package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.0.tar.gz
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/src/micromega_plugin/certificate.ml.html
Source file certificate.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-2008 *) (* *) (************************************************************************) (* We take as input a list of polynomials [p1...pn] and return an unfeasibility certificate polynomial. *) let debug = false open Polynomial module Mc = Micromega module Ml2C = Mutils.CamlToCoq module C2Ml = Mutils.CoqToCaml open NumCompat open Q.Notations open Mutils (* If set to some [file], arithmetic goals are dumped in [file].v *) let { Goptions.get = dump_file } = Goptions.declare_stringopt_option_and_ref ~key:["Dump"; "Arith"] ~value:None () type ('prf, 'model) res = Prf of 'prf | Model of 'model | Unknown type zres = (Mc.zArithProof, int * Mc.z list) res type qres = (Mc.q Mc.psatz, int * Mc.q list) res type 'a number_spec = { bigint_to_number : Z.t -> 'a ; number_to_num : 'a -> Q.t ; zero : 'a ; unit : 'a ; mult : 'a -> 'a -> 'a ; eqb : 'a -> 'a -> bool } let z_spec = { bigint_to_number = Ml2C.bigint ; number_to_num = (fun x -> Q.of_bigint (C2Ml.z_big_int x)) ; zero = Mc.Z0 ; unit = Mc.Zpos Mc.XH ; mult = Mc.Z.mul ; eqb = Mc.zeq_bool } let q_spec = { bigint_to_number = (fun x -> {Mc.qnum = Ml2C.bigint x; Mc.qden = Mc.XH}) ; number_to_num = C2Ml.q_to_num ; zero = {Mc.qnum = Mc.Z0; Mc.qden = Mc.XH} ; unit = {Mc.qnum = Mc.Zpos Mc.XH; Mc.qden = Mc.XH} ; mult = Mc.qmult ; eqb = Mc.qeq_bool } let dev_form n_spec p = let rec dev_form p = match p with | Mc.PEc z -> Poly.constant (n_spec.number_to_num z) | Mc.PEX v -> Poly.variable (C2Ml.positive v) | Mc.PEmul (p1, p2) -> let p1 = dev_form p1 in let p2 = dev_form p2 in Poly.product p1 p2 | Mc.PEadd (p1, p2) -> Poly.addition (dev_form p1) (dev_form p2) | Mc.PEopp p -> Poly.uminus (dev_form p) | Mc.PEsub (p1, p2) -> Poly.addition (dev_form p1) (Poly.uminus (dev_form p2)) | Mc.PEpow (p, n) -> let p = dev_form p in let n = C2Ml.n n in let rec pow n = if Int.equal n 0 then Poly.constant (n_spec.number_to_num n_spec.unit) else Poly.product p (pow (n - 1)) in pow n in dev_form p let rec fixpoint f x = let y' = f x in if y' = x then y' else fixpoint f y' let rec_simpl_cone n_spec e = let simpl_cone = Mc.simpl_cone n_spec.zero n_spec.unit n_spec.mult n_spec.eqb in let rec rec_simpl_cone = function | Mc.PsatzMulE (t1, t2) -> simpl_cone (Mc.PsatzMulE (rec_simpl_cone t1, rec_simpl_cone t2)) | Mc.PsatzAdd (t1, t2) -> simpl_cone (Mc.PsatzAdd (rec_simpl_cone t1, rec_simpl_cone t2)) | x -> simpl_cone x in rec_simpl_cone e let simplify_cone n_spec c = fixpoint (rec_simpl_cone n_spec) c (* The binding with Fourier might be a bit obsolete -- how does it handle equalities ? *) (* Certificates are elements of the cone such that P = 0 *) (* To begin with, we search for certificates of the form: a1.p1 + ... an.pn + b1.q1 +... + bn.qn + c = 0 where pi >= 0 qi > 0 ai >= 0 bi >= 0 Sum bi + c >= 1 This is a linear problem: each monomial is considered as a variable. Hence, we can use fourier. The variable c is at index 1 *) (* fold_left followed by a rev ! *) let constrain_variable v l = let coeffs = List.fold_left (fun acc p -> Vect.get v p.coeffs :: acc) [] l in { coeffs = Vect.from_list (Q.of_bigint Z.zero :: Q.of_bigint Z.zero :: List.rev coeffs) ; op = Eq ; cst = Q.of_bigint Z.zero } let constrain_constant l = let coeffs = List.fold_left (fun acc p -> Q.neg p.cst :: acc) [] l in { coeffs = Vect.from_list (Q.of_bigint Z.zero :: Q.of_bigint Z.one :: List.rev coeffs) ; op = Eq ; cst = Q.of_bigint Z.zero } let positivity l = let rec xpositivity i l = match l with | [] -> [] | c :: l -> ( match c.op with | Eq -> xpositivity (i + 1) l | _ -> { coeffs = Vect.update (i + 1) (fun _ -> Q.one) Vect.null ; op = Ge ; cst = Q.zero } :: xpositivity (i + 1) l ) in xpositivity 1 l let cstr_of_poly (p, o) = let c, l = Vect.decomp_cst p in {coeffs = l; op = o; cst = Q.neg c} let make_cstr_system sys = let map wp = let ((p, o), prf) = WithProof.repr wp in (cstr_of_poly (p, o), prf) in List.map map sys let variables_of_cstr c = Vect.variables c.coeffs (* If the certificate includes at least one strict inequality, the obtained polynomial can also be 0 *) let build_dual_linear_system l = let variables = List.fold_left (fun acc p -> ISet.union acc (variables_of_cstr p)) ISet.empty l in (* For each monomial, compute a constraint *) let s0 = ISet.fold (fun mn res -> constrain_variable mn l :: res) variables [] in let c = constrain_constant l in (* I need at least something strictly positive *) let strict = { coeffs = Vect.from_list ( Q.of_bigint Z.zero :: Q.of_bigint Z.one :: List.map (fun c -> if is_strict c then Q.of_bigint Z.one else Q.of_bigint Z.zero) l ) ; op = Ge ; cst = Q.of_bigint Z.one } in (* Add the positivity constraint *) { coeffs = Vect.from_list [Q.of_bigint Z.zero; Q.of_bigint Z.one] ; op = Ge ; cst = Q.of_bigint Z.zero } :: ((strict :: positivity l) @ (c :: s0)) let output_cstr_sys o sys = List.iter (fun (c, wp) -> Printf.fprintf o "%a by %a\n" output_cstr c ProofFormat.output_prf_rule wp) sys let output_sys o sys = List.iter (fun s -> Printf.fprintf o "%a\n" WithProof.output s) sys let tr_sys str f sys = let sys' = f sys in if debug then Printf.fprintf stdout "[%s\n%a=>\n%a]\n" str output_sys sys output_sys sys'; sys' let tr_cstr_sys str f sys = let sys' = f sys in if debug then Printf.fprintf stdout "[%s\n%a=>\n%a]\n" str output_cstr_sys sys output_cstr_sys sys'; sys' let dual_raw_certificate l = if debug then begin Printf.printf "dual_raw_certificate\n"; List.iter (fun c -> Printf.fprintf stdout "%a\n" output_cstr c) l end; let sys = build_dual_linear_system l in if debug then begin Printf.printf "dual_system\n"; List.iter (fun c -> Printf.fprintf stdout "%a\n" output_cstr c) sys end; try match Simplex.find_point sys with | None -> None | Some cert -> ( match Vect.choose cert with | None -> failwith "dual_raw_certificate: empty_certificate" | Some _ -> (*Some (rats_to_ints (Vect.to_list (Vect.decr_var 2 (Vect.set 1 Q.zero cert))))*) Some (Vect.normalise (Vect.decr_var 2 (Vect.set 1 Q.zero cert))) ) (* should not use rats_to_ints *) with x when CErrors.noncritical x -> if debug then ( Printf.printf "dual raw certificate %s" (Printexc.to_string x); flush stdout ); None let simple_linear_prover l = try Simplex.find_unsat_certificate l with Strict -> dual_raw_certificate l let env_of_list l = snd (List.fold_left (fun (i, m) p -> (i + 1, IMap.add i p m)) (0, IMap.empty) l) let linear_prover_cstr sys = let sysi, prfi = List.split sys in match simple_linear_prover sysi with | None -> None | Some cert -> Some (ProofFormat.proof_of_farkas (env_of_list prfi) cert) let linear_prover_cstr = if debug then ( fun sys -> Printf.printf "<linear_prover"; flush stdout; let res = linear_prover_cstr sys in Printf.printf ">"; flush stdout; res ) else linear_prover_cstr let compute_max_nb_cstr l d = let len = List.length l in max len (max d (len * d)) let develop_constraint z_spec (e, k) = ( dev_form z_spec e , match k with | Mc.NonStrict -> Ge | Mc.Equal -> Eq | Mc.Strict -> Gt | _ -> assert false ) (** A single constraint can be unsat for the following reasons: - 0 >= c for c a negative constant - 0 = c for c a non-zero constant - e = c when the coeffs of e are all integers and c is rational *) type checksat = | Tauto (* Tautology *) | Unsat of ProofFormat.prf_rule (* Unsatisfiable *) | Cut of cstr * ProofFormat.prf_rule (* Cutting plane *) | Normalise of cstr * ProofFormat.prf_rule (* Coefficients may be normalised i.e relatively prime *) exception FoundProof of ProofFormat.prf_rule (** [check_sat] - detects constraints that are not satisfiable; - normalises constraints and generate cuts. *) let check_int_sat (cstr, prf) = let {coeffs; op; cst} = cstr in match Vect.choose coeffs with | None -> if eval_op op Q.zero cst then Tauto else Unsat prf | _ -> ( let gcdi = Vect.gcd coeffs in let gcd = Q.of_bigint gcdi in if gcd =/ Q.one then Normalise (cstr, prf) else if Int.equal (Q.sign (Q.mod_ cst gcd)) 0 then begin (* We can really normalise *) assert (Q.sign gcd >= 1); let cstr = {coeffs = Vect.div gcd coeffs; op; cst = cst // gcd} in Normalise (cstr, ProofFormat.Gcd (gcdi, prf)) (* Normalise(cstr,CutPrf prf)*) end else match op with | Eq -> Unsat (ProofFormat.CutPrf prf) | Ge -> let cstr = {coeffs = Vect.div gcd coeffs; op; cst = Q.ceiling (cst // gcd)} in Cut (cstr, ProofFormat.CutPrf prf) | Gt -> failwith "check_sat : Unexpected operator" ) let apply_and_normalise check f psys = List.fold_left (fun acc pc' -> match f pc' with | None -> pc' :: acc | Some pc' -> ( match check pc' with | Tauto -> acc | Unsat prf -> raise (FoundProof prf) | Cut (c, p) -> (c, p) :: acc | Normalise (c, p) -> (c, p) :: acc )) [] psys let is_linear_for v pc = LinPoly.is_linear (WithProof.polynomial pc) || LinPoly.is_linear_for v (WithProof.polynomial pc) (*let non_linear_pivot sys pc v pc' = if LinPoly.is_linear (fst (fst pc')) then None (* There are other ways to deal with those *) else WithProof.linear_pivot sys pc v pc' *) let is_linear_substitution sys wp = let (p, o), _ = WithProof.repr wp in let pred v = v =/ Q.one || v =/ Q.minus_one in match o with | Eq -> ( match List.filter (fun v -> List.for_all (is_linear_for v) sys) (LinPoly.search_all_linear pred p) with | [] -> None | v :: _ -> Some v (* make a choice *) ) | _ -> None let elim_simple_linear_equality sys0 = let elim sys = let oeq, sys' = extract (is_linear_substitution sys) sys in match oeq with | None -> None | Some (v, pc) -> simplify (WithProof.linear_pivot sys0 pc