package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.1.tar.gz
md5=0cfaa70f569be9494d24c829e6555d46
sha512=8ee967c636b67b22a4f34115871d8f9b9114df309afc9ddf5f61275251088c6e21f6cf745811df75554d30f4cebb6682f23eeb2e88b771330c4b60ce3f6bf5e2
doc/src/cc_plugin/cctac.ml.html
Source file cctac.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* This file is the interface between the c-c algorithm and Coq *) open Names open Inductiveops open Declarations open Constr open Context open EConstr open Vars open Tactics open Typing open Ccalgo open Ccproof open Pp open Util open Proofview.Notations module RelDecl = Context.Rel.Declaration module NamedDecl = Context.Named.Declaration let _f_equal = lazy (Coqlib.lib_ref "core.eq.congr") let _eq_rect = lazy (Coqlib.lib_ref "core.eq.rect") let _refl_equal = lazy (Coqlib.lib_ref "core.eq.refl") let _sym_eq = lazy (Coqlib.lib_ref "core.eq.sym") let _trans_eq = lazy (Coqlib.lib_ref "core.eq.trans") let _eq = lazy (Coqlib.lib_ref "core.eq.type") let _False = lazy (Coqlib.lib_ref "core.False.type") let _not = lazy (Coqlib.lib_ref "core.not.type") let whd env sigma t = Reductionops.clos_whd_flags RedFlags.betaiotazeta env sigma t let whd_delta env sigma t = Reductionops.clos_whd_flags RedFlags.all env sigma t let whd_in_concl = reduct_in_concl ~cast:true ~check:false (Reductionops.whd_all, DEFAULTcast) (* decompose member of equality in an applicative format *) (** FIXME: evar leak *) let sf_of env sigma c = ESorts.kind sigma (snd (sort_of env sigma c)) let rec decompose_term env sigma t = match EConstr.kind sigma (whd env sigma t) with App (f,args)-> let tf=decompose_term env sigma f in let targs=Array.map (decompose_term env sigma) args in Array.fold_left (fun s t-> ATerm.mkAppli (s,t)) tf targs | Prod (_,a,_b) when noccurn sigma 1 _b -> let b = Termops.pop _b in let sort_b = sf_of env sigma b in let sort_a = sf_of env sigma a in ATerm.mkAppli (ATerm.mkAppli (ATerm.mkProduct (sort_a,sort_b), decompose_term env sigma a), decompose_term env sigma b) | Construct ((ind, _ as cstr), u) -> let u = EInstance.kind sigma u in let oib = Environ.lookup_mind (fst ind) env in let nargs = constructor_nallargs env cstr in ATerm.mkConstructor env {ci_constr = (cstr, u); ci_arity=nargs; ci_nhyps=nargs-oib.mind_nparams} | Ind c -> let (mind,i_ind),u = c in let u = EInstance.kind sigma u in let canon_mind = MutInd.make1 (MutInd.canonical mind) in let canon_ind = canon_mind,i_ind in ATerm.mkSymb (Constr.mkIndU (canon_ind,u)) | Const (c,u) -> let u = EInstance.kind sigma u in let canon_const = Constant.make1 (Constant.canonical c) in ATerm.mkSymb (Constr.mkConstU (canon_const,u)) | Proj (p, _, c) -> let canon_mind kn = MutInd.make1 (MutInd.canonical kn) in let p' = Projection.map canon_mind p in let c = Retyping.expand_projection env sigma p' c [] in decompose_term env sigma c | _ -> let t = Termops.strip_outer_cast sigma t in if closed0 sigma t then ATerm.mkSymb (EConstr.to_constr ~abort_on_undefined_evars:false sigma t) else raise Not_found (* decompose equality in members and type *) let atom_of_constr b env sigma term = let wh = (if b then whd else whd_delta) env sigma term in let kot = EConstr.kind sigma wh in match kot with App (f,args)-> if isRefX env sigma (Lazy.force _eq) f && Int.equal (Array.length args) 3 then `Eq (args.(0), decompose_term env sigma args.(1), decompose_term env sigma args.