formula pre_ff; flush stdout; Printf.printf "TFormPreAbs : %a\n" pp_formula pre_ff'; flush stdout; Printf.printf "CNF : %a\n" pp_cnf_tag cnf_ff'; flush stdout end; (* Even if it does not work, this does not mean it is not provable -- the prover is REALLY incomplete *) (* if debug then begin (* recompute the proofs *) match witness_list_tags prover cnf_ff' with | None -> failwith "abstraction is wrong" | Some res -> () end ; *) let res' = compact_proofs prover spec.coeff_eq cnf_ff res cnf_ff' in let ff', res', ids = (ff', res', Mc.ids_of_formula Mc.IsProp ff') in let res' = dump_list spec.proof_typ spec.dump_proof res' in Prf (ids, ff', res') let micromega_tauto ?abstract pre_process cnf spec prover (polys1 : (Names.Id.t * 'cst formula) list) (polys2 : 'cst formula) = try micromega_tauto ?abstract pre_process cnf spec prover polys1 polys2 with Not_found -> Printexc.print_backtrace stdout; flush stdout; Unknown (** * Parse the proof environment, and call micromega_tauto *) let fresh_id avoid id gl = Tactics.fresh_id_in_env avoid id (Proofview.Goal.env gl) let clear_all_no_check = Proofview.Goal.enter (fun gl -> let concl = Tacmach.pf_concl gl in let env = Environ.reset_with_named_context Environ.empty_named_context_val (Tacmach.pf_env gl) in Refine.refine ~typecheck:false (fun sigma -> Evarutil.new_evar env sigma ~principal:true concl)) let micromega_gen parse_arith pre_process cnf spec dumpexpr prover tac = Proofview.Goal.enter (fun gl -> let sigma = Tacmach.project gl in let genv = Tacmach.pf_env gl in let concl = Tacmach.pf_concl gl in let hyps = Tacmach.pf_hyps_types gl in try let hyps, concl, env = parse_goal (genv, sigma) parse_arith (Env.empty (genv, sigma)) hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let dumpexpr = Lazy.force dumpexpr in if debug then Feedback.msg_debug (Pp.str "Env " ++ Env.pp (genv, sigma) env); match micromega_tauto pre_process cnf spec prover hyps concl with | Unknown -> flush stdout; Tacticals.tclFAIL (Pp.str " Cannot find witness") | Model (m, e) -> Tacticals.tclFAIL (Pp.str " Cannot find witness") | Prf (ids, ff', res') -> let arith_goal, props, vars, ff_arith = make_goal_of_formula (genv, sigma) dumpexpr ff' in let intro (id, _) = Tactics.introduction id in let intro_vars = Tacticals.tclTHENLIST (List.map intro vars) in let intro_props = Tacticals.tclTHENLIST (List.map intro props) in (* let ipat_of_name id = Some (CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) in*) let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in let env' = List.map (fun (id, i) -> (EConstr.mkVar id, i)) vars in let tac_arith = Tacticals.tclTHENLIST [ clear_all_no_check ; intro_props ; intro_vars ; micromega_order_change spec res' (EConstr.mkApp (Lazy.force coq_list, [|spec.proof_typ|])) env' ff_arith ] in let goal_props = List.rev (List.map fst (Env.elements (prop_env_of_formula (genv, sigma) ff'))) in let goal_vars = List.map (fun (_, i) -> fst (List.nth env (i - 1))) vars in let arith_args = goal_props @ goal_vars in let kill_arith = Tacticals.tclTHEN tac_arith tac in (* (*tclABSTRACT fails in certain corner cases.