v) sys' in iterate_until_stable elim sys0 let subst sys = tr_sys "subst" WithProof.subst sys (** [saturate_linear_equality sys] generate new constraints obtained by eliminating linear equalities by pivoting. For integers, the obtained constraints are sound but not complete. *) let saturate_by_linear_equalities sys0 = WithProof.saturate_subst false sys0 let saturate_by_linear_equalities sys = tr_sys "saturate_by_linear_equalities" saturate_by_linear_equalities sys let elim_redundant sys = let module VectMap = Map.Make (Vect) in let elim_eq sys = List.fold_left (fun acc wp -> let (_, o), _ = WithProof.repr wp in match o with | Gt -> assert false | Ge -> wp :: acc | Eq -> wp :: WithProof.neg wp :: acc) [] sys in let of_list l = List.fold_left (fun m wp -> let (v, o), _ = WithProof.repr wp in let q, v' = Vect.decomp_cst v in try let q', wp' = VectMap.find v' m in match Q.compare q q' with | 0 -> if o = Eq then VectMap.add v' (q, wp) m else m | 1 -> m | _ -> VectMap.add v' (q, wp) m with Not_found -> VectMap.add v' (q, wp) m) VectMap.empty l in let to_list m = VectMap.fold (fun _ (_, wp) sys -> wp :: sys) m [] in to_list (of_list (elim_eq sys)) let elim_redundant sys = tr_sys "elim_redundant" elim_redundant sys let bound_monomials (sys : WithProof.t list) = let (all_bounds,_) = extract_all BoundWithProof.make sys in let mon = List.mapi (fun i b -> let v = (BoundWithProof.bound b).Vect.Bound.var in let m = LinPoly.MonT.retrieve v in (i,(v,m,b))) all_bounds in let vars = List.fold_left (fun acc wp -> ISet.union (LinPoly.monomials (WithProof.polynomial wp)) acc) ISet.empty sys in let rec build_constraints l = match l with |[] -> Linsolve.empty | (i,(_,m',_)) ::l -> let c = build_constraints l in let cm = Monomial.fold (fun x d acc -> Linsolve.make_mon x i d acc) m' Linsolve.empty in Linsolve.merge c cm in let eqn = build_constraints mon in let set_constants_for m e = Monomial.fold (fun x d acc -> Linsolve.set_constant x d e :: acc) m [] in (* [exp_bound b j] computes the bound at the power j for j >=1. The current algorithm is not complete. It performs iterative multiplications. *) let rec exp_bound b j = if j = 1 then Some b else let b1 = exp_bound b (j/2) in match b1 with | None -> None | Some b1 -> match BoundWithProof.mul_bound b1 b1 with | None -> None | Some b1_b1 -> if j mod 2 = 0 then Some b1_b1 else BoundWithProof.mul_bound b b1_b1 in let rec bound_using_sol sol = match sol with | [] -> None | [x,j] -> let (_,_,b) = List.assoc x mon in exp_bound b j | (x,j)::sol'-> let (_,_,b) = List.assoc x mon in match exp_bound b j with | None -> None | Some b -> match bound_using_sol sol' with |None -> None | Some b' -> BoundWithProof.mul_bound b b' in let bound_one_monomial x = let m = LinPoly.MonT.retrieve x in if Monomial.degree m <= 1 then [] else let eqn = set_constants_for m eqn in if debug then Printf.printf "Equations : %a\n" Linsolve.output_equations eqn ; flush stdout; let sol = Linsolve.solve_and_enum eqn in if debug then Printf.printf "Solutions %i \n %a\n" (List.length sol) Linsolve.output_solutions sol; let l = elim_redundant (CList.map_filter (fun s -> Option.map BoundWithProof.proof (bound_using_sol s)) sol) in if debug then Printf.printf "New bounds %a" output_sys l; l in ISet.fold (fun m acc -> List.rev_append (bound_one_monomial m) acc) vars [] let bound_monomials sys= tr_sys "bound_monomials" bound_monomials sys let develop_constraints prfdepth n_spec sys = LinPoly.MonT.clear (); max_nb_cstr := compute_max_nb_cstr sys prfdepth; let sys = List.map (develop_constraint n_spec) sys in let sys = List.mapi (fun i (p, o) -> WithProof.mkhyp (LinPoly.linpol_of_pol p) o i) sys in ProofFormat.Env.make (List.length sys), sys let square_of_var i = let x = LinPoly.var i in WithProof.square (LinPoly.product x x) x (** [nlinear_preprocess sys] augments the system [sys] by performing some limited non-linear reasoning. For instance, it asserts that the x² ≥0 but also that if c₁ ≥ 0 ∈ sys and c₂ ≥ 0 ∈ sys then c₁ × c₂ ≥ 0. The resulting system is linearised. *) let nlinear_preprocess (sys : WithProof.t list) = let is_linear = List.for_all (fun wp -> LinPoly.is_linear @@ WithProof.polynomial wp) sys in if is_linear then sys else let collect_square = List.fold_left (fun acc wp -> MonMap.union (fun k e1 e2 -> Some e1) acc (LinPoly.collect_square @@ WithProof.polynomial wp)) MonMap.empty sys in let sys = MonMap.fold (fun s m acc -> let s = LinPoly.of_monomial s in let m = LinPoly.of_monomial m in (WithProof.square m s) :: acc) collect_square sys in let collect_vars = List.fold_left (fun acc p -> ISet.union acc (LinPoly.variables (WithProof.polynomial p))) ISet.empty sys in let sys = ISet.fold (fun i acc -> square_of_var i :: acc) collect_vars sys in let sys = sys @ all_pairs WithProof.product sys in List.map (WithProof.annot "P") sys let nlinear_preprocess = tr_sys "nlinear_preprocess" nlinear_preprocess let nlinear_prover prfdepth sys = let env, sys = develop_constraints prfdepth q_spec sys in let sys1 = elim_simple_linear_equality sys in let sys2 = saturate_by_linear_equalities sys1 in let sys = nlinear_preprocess sys1 @ sys2 in let sys = make_cstr_system sys in match linear_prover_cstr sys with | None -> Unknown | Some cert -> Prf (ProofFormat.cmpl_prf_rule Mc.normQ CamlToCoq.q env cert) let linear_prover_with_cert prfdepth sys = let env, sys = develop_constraints prfdepth q_spec sys in (* let sys = nlinear_preprocess sys in *) let sys = make_cstr_system sys in match linear_prover_cstr sys with | None -> Unknown | Some cert -> Prf (ProofFormat.cmpl_prf_rule Mc.normQ CamlToCoq.q env cert) (* The prover is (probably) incomplete -- only searching for naive cutting planes *) open Sos_types let rec scale_term t = match t with | Zero -> (Z.one, Zero) | Const n -> (Q.den n, Const (Q.of_bigint (Q.num n))) | Var n -> (Z.one, Var n) | Opp t -> let s, t = scale_term t in (s, Opp t) | Add (t1, t2) -> let s1, y1 = scale_term t1 and s2, y2 = scale_term t2 in let g = Z.gcd s1 s2 in let s1' = Z.div s1 g in let s2' = Z.div s2 g in let e = Z.mul g (Z.mul s1' s2') in if Int.equal (Z.compare e Z.one) 0 then (Z.one, Add (y1, y2)) else ( e , Add (Mul (Const (Q.of_bigint s2'), y1), Mul (Const (Q.of_bigint s1'), y2)) ) | Sub _ -> failwith "scale term: not implemented" | Mul (y, z) -> let s1, y1 = scale_term y and s2, y2 = scale_term z in (Z.mul s1 s2, Mul (y1, y2)) | Pow (t, n) -> let s, t = scale_term t in (Z.power_int s n, Pow (t, n)) let scale_term t = let s, t' = scale_term t in (s, t') let rec scale_certificate pos = match pos with | Axiom_eq i -> (Z.one, Axiom_eq i) | Axiom_le i -> (Z.one, Axiom_le i) | Axiom_lt i -> (Z.one, Axiom_lt i) | Monoid l -> (Z.one, Monoid l) | Rational_eq n -> (Q.den n, Rational_eq (Q.of_bigint (Q.num n))) | Rational_le n -> (Q.den n, Rational_le (Q.of_bigint (Q.num n))) | Rational_lt n -> (Q.den n, Rational_lt (Q.of_bigint (Q.num n))) | Square t -> let s, t' = scale_term t in (Z.mul s s, Square t') | Eqmul (t, y) -> let s1, y1 = scale_term t and s2, y2 = scale_certificate y in (Z.mul s1 s2, Eqmul (y1, y2)) | Sum (y, z) -> let s1, y1 = scale_certificate y and s2, y2 = scale_certificate z in let g = Z.gcd s1 s2 in let s1' = Z.div s1 g in let s2' = Z.div s2 g in ( Z.mul g (Z.mul s1' s2') , Sum ( Product (Rational_le (Q.of_bigint s2'), y1) , Product (Rational_le (Q.of_bigint s1'), y2) ) ) | Product (y, z) -> let s1, y1 = scale_certificate y and s2, y2 = scale_certificate z in (Z.mul s1 s2, Product (y1, y2)) module Z_ = Z open Micromega let rec term_to_q_expr = function | Const n -> PEc (Ml2C.q n) | Zero -> PEc (Ml2C.q Q.zero) | Var s -> PEX (Ml2C.index (int_of_string (String.sub s 1 (String.length s - 1)))) | Mul (p1, p2) -> PEmul (term_to_q_expr p1, term_to_q_expr p2) | Add (p1, p2) -> PEadd (term_to_q_expr p1, term_to_q_expr p2) | Opp p -> PEopp (term_to_q_expr p) | Pow (t, n) -> PEpow (term_to_q_expr t, Ml2C.n n) | Sub (t1, t2) -> PEsub (term_to_q_expr t1, term_to_q_expr t2) let term_to_q_pol e = Mc.norm_aux (Ml2C.q Q.zero) (Ml2C.q Q.one) Mc.qplus Mc.qmult Mc.qminus Mc.qopp Mc.qeq_bool (term_to_q_expr e) let rec product l = match l with | [] -> Mc.PsatzZ | [i] -> Mc.PsatzIn (Ml2C.nat i) | i :: l -> Mc.PsatzMulE (Mc.PsatzIn (Ml2C.nat i), product l) let q_cert_of_pos pos = let rec _cert_of_pos = function | Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_le i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i) | Monoid l -> product l | Rational_eq n | Rational_le n | Rational_lt n -> if Int.equal (Q.compare n Q.zero) 0 then Mc.PsatzZ else Mc.PsatzC (Ml2C.q n) | Square t -> Mc.PsatzSquare (term_to_q_pol t) | Eqmul (t, y) -> Mc.PsatzMulC (term_to_q_pol t, _cert_of_pos y) | Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z) | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in simplify_cone q_spec (_cert_of_pos pos) let rec term_to_z_expr = function | Const n -> PEc (Ml2C.bigint (Q.to_bigint n)) | Zero -> PEc Z0 | Var s -> PEX (Ml2C.index (int_of_string (String.sub s 1 (String.length s - 1)))) | Mul (p1, p2) -> PEmul (term_to_z_expr p1, term_to_z_expr p2) | Add (p1, p2) -> PEadd (term_to_z_expr p1, term_to_z_expr p2) | Opp p -> PEopp (term_to_z_expr p) | Pow (t, n) -> PEpow (term_to_z_expr t, Ml2C.n n) | Sub (t1, t2) -> PEsub (term_to_z_expr t1, term_to_z_expr t2) let term_to_z_pol e = Mc.norm_aux (Ml2C.z 0) (Ml2C.z 1) Mc.Z.add Mc.Z.mul Mc.Z.sub Mc.Z.opp Mc.zeq_bool (term_to_z_expr e) let z_cert_of_pos pos = let s, pos = scale_certificate pos in let rec _cert_of_pos = function | Axiom_eq i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_le i -> Mc.PsatzIn (Ml2C.nat i) | Axiom_lt i -> Mc.PsatzIn (Ml2C.nat i) | Monoid l -> product