(2)) else `Other (decompose_term env sigma term) | _ -> `Other (decompose_term env sigma term) let rec pattern_of_constr env sigma c = match EConstr.kind sigma (whd env sigma c) with App (f,args)-> let pargs,lrels = List.split (Array.map_to_list (pattern_of_constr env sigma) args) in begin match EConstr.kind sigma f with Rel i -> PVar (i, List.rev pargs), List.fold_left Int.Set.union (Int.Set.singleton i) lrels | _ -> let pf = decompose_term env sigma f in PApp (pf,List.rev pargs), List.fold_left Int.Set.union Int.Set.empty lrels end | Prod (_,a,_b) when noccurn sigma 1 _b -> let b = Termops.pop _b in let pa,sa = pattern_of_constr env sigma a in let pb,sb = pattern_of_constr env sigma b in let sort_b = sf_of env sigma b in let sort_a = sf_of env sigma a in PApp(ATerm.mkProduct (sort_a,sort_b), [pa;pb]),(Int.Set.union sa sb) | Rel i -> PVar (i, []),Int.Set.singleton i | _ -> let pf = decompose_term env sigma c in PApp (pf,[]),Int.Set.empty let non_trivial = function PVar (_, []) -> false | _ -> true let rec has_open_head = function PVar (_, _::_) -> true | PApp (_, args) -> List.exists has_open_head args | _ -> false let patterns_of_constr b env sigma nrels term = let f,args= try destApp sigma ((if b then whd else whd_delta) env sigma term) with DestKO -> raise Not_found in if isRefX env sigma (Lazy.force _eq) f && Int.equal (Array.length args) 3 then let patt1,rels1 = pattern_of_constr env sigma args.(1) and patt2,rels2 = pattern_of_constr env sigma args.(2) in let valid1 = if not (Int.equal (Int.Set.cardinal rels1) nrels) then Creates_variables else if has_open_head patt1 then Creates_variables (* consider open head as variable-creating *) else if non_trivial patt1 then Normal else Trivial (EConstr.to_constr ~abort_on_undefined_evars:false sigma args.(0)) and valid2 = if not (Int.equal (Int.Set.cardinal rels2) nrels) then Creates_variables else if has_open_head patt2 then Creates_variables (* consider open head as variable-creating *) else if non_trivial patt2 then Normal else Trivial (EConstr.to_constr ~abort_on_undefined_evars:false sigma args.(0)) in if valid1 != Creates_variables || valid2 != Creates_variables then nrels,valid1,patt1,valid2,patt2 else raise Not_found else raise Not_found let rec quantified_atom_of_constr b env sigma nrels term = match EConstr.kind sigma ((if b then whd else whd_delta) env sigma term) with Prod (id,atom,ff) -> if isRefX env sigma (Lazy.force _False) ff then let patts=patterns_of_constr b env sigma nrels atom in `Nrule patts else quantified_atom_of_constr b (EConstr.push_rel (RelDecl.LocalAssum (id,atom)) env) sigma (succ nrels) ff | App (f,[|atom|]) when isRefX env sigma (Lazy.force _not) f -> let patts=patterns_of_constr b env sigma nrels atom in `Nrule patts | _ -> let patts=patterns_of_constr b env sigma nrels term in `Rule patts let litteral_of_constr b env sigma term = match EConstr.kind sigma ((if b then whd else whd_delta) env sigma term) with | Prod (id,atom,ff) -> if isRefX env sigma (Lazy.force _False) ff then match (atom_of_constr b env sigma atom) with `Eq(t,a,b) -> `Neq(t,a,b) | `Other(p) -> `Nother(p) else begin try quantified_atom_of_constr b (EConstr.push_rel (RelDecl.LocalAssum (id,atom)) env) sigma 1 ff with Not_found -> `Other (decompose_term env sigma term) end | App (f,[|atom|]) when isRefX env sigma (Lazy.force _not) f -> begin match (atom_of_constr b env sigma atom) with `Eq(t,a,b) -> `Neq(t,a,b) | `Other(p) -> `Nother(p) end | _ -> atom_of_constr b env sigma term (* store all equalities from the context *) let make_prb gls depth additional_terms b = let open Tacmach in let env=pf_env gls in let sigma=project gls in let state = empty env sigma depth in let pos_hyps = ref [] in let neg_hyps =ref [] in List.iter (fun c -> let t = decompose_term env sigma c in ignore (add_aterm state t)) additional_terms; List.iter (fun decl -> let id = NamedDecl.get_id decl in begin match litteral_of_constr b env sigma (NamedDecl.get_type decl) with `Eq (t,a,b) -> add_equality state id a b | `Neq (t,a,b) -> add_disequality state (Hyp (Constr.mkVar id)) a b | `Other ph -> List.iter (fun (idn,nh) -> add_disequality state (HeqnH (id, idn)) ph nh) !neg_hyps; pos_hyps:=(id,ph):: !pos_hyps | `Nother nh -> List.iter (fun (idp,ph) -> add_disequality state (HeqnH (idp, id)) ph nh) !pos_hyps; neg_hyps:=(id,nh):: !neg_hyps | `Rule patts -> add_quant state id true patts | `Nrule patts -> add_quant state id false patts end) (Proofview.Goal.hyps gls); begin match atom_of_constr b env sigma (pf_concl gls) with `Eq (t,a,b) -> add_disequality state Goal a b | `Other g -> List.iter (fun (idp,ph) -> add_disequality state (HeqG idp) ph g) !pos_hyps end; state (* indhyps builds the array of arrays of constructor hyps for (ind largs) *) let fresh_id env id = Namegen.next_ident_away id (Environ.ids_of_named_context_val @@ Environ.named_context_val env) let build_projection env sigma intype (cstr : pconstructor) special default = let ci = (snd (fst cstr)) in let body = Combinators.make_selector env sigma ~pos:ci ~special ~default (mkRel 1) intype in let id = fresh_id env (Id.of_string "t") in sigma, mkLambda (make_annot (Name id) ERelevance.relevant, intype, body) (* generate an adhoc tactic following the proof tree *) let app_global f args k = Tacticals.pf_constr_of_global (Lazy.force f) >>= fun fc -> k (mkApp (fc, args)) let assert_before n c = Proofview.Goal.enter begin fun gl -> let evm, _ = Tacmach.pf_apply type_of gl c in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (assert_before n c) end let refresh_type env evm ty = Evarsolve.refresh_universes ~status:Evd.univ_flexible ~refreshset:true (Some false) env evm ty let type_and_refresh c = Proofview.Goal.enter_one ~__LOC__ begin fun gl -> let env = Proofview.Goal.env gl in let evm = Tacmach.project gl in (* XXX is get_type_of enough? *) let evm, ty = Typing.type_of env evm c in let evm, ty = refresh_type env evm ty in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (Proofview.tclUNIT ty) end let type_and_refresh_ env sigma c = let sigma, ty = Typing.type_of env sigma c in let sigma, ty = refresh_type env sigma ty in sigma, ty let constr_of_term c = EConstr.of_constr (ATerm.constr c) let app_global_ env sigma ref args = let (sigma, c) = Evd.fresh_global env sigma (Lazy.force ref) in Typing.checked_appvect env sigma c args (* Assumes ⊢ typ : Sort, ⊢ lhs : typ and ⊢ rhs : typ and p is a reified proof of "@eq typ lhs rhs" *) let rec proof_term env sigma (typ, lhs, rhs) p = match p.p_rule with | Ax c -> let c = EConstr.of_constr @@ constr_of_axiom c in let sigma, expected = app_global_ env sigma _eq [|typ; lhs; rhs|] in let sigma = Typing.check env sigma c expected in sigma, c | SymAx c -> let c = EConstr.of_constr @@ constr_of_axiom c in let sigma, expected = app_global_ env sigma _eq [|typ; rhs; lhs|] in let sigma = Typing.check env sigma c expected in app_global_ env sigma _sym_eq [|typ; rhs; lhs; c|] | Refl t -> let t = constr_of_term t in app_global_ env sigma _refl_equal [|typ; t|] | Trans (p1, p2) -> let t1 = constr_of_term p1.p_lhs in let t2 = constr_of_term p1.p_rhs in let t3 = constr_of_term p2.p_rhs in let sigma, p1 = proof_term env sigma (typ, t1, t2) p1 in let sigma, p2 = proof_term env sigma (typ, t2, t3) p2 in app_global_ env sigma _trans_eq [|typ; t1; t2; t3; p1; p2|] | Congr (p1, p2) -> (* p1 : ⊢ f = g : forall x : A, B *) (* p2 : ⊢ t = u : A *) let f = constr_of_term p1.p_lhs in let g = constr_of_term p1.p_rhs in let t = constr_of_term p2.p_lhs in let u = constr_of_term p2.p_rhs in let sigma, funty = type_and_refresh_ env sigma f in let sigma, argty = type_and_refresh_ env sigma t in let id = fresh_id env (Id.of_string "f") in let appf = mkLambda (make_annot (Name id) ERelevance.relevant, funty, mkApp (mkRel 1, [|t|])) in let sigma, p1 = proof_term env sigma (funty, f, g) p1 in let sigma, p2 = proof_term env sigma (argty, t, u) p2 in (* lemma1 : ⊢ f t = g t : B{t} *) let sigma, lemma1 = app_global_ env sigma _f_equal [|funty; typ; appf; f; g; p1|] in (* lemma2 : ⊢ g t = g u : B{t}, this only type-checks when B{t} ≡ B{u} *) let sigma, lemma2 = try app_global_ env sigma _f_equal [|argty; typ; g; t; u; p2|] with e when CErrors.noncritical e -> (* Fallback if ⊢ g t ≡ g u *) begin match Evarconv.unify_delay env sigma (mkApp (g, [|t|])) (mkApp (g, [|u|])) with | sigma -> app_global_ env sigma _refl_equal [|typ; mkApp (g, [|t|])|] | exception Evarconv.UnableToUnify _ -> CErrors.user_err (Pp.str "I don't know how to handle dependent equality") end in app_global_ env sigma _trans_eq [|typ; mkApp (f, [|t|]); mkApp (g, [|t|]); mkApp (g, [|u|]); lemma1; lemma2|] | Inject (prf, cstr, nargs, argind) -> (* prf : ⊢ ci v = ci w : Ind(args) *) let ti = constr_of_term prf.p_lhs in let tj = constr_of_term prf.p_rhs in let default = constr_of_term p.p_lhs in let special = mkRel (1 + nargs - argind) in let sigma, argty = type_and_refresh_ env sigma ti in let sigma, proj = build_projection env sigma argty cstr special default in let sigma, prf = proof_term env sigma (argty, ti, tj) prf in app_global_ env sigma _f_equal [|argty; typ; proj; ti; tj; prf|] let proof_tac (typ, lhs, rhs) p : unit Proofview.tactic = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let sigma, p = proof_term env sigma (typ, lhs, rhs) p in let sigma = Typing.check env sigma p concl in Proofview.Unsafe.tclEVARS sigma <*> exact_no_check p end let refute_tac c t1 t2 p = Proofview.Goal.enter begin fun gl -> let tt1=constr_of_term t1 and tt2=constr_of_term t2 in let hid = Tacmach.pf_get_new_id (Id.of_string "Heq") gl in let false_t=mkApp (c,[|mkVar hid|]) in let k intype = let neweq= app_global _eq [|intype;tt1;tt2|] in Tacticals.tclTHENS (neweq (assert_before (Name hid))) [proof_tac (intype, tt1, tt2) p; simplest_elim false_t] in type_and_refresh tt1 >>= k end let refine_exact_check c = Proofview.Goal.enter begin fun gl -> let evm, _ = Tacmach.pf_apply type_of gl c in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (exact_check c) end let convert_to_goal_tac c t1 t2 p = Proofview.Goal.enter begin fun gl -> let tt1=constr_of_term t1 and tt2=constr_of_term t2 in let k sort = let neweq= app_global _eq [|sort;tt1;tt2|] in let e = Tacmach.pf_get_new_id (Id.of_string "e") gl in let x = Tacmach.pf_get_new_id (Id.of_string "X") gl in let identity=mkLambda (make_annot (Name x) ERelevance.relevant,sort,mkRel 1) in let endt = app_global _eq_rect [|sort; tt1; identity; mkVar c; tt2; mkVar e|] in Tacticals.tclTHENS (neweq (assert_before (Name e))) [proof_tac (sort, tt1, tt2) p; endt refine_exact_check] in type_and_refresh tt2 >>= k end let convert_to_hyp_tac c1 t1 c2 t2 p = Proofview.Goal.enter begin fun gl -> let tt2=constr_of_term t2 in let h = Tacmach.pf_get_new_id (Id.of_string "H") gl in let false_t=mkApp (mkVar c2,[|mkVar h|]) in Tacticals.tclTHENS (assert_before (Name h) tt2) [convert_to_goal_tac c1 t1 t2 p; simplest_elim false_t] end (* Essentially [assert (Heq : lhs = rhs) by proof_tac p; discriminate Heq] *) let discriminate_tac cstru p = Proofview.Goal.enter begin fun gl -> let lhs=constr_of_term p.p_lhs and rhs=constr_of_term p.p_rhs in let env = Proofview.Goal.env gl in let evm = Tacmach.project gl in let evm, intype = Typing.type_of env evm lhs in let evm, intype = refresh_type env evm intype in let hid = Tacmach.pf_get_new_id (Id.of_string "Heq") gl in let neweq=app_global _eq [|intype;lhs;rhs|] in Tacticals.tclTHEN (Proofview.Unsafe.tclEVARS evm) (Tacticals.tclTHENS (neweq (assert_before (Name hid))) [proof_tac (intype, lhs, rhs) p; Equality.discrHyp hid]) end (* wrap everything *) let cc_tactic depth additional_terms b = Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.project gl in Coqlib.(check_required_library logic_module_name); let _ = debug_congruence (fun () -> Pp.str "Reading goal ...") in let state = make_prb gl depth additional_terms b in let _ = debug_congruence (fun () -> Pp.str "Problem built, solving ...") in let sol = execute true state in let _ = debug_congruence (fun () -> Pp.str "Computation completed.") in let uf=forest state in match sol with None -> Tacticals.tclFAIL (str (if b then "simple congruence failed" else "congruence failed")) | Some reason -> Proofview.tclORELSE (debug_congruence (fun () -> Pp.str "Goal solved, generating proof ..."); match reason with Discrimination (i,ipac,j,jpac) -> let p=build_proof (Tacmach.pf_env gl) sigma uf (`Discr (i,ipac,j,jpac)) in let cstr=(get_constructor_info uf ipac.cnode).ci_constr in discriminate_tac cstr p | Incomplete terms_to_complete -> let open Glob_term in let env = Proofview.Goal.env gl in let hole = DAst.make @@ GHole (GInternalHole) in let pr_missing (c, missing) = let c = Detyping.detype Detyping.Now Id.Set.empty env sigma c in let holes = List.init missing (fun _ -> hole) in Printer.pr_glob_constr_env env sigma (DAst.make @@ GApp (c, holes)) in let msg = Pp.(str "Goal is solvable by congruence but some arguments are missing." ++ fnl () ++ str " Try " ++ hov 8 begin str "\"congruence with (" ++ prlist_with_sep (fun () -> str ")" ++ spc () ++ str "(") pr_missing terms_to_complete ++ str ")\"," end ++ fnl() ++ str " replacing metavariables by arbitrary terms") in Tacticals.tclFAIL msg | Contradiction dis -> let env = Proofview.Goal.env gl in let p=build_proof env sigma uf (`Prove (dis.lhs,dis.rhs)) in let ta=aterm uf dis.lhs and tb=aterm uf dis.rhs in match dis.rule with | Goal -> let lhs = constr_of_term ta in let rhs = constr_of_term tb in let sigma, typ = type_and_refresh_ env sigma lhs in Proofview.Unsafe.tclEVARS sigma <*> proof_tac (typ, lhs, rhs) p | Hyp id -> refute_tac (EConstr.of_constr id) ta tb p | HeqG id -> convert_to_goal_tac