*) Tacticals.tclTHEN clear_all_no_check (Abstract.tclABSTRACT ~opaque:false None (Tacticals.tclTHEN tac_arith tac)) in *) Tacticals.tclTHEN (Tactics.assert_by (Names.Name goal_name) arith_goal (*Proofview.tclTIME (Some "kill_arith")*) kill_arith) ((*Proofview.tclTIME (Some "apply_arith") *) Tactics.exact_check (EConstr.applist ( EConstr.mkVar goal_name , arith_args @ List.map EConstr.mkVar ids ))) with | CsdpNotFound -> fail_csdp_not_found () | x -> if debug then Tacticals.tclFAIL (Pp.str (Printexc.get_backtrace ())) else raise x) let micromega_wit_gen pre_process cnf spec prover wit_id ff = Proofview.Goal.enter (fun gl -> let sigma = Tacmach.project gl in try let spec = Lazy.force spec in let undump_cstr = undump_cstr spec.undump_coeff in let tg = Tag.from 0, Lazy.force coq_tt in let ff = undump_formula undump_cstr tg sigma ff in match micromega_tauto ~abstract:false pre_process cnf spec prover [] ff with | Unknown -> flush stdout; Tacticals.tclFAIL (Pp.str " Cannot find witness") | Model (m, e) -> Tacticals.tclFAIL (Pp.str " Cannot find witness") | Prf (_ids, _ff', res') -> let tres' = EConstr.mkApp (Lazy.force coq_list, [|spec.proof_typ|]) in Tactics.letin_tac None (Names.Name wit_id) res' (Some tres') Locusops.nowhere with | CsdpNotFound -> fail_csdp_not_found () | x -> if debug then Tacticals.tclFAIL (Pp.str (Printexc.get_backtrace ())) else raise x) let micromega_order_changer cert env ff = (*let ids = Util.List.map_i (fun i _ -> (Names.Id.of_string ("__v"^(string_of_int i)))) 0 env in *) let coeff = Lazy.force coq_Rcst in let dump_coeff = dump_Rcst in let typ = Lazy.force coq_R in let cert_typ = EConstr.mkApp (Lazy.force coq_list, [|Lazy.force coq_QWitness|]) in let formula_typ = EConstr.mkApp (Lazy.force coq_Cstr, [|coeff|]) in let ff = dump_formula formula_typ (dump_cstr coeff dump_coeff) ff in let vm = dump_varmap typ (vm_of_list env) in Proofview.Goal.enter (fun gl -> let sigma = Proofview.Goal.sigma gl in Tacticals.tclTHENLIST [ Tactics.change_concl (set sigma [ ( "__ff" , ff , EConstr.mkApp ( Lazy.force coq_Formula , [|formula_typ; Lazy.force coq_IsProp|] ) ) ; ("__varmap", vm, EConstr.mkApp (Lazy.force coq_VarMap, [|typ|])) ; ("__wit", cert, cert_typ) ] (Tacmach.pf_concl gl)) (* Tacticals.tclTHENLIST (List.map (fun id -> (Tactics.introduction id)) ids)*) ]) let micromega_genr prover tac = let parse_arith = parse_rarith in let spec = lazy { typ = Lazy.force coq_R ; coeff = Lazy.force coq_Rcst ; dump_coeff = dump_q ; undump_coeff = parse_q ; proof_typ = Lazy.force coq_QWitness ; dump_proof = dump_psatz coq_Q dump_q ; coeff_eq = Mc.qeq_bool } in Proofview.Goal.enter (fun gl -> let sigma = Tacmach.project gl in let genv = Tacmach.pf_env gl in let concl = Tacmach.pf_concl gl in let hyps = Tacmach.pf_hyps_types gl in try let hyps, concl, env = parse_goal (genv, sigma) parse_arith (Env.empty (genv, sigma)) hyps concl in let env = Env.elements env in let spec = Lazy.force spec in let hyps' = List.map (fun (n, f) -> ( n , Mc.map_bformula Mc.IsProp (Micromega.map_Formula Micromega.q_of_Rcst) f )) hyps in let concl' = Mc.map_bformula Mc.IsProp (Micromega.map_Formula Micromega.q_of_Rcst) concl in match micromega_tauto (fun _ x -> x) Mc.cnfQ spec prover hyps' concl' with | Unknown | Model _ -> flush stdout; Tacticals.tclFAIL (Pp.str " Cannot find witness") | Prf (ids, ff', res') -> let ff, ids = formula_hyps_concl (List.filter (fun (n, _) -> CList.mem_f Id.equal n ids) hyps) concl in let ff' = abstract_wrt_formula ff' ff in let arith_goal, props, vars, ff_arith = make_goal_of_formula (genv, sigma) (Lazy.force dump_rexpr) ff' in