l | Rational_eq n | Rational_le n | Rational_lt n -> if Int.equal (Q.compare n Q.zero) 0 then Mc.PsatzZ else Mc.PsatzC (Ml2C.bigint (Q.to_bigint n)) | Square t -> Mc.PsatzSquare (term_to_z_pol t) | Eqmul (t, y) -> let is_unit = match t with Const n -> n =/ Q.one | _ -> false in if is_unit then _cert_of_pos y else Mc.PsatzMulC (term_to_z_pol t, _cert_of_pos y) | Sum (y, z) -> Mc.PsatzAdd (_cert_of_pos y, _cert_of_pos z) | Product (y, z) -> Mc.PsatzMulE (_cert_of_pos y, _cert_of_pos z) in simplify_cone z_spec (_cert_of_pos pos) (** All constraints (initial or derived) have an index and have a justification i.e., proof. Given a constraint, all the coefficients are always integers. *) open Mutils open Polynomial (** Proof generating pivoting over variable v. Assumes [a] is the non-zero coefficient for [v] in [c1]. *) let pivot v (a, c1, p1) (c2, p2) = let {coeffs = v1; op = op1; cst = n1} = c1 and {coeffs = v2; op = op2; cst = n2} = c2 in let () = assert (op1 == Eq) in (* Could factorise gcd... *) let xpivot cv1 cv2 = ( { coeffs = Vect.add (Vect.mul cv1 v1) (Vect.mul cv2 v2) ; op = opAdd Eq op2 ; cst = (n1 */ cv1) +/ (n2 */ cv2) } , ProofFormat.add_proof (ProofFormat.mul_cst_proof cv1 p1) (ProofFormat.mul_cst_proof cv2 p2) ) in let b = Vect.get v v2 in if b =/ Q.zero then None else if Int.equal (Q.sign a * Q.sign b) (-1) then let cv1 = Q.abs b and cv2 = Q.abs a in Some (xpivot cv1 cv2) else let cv1 = Q.neg (b */ Q.of_int (Q.sign a)) and cv2 = Q.abs a in Some (xpivot cv1 cv2) let pivot v c1 c2 = let res = pivot v c1 c2 in ( match res with | None -> () | Some (c, _) -> if Vect.get v c.coeffs =/ Q.zero then () else Printf.printf "pivot error %a\n" output_cstr c ); res (** [ext_gcd a b] is the extended Euclid algorithm. [ext_gcd a b = (x,y,g)] iff [ax+by=g] Source: http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm *) let rec ext_gcd a b = if Int.equal (Z_.sign b) 0 then (Z_.one, Z_.zero) else let q, r = Z_.quomod a b in let s, t = ext_gcd b r in (t, Z_.sub s (Z_.mul q t)) let extract_coprime (c1, p1) (c2, p2) = let () = assert (c1.op == Eq) in if c2.op == Eq then Vect.exists2 (fun n1 n2 -> Int.equal (Z_.compare (Z_.gcd (Q.num n1) (Q.num n2)) Z_.one) 0) c1.coeffs c2.coeffs else None let extract_coprime_equation psys = let rec xextract2 rl l = match l with | [] -> (None, rl) (* Did not find *) | e :: l -> match (fst e).op with | Eq -> begin match extract (extract_coprime e) l with | None, _ -> xextract2 (e :: rl) l | Some (r, e'), l' -> (Some (r, e, e'), List.rev_append rl l') end | Gt | Ge -> xextract2 (e :: rl) l in xextract2 [] psys let pivot_sys v (cstr, prf) psys = let a = Vect.get v cstr.coeffs in if a =/ Q.zero then List.rev psys else apply_and_normalise check_int_sat (pivot v (a, cstr, prf)) psys let reduce_coprime psys = let oeq, sys = extract_coprime_equation psys in match oeq with | None -> None (* Nothing to do *) | Some ((v, n1, n2), (c1, p1), (c2, p2)) -> let l1, l2 = ext_gcd (Q.num n1) (Q.num n2) in let l1' = Q.of_bigint l1 and l2' = Q.of_bigint l2 in let cstr = { coeffs = Vect.add (Vect.mul l1' c1.coeffs) (Vect.mul l2' c2.coeffs) ; op = Eq ; cst = (l1' */ c1.cst) +/ (l2' */ c2.cst) } in let prf = ProofFormat.add_proof (ProofFormat.mul_cst_proof