id ta tb p | HeqnH (ida,idb) -> convert_to_hyp_tac ida ta idb tb p) begin function (e, info) -> match e with | Tactics.NotConvertible -> Tacticals.tclFAIL (str (if b then "simple congruence failed" else "congruence failed") ++ str " (cannot build a well-typed proof)") | e -> Proofview.tclZERO ~info e end end let id t = mkLambda (make_annot Anonymous ERelevance.relevant, t, mkRel 1) (* convertible to (not False) -> P -> not P *) let mk_neg_ty ff t nt = mkArrowR (mkArrowR ff ff) (mkArrowR t nt) (* proof of ((not False) -> P -> not P) -> not P *) let mk_neg_tm ff t nt = mkLambda (make_annot Anonymous ERelevance.relevant, mk_neg_ty ff t nt, mkLambda (make_annot Anonymous ERelevance.relevant, t, mkApp (mkRel 2,[|id ff; mkRel 1; mkRel 1|]))) (* for [simple congruence] process conclusion (not P) *) let negative_concl_introf = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Proofview.Goal.concl gl in let nt = whd env sigma concl in match EConstr.kind sigma nt with Prod (_,_,ff) when isRefX env sigma (Lazy.force _False) ff -> introf | App (f,[|t|]) when isRefX env sigma (Lazy.force _not) f -> Tacticals.pf_constr_of_global (Lazy.force _False) >>= fun ff -> Refine.refine ~typecheck:true begin fun sigma -> let sigma, e = Evarutil.new_evar env sigma (mk_neg_ty ff t nt) in sigma, (mkApp (mk_neg_tm ff t nt, [|e|])) end >>= fun _ -> intro >>= fun _ -> intro | _ -> Tacticals.tclIDTAC end let congruence_tac depth l = Tacticals.tclTHEN (Tacticals.tclREPEAT (Tacticals.tclFIRST [intro; Tacticals.tclTHEN whd_in_concl intro])) (cc_tactic depth l false) let simple_congruence_tac depth l = Tacticals.tclTHENLIST [ Tacticals.tclREPEAT intro; negative_concl_introf; cc_tactic depth l true] (* Beware: reflexivity = constructor 1 = apply refl_equal might be slow now, let's rather do something equivalent to a "simple apply refl_equal" *) (* The [f_equal] tactic. It mimics the use of lemmas [f_equal], [f_equal2], etc. This isn't particularly related with congruence, apart from the fact that congruence is called internally. *) let mk_eq f c1 c2 k = Tacticals.pf_constr_of_global (Lazy.force f) >>= fun fc -> Proofview.Goal.enter begin fun gl -> let open Tacmach in let evm, ty = pf_apply type_of gl c1 in let evm, ty = Evarsolve.refresh_universes (Some false) (pf_env gl) evm ty in let term = mkApp (fc, [| ty; c1; c2 |]) in let evm, _ = type_of (pf_env gl) evm term in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evm) (k term) end let f_equal = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let sigma = Tacmach.project gl in let cut_eq c1 c2 = Tacticals.tclTHENS (mk_eq _eq c1 c2 Tactics.cut) [Proofview.tclUNIT ();Tacticals.tclTRY ((app_global _refl_equal [||]) apply)] in Proofview.tclORELSE begin match EConstr.kind sigma concl with | App (r,[|_;t;t'|]) when isRefX env sigma (Lazy.force _eq) r -> begin match EConstr.kind sigma t, EConstr.kind sigma t' with | App (f,v), App (f',v') when Int.equal (Array.length v) (Array.length v') -> let rec cuts i = if i < 0 then Tacticals.tclTRY (congruence_tac 1000 []) else Tacticals.tclTHENFIRST (cut_eq v.(i) v'.(i)) (cuts (i-1)) in cuts (Array.length v - 1) | _ -> Proofview.tclUNIT () end | _ -> Proofview.tclUNIT () end begin function (e, info) -> match e with | Pretype_errors.PretypeError _ | Type_errors.TypeError _ -> Proofview.tclUNIT () | e -> Proofview.tclZERO ~info e end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>