let intro (id, _) = Tactics.introduction id in let intro_vars = Tacticals.tclTHENLIST (List.map intro vars) in let intro_props = Tacticals.tclTHENLIST (List.map intro props) in let ipat_of_name id = Some (CAst.make @@ IntroNaming (Namegen.IntroIdentifier id)) in let goal_name = fresh_id Id.Set.empty (Names.Id.of_string "__arith") gl in let env' = List.map (fun (id, i) -> (EConstr.mkVar id, i)) vars in let tac_arith = Tacticals.tclTHENLIST [ clear_all_no_check ; intro_props ; intro_vars ; micromega_order_changer res' env' ff_arith ] in let goal_props = List.rev (List.map fst (Env.elements (prop_env_of_formula (genv, sigma) ff'))) in let goal_vars = List.map (fun (_, i) -> fst (List.nth env (i - 1))) vars in let arith_args = goal_props @ goal_vars in let kill_arith = Tacticals.tclTHEN tac_arith tac in (* Tacticals.tclTHEN (Tactics.keep []) (Tactics.tclABSTRACT None*) Tacticals.tclTHENS (Tactics.forward true (Some None) (ipat_of_name goal_name) arith_goal) [ kill_arith ; Tacticals.tclTHENLIST [ Generalize.generalize (List.map EConstr.mkVar ids) ; Tactics.exact_check (EConstr.applist (EConstr.mkVar goal_name, arith_args)) ] ] with | CsdpNotFound -> fail_csdp_not_found ()) let lift_ratproof prover l = match prover l with | Unknown | Model _ -> Unknown | Prf c -> Prf (Mc.RatProof (c, Mc.DoneProof)) type micromega_polys = (Micromega.q Mc.pol * Mc.op1) list [@@@ocaml.warning "-37"] type csdp_certificate = S of Sos_types.positivstellensatz option | F of string (* Used to read the result of the execution of csdpcert *) type provername = string * int option (** * The caching mechanism. *) module MakeCache (T : sig type prover_option type coeff val hash_prover_option : int -> prover_option -> int val hash_coeff : int -> coeff -> int val eq_prover_option : prover_option -> prover_option -> bool val eq_coeff : coeff -> coeff -> bool end) : sig type key = T.prover_option * (T.coeff Mc.pol * Mc.op1) list val memo_opt : (unit -> bool) -> string -> (key -> 'a) -> key -> 'a end = struct module E = struct type t = T.prover_option * (T.coeff Mc.pol * Mc.op1) list let equal = Hash.( eq_pair T.eq_prover_option (CList.equal (eq_pair (eq_pol T.eq_coeff) Hash.eq_op1))) let hash = let hash_cstr = Hash.(hash_pair (hash_pol T.hash_coeff) hash_op1) in Hash.((hash_pair T.hash_prover_option (List.fold_left hash_cstr)) 0) end include Persistent_cache.PHashtable (E) let memo_opt use_cache cache_file f = let memof = memo cache_file f in fun x -> if use_cache () then memof x else f x end module CacheCsdp = MakeCache (struct type prover_option = provername type coeff = Mc.q let hash_prover_option = Hash.(hash_pair hash_string (hash_elt (Option.hash (fun x -> x)))) let eq_prover_option = Hash.(eq_pair String.equal (Option.equal Int.equal)) let hash_coeff = Hash.hash_q let eq_coeff = Hash.eq_q end) (** * Build the command to call csdpcert, and launch it. This in turn will call * the sos driver to the csdp executable. * Throw CsdpNotFound if Coq isn't aware of any csdp executable. *) let require_csdp = lazy (if System.is_in_system_path "csdp" then () else raise CsdpNotFound) let really_call_csdpcert : provername -> micromega_polys -> Sos_types.positivstellensatz option = fun provername poly -> Lazy.force require_csdp; let cmdname = let env = Boot.Env.init () in let plugin_dir = Boot.Env.plugins env |> Boot.Path.to_string in List.fold_left Filename.concat plugin_dir ["micromega"; "csdpcert" ^ Coq_config.exec_extension] in let cmdname = if Sys.file_exists cmdname then cmdname else "csdpcert" in match (command cmdname [|cmdname|] (provername, poly) : csdp_certificate) with | F str -> if debug then Printf.fprintf stdout "really_call_csdpcert : %s\n" str; raise (failwith str) | S res -> res (** * Check the cache before calling the prover. *) let xcall_csdpcert = CacheCsdp.memo_opt use_csdp_cache ".csdp.cache" (fun (prover, pb) -> really_call_csdpcert prover pb) (** * Prover callback functions. *) let call_csdpcert prover pb = xcall_csdpcert (prover, pb) let rec z_to_q_pol e = match e with | Mc.Pc z -> Mc.Pc {Mc.qnum = z; Mc.qden = Mc.XH} | Mc.Pinj (p, pol) -> Mc.Pinj (p, z_to_q_pol pol) | Mc.PX (pol1, p, pol2) -> Mc.PX (z_to_q_pol pol1, p, z_to_q_pol pol2) let call_csdpcert_q provername poly = match call_csdpcert provername poly with | None -> Unknown | Some cert -> let cert = Certificate.q_cert_of_pos cert in if Mc.qWeakChecker poly cert then Prf cert else ( print_string "buggy certificate"; Unknown ) let call_csdpcert_z provername poly = let l = List.map (fun (e, o) -> (z_to_q_pol e, o)) poly in match call_csdpcert provername l with | None -> Unknown | Some cert -> let cert = Certificate.z_cert_of_pos cert in if Mc.zWeakChecker poly cert then Prf cert else ( print_string "buggy certificate"; flush stdout; Unknown ) let rec xhyps_of_cone base acc prf = match prf with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> acc | Mc.PsatzIn n -> let n = CoqToCaml.nat n in if n >= base then ISet.add (n - base) acc else acc | Mc.PsatzLet (e1, e2) -> xhyps_of_cone (base + 1) (xhyps_of_cone base acc e1) e2 | Mc.PsatzMulC (_, c) -> xhyps_of_cone base acc c | Mc.PsatzAdd (e1, e2) | Mc.PsatzMulE (e1, e2) -> xhyps_of_cone base (xhyps_of_cone base acc e2) e1 let hyps_of_cone prf = xhyps_of_cone 0 ISet.empty prf let hyps_of_pt pt = let rec xhyps base pt acc = match pt with | Mc.DoneProof -> acc | Mc.RatProof (c, pt) -> xhyps (base + 1) pt (xhyps_of_cone base acc c) | Mc.CutProof (c, pt) -> xhyps (base + 1) pt (xhyps_of_cone base acc c) | Mc.SplitProof (p, p1, p2) -> xhyps (base + 1) p1 (xhyps (base + 1) p2 acc) | Mc.EnumProof (c1, c2, l) -> let s = xhyps_of_cone base (xhyps_of_cone base acc c2) c1 in List.fold_left (fun s x -> xhyps (base + 1) x s) s l | Mc.ExProof (_, pt) -> xhyps (base + 3) pt acc in xhyps 0 pt ISet.empty let compact_cone prf f = let translate ofset x = if x < ofset then x else f (x - ofset) + ofset in let np ofset n = CamlToCoq.nat (translate ofset (CoqToCaml.nat n)) in let rec xinterp ofset prf = match prf with | Mc.PsatzC _ | Mc.PsatzZ | Mc.PsatzSquare _ -> prf | Mc.PsatzIn n -> Mc.PsatzIn (np ofset n) | Mc.PsatzLet (e1, e2) -> Mc.PsatzLet (xinterp ofset e1, xinterp (ofset + 1) e2) | Mc.PsatzMulC (e, c) -> Mc.PsatzMulC (e, xinterp ofset c) | Mc.PsatzAdd (e1, e2) -> Mc.PsatzAdd (xinterp ofset e1, xinterp ofset e2) | Mc.PsatzMulE (e1, e2) -> Mc.PsatzMulE (xinterp ofset e1, xinterp ofset e2) in xinterp 0 prf let compact_pt pt f = let translate ofset x = if x < ofset then x else f (x - ofset) + ofset in let rec compact_pt ofset pt = match pt with | Mc.DoneProof -> Mc.DoneProof | Mc.RatProof (c, pt) -> Mc.RatProof (compact_cone c (translate ofset), compact_pt (ofset + 1) pt) | Mc.CutProof (c, pt) -> Mc.CutProof (compact_cone c (translate ofset), compact_pt (ofset + 1) pt) | Mc.SplitProof (p, p1, p2) -> Mc.SplitProof (p, compact_pt (ofset + 1) p1, compact_pt (ofset + 1) p2) | Mc.EnumProof (c1, c2, l) -> Mc.EnumProof ( compact_cone c1 (translate ofset) , compact_cone c2 (translate ofset) , Mc.map (fun x -> compact_pt (ofset + 1) x) l ) | Mc.ExProof (x, pt) -> Mc.ExProof (x, compact_pt (ofset + 3) pt) in compact_pt 0 pt (** * Definition of provers. * Instantiates the type ('a,'prf) prover defined above. *) let lift_pexpr_prover p l = p (List.map (fun (e, o) -> (Mc.denorm e, o)) l) module CacheZ = MakeCache (struct type prover_option = bool * bool * int type coeff = Mc.z let hash_prover_option : int -> prover_option -> int = Hash.hash_elt Hashtbl.hash let eq_prover_option : prover_option -> prover_option -> bool = ( = ) let eq_coeff = Hash.eq_z let hash_coeff = Hash.hash_z end) module CacheQ = MakeCache (struct type prover_option = int type coeff = Mc.q let hash_prover_option : int -> int -> int = Hash.hash_elt Hashtbl.hash let eq_prover_option = Int.equal let eq_coeff = Hash.eq_q let hash_coeff = Hash.hash_q end) let memo_lia = CacheZ.memo_opt use_lia_cache ".lia.cache" (fun ((_, _, b), s) -> lift_pexpr_prover (Certificate.lia b) s) let memo_nlia = CacheZ.memo_opt use_nia_cache ".nia.cache" (fun ((_, _, b), s) -> lift_pexpr_prover (Certificate.nlia b) s) let memo_nra = CacheQ.memo_opt use_nra_cache ".nra.cache" (fun (o, s) -> lift_pexpr_prover (Certificate.nlinear_prover o) s) let linear_prover_Q = { name = "linear prover" ; get_option = lra_proof_depth ; prover = (fun (o, l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o) l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = (fun o x -> pp_pol pp_q o (fst x)) } let linear_prover_R = { name = "linear prover" ; get_option = lra_proof_depth ; prover = (fun (o, l) -> lift_pexpr_prover (Certificate.linear_prover_with_cert o) l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = (fun o x -> pp_pol pp_q o (fst x)) } let nlinear_prover_R = { name = "nra" ; get_option = lra_proof_depth ; prover = memo_nra ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = (fun o x -> pp_pol pp_q o (fst x)) } let non_linear_prover_Q str o = { name = "real nonlinear prover" ; get_option = (fun () -> (str, o)) ; prover = (fun (o, l) -> call_csdpcert_q o l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = (fun o x -> pp_pol pp_q o (fst x)) } let non_linear_prover_R str o = { name = "real nonlinear prover" ; get_option = (fun () -> (str, o)) ; prover = (fun (o, l) -> call_csdpcert_q o l) ; hyps = hyps_of_cone ; compact = compact_cone ; pp_prf = pp_psatz pp_q ; pp_f = (fun o x -> pp_pol pp_q o (fst x)) } let non_linear_prover_Z str o = { name = "real nonlinear prover" ; get_option = (fun () -> (str, o)) ; prover = (fun (o, l) -> lift_ratproof (call_csdpcert_z o) l) ; hyps = hyps_of_pt ; compact = compact_pt ; pp_prf = pp_proof_term ; pp_f = (fun o x -> pp_pol pp_z o (fst x)) } let linear_Z = { name = "lia" ; get_option = get_lia_option ; prover = memo_lia ; hyps = hyps_of_pt ; compact = compact_pt ; pp_prf = pp_proof_term ; pp_f = (fun o x -> pp_pol pp_z o (fst x)) } let nlinear_Z = { name = "nlia" ; get_option = get_lia_option ; prover = memo_nlia ; hyps = hyps_of_pt ; compact = compact_pt ; pp_prf = pp_proof_term ; pp_f = (fun o x -> pp_pol pp_z o (fst x)) } (** * Functions instantiating micromega_gen with the appropriate theories and * solvers *) let exfalso_if_concl_not_Prop = Proofview.Goal.enter (fun gl -> Tacmach.( if is_prop (pf_env gl) (project gl) (pf_concl gl) then Tacticals.tclIDTAC else Tactics.exfalso)) let micromega_gen parse_arith pre_process cnf spec dumpexpr prover tac = Tacticals.tclTHEN exfalso_if_concl_not_Prop (micromega_gen parse_arith pre_process cnf spec dumpexpr prover tac) let micromega_genr prover tac = Tacticals.tclTHEN exfalso_if_concl_not_Prop (micromega_genr prover tac) let xlra_Q = micromega_gen parse_qarith (fun _ x -> x) Mc.cnfQ qq_domain_spec dump_qexpr linear_prover_Q let wlra_Q = micromega_wit_gen (fun _ x -> x) Mc.cnfQ qq_domain_spec linear_prover_Q let xlra_R = micromega_genr linear_prover_R let xlia = micromega_gen parse_zarith (fun _ x -> x) Mc.cnfZ zz_domain_spec dump_zexpr linear_Z let wlia = micromega_wit_gen (fun _ x -> x) Mc.cnfZ zz_domain_spec linear_Z let xnra_Q = micromega_gen parse_qarith (fun _ x -> x) Mc.cnfQ qq_domain_spec dump_qexpr nlinear_prover_R let wnra_Q = micromega_wit_gen (fun _ x -> x) Mc.cnfQ qq_domain_spec nlinear_prover_R let xnra_R = micromega_genr nlinear_prover_R let xnia = micromega_gen parse_zarith (fun _ x -> x) Mc.cnfZ zz_domain_spec dump_zexpr nlinear_Z let wnia = micromega_wit_gen (fun _ x -> x) Mc.cnfZ zz_domain_spec nlinear_Z let xsos_Q = micromega_gen parse_qarith (fun _ x -> x) Mc.cnfQ qq_domain_spec dump_qexpr (non_linear_prover_Q "pure_sos" None) let wsos_Q = micromega_wit_gen (fun _ x -> x) Mc.cnfQ qq_domain_spec (non_linear_prover_Q "pure_sos" None) let xsos_R = micromega_genr (non_linear_prover_R "pure_sos" None) let xsos_Z = micromega_gen parse_zarith (fun _ x -> x) Mc.cnfZ zz_domain_spec dump_zexpr (non_linear_prover_Z "pure_sos" None) let wsos_Z = micromega_wit_gen (fun _ x -> x) Mc.cnfZ zz_domain_spec (non_linear_prover_Z "pure_sos" None) let xpsatz_Q i = micromega_gen parse_qarith (fun _ x -> x) Mc.cnfQ qq_domain_spec dump_qexpr (non_linear_prover_Q "real_nonlinear_prover" (Some i)) let wpsatz_Q i = micromega_wit_gen (fun _ x -> x) Mc.cnfQ qq_domain_spec (non_linear_prover_Q "real_nonlinear_prover" (Some i)) let xpsatz_R i = micromega_genr (non_linear_prover_R "real_nonlinear_prover" (Some i)) let xpsatz_Z i = micromega_gen parse_zarith (fun _ x -> x) Mc.cnfZ zz_domain_spec dump_zexpr (non_linear_prover_Z "real_nonlinear_prover" (Some i)) let wpsatz_Z i = micromega_wit_gen (fun _ x -> x) Mc.cnfZ zz_domain_spec (non_linear_prover_Z "real_nonlinear_prover" (Some i)) let print_lia_profile () = Simplex.( let { number_of_successes ; number_of_failures ; success_pivots ; failure_pivots ; average_pivots ; maximum_pivots } = Simplex.get_profile_info () in Feedback.msg_notice Pp.( (* successes *) str "number of successes: " ++ int number_of_successes ++ fnl () (* success pivots *) ++ str "number of success pivots: " ++ int success_pivots ++ fnl () (* failure *) ++ str "number of failures: " ++ int number_of_failures ++ fnl () (* failure pivots *) ++ str "number of failure pivots: " ++ int failure_pivots ++ fnl () (* Other *) ++ str "average number of pivots: " ++ int average_pivots ++ fnl () ++ str "maximum number of pivots: " ++ int maximum_pivots ++ fnl ())) (* Local Variables: *) (* coding: utf-8 *) (* End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>