l1' p1) (ProofFormat.mul_cst_proof l2' p2) in Some (pivot_sys v (cstr, prf) ((c1, p1) :: sys)) (*let pivot_sys v pc sys = tr_cstr_sys "pivot_sys" (pivot_sys v pc) sys*) (** If there is an equation [eq] of the form 1.x + e = c, do a pivot over x with equation [eq] *) let reduce_unary psys = let is_unary_equation (cstr, prf) = if cstr.op == Eq then Vect.find (fun v n -> if n =/ Q.one || n =/ Q.minus_one then Some v else None) cstr.coeffs else None in let oeq, sys = extract is_unary_equation psys in match oeq with | None -> None (* Nothing to do *) | Some (v, (cstr, prf)) -> let () = assert (cstr.op == Eq) in Some (pivot_sys v (cstr, prf) sys) let reduce_var_change psys = let rec rel_prime vect = match Vect.choose vect with | None -> None | Some (x, v, vect) -> ( let v = Q.num v in match Vect.find (fun x' v' -> let v' = Q.num v' in if Z_.equal (Z_.gcd v v') Z_.one then Some (x', v') else None) vect with | Some (x', v') -> Some ((x, v), (x', v')) | None -> rel_prime vect ) in let rel_prime (cstr, prf) = if cstr.op == Eq then rel_prime cstr.coeffs else None in let oeq, sys = extract rel_prime psys in match oeq with | None -> None | Some (((x, v), (x', v')), (c, p)) -> let l1, l2 = ext_gcd v v' in let l1, l2 = (Q.of_bigint l1, Q.of_bigint l2) in let pivot_eq (c', p') = let {coeffs; op; cst} = c' in let vx = Vect.get x coeffs in let vx' = Vect.get x' coeffs in let m = Q.neg ((vx */ l1) +/ (vx' */ l2)) in Some ( { coeffs = Vect.add (Vect.mul m c.coeffs) coeffs ; op ; cst = (m */ c.cst) +/ cst } , ProofFormat.add_proof (ProofFormat.mul_cst_proof m p) p' ) in Some (apply_and_normalise check_int_sat pivot_eq sys) let reduction_equations psys = iterate_until_stable (app_funs [reduce_unary; reduce_coprime; reduce_var_change (*; reduce_pivot*)]) psys let reduction_equations = tr_cstr_sys "reduction_equations" reduction_equations open ProofFormat let xlia env sys = let sys = make_cstr_system sys in match reduction_equations sys with | sys -> let sys = List.map WithProof.of_cstr sys in begin match Simplex.integer_solver sys with | None -> Unknown | Some prf -> Prf (compile_proof env prf) end | exception FoundProof prf -> Prf (compile_proof env (Step (0, prf, Done))) let gen_bench (tac, prover) prfdepth sys = let res = prover prfdepth sys in ( match dump_file () with | None -> () | Some file -> let o = open_out (Filename.temp_file ~temp_dir:(Sys.getcwd ()) file ".v") in let _, sys = develop_constraints prfdepth z_spec sys in Printf.fprintf o "Require Import ZArith Lia. Open Scope Z_scope.\n"; Printf.fprintf o "Goal %a.\n" (LinPoly.pp_goal "Z") (List.map (fun wp -> fst @@ WithProof.repr wp) sys); begin match res with | Unknown | Model _ -> Printf.fprintf o "Proof.\n intros. Fail %s.\nAbort.\n" tac | Prf res -> Printf.fprintf o "Proof.\n intros. %s.\nQed.\n" tac end; flush o; close_out o ); res let normalise sys = List.fold_left (fun acc s -> match WithProof.cutting_plane s with | None -> s :: acc | Some s' -> s' :: acc) [] sys let normalise = tr_sys "normalise" normalise (** [fourier_small] performs some variable elimination and keeps the cutting planes. To decide which elimination to perform, the constraints are sorted according to 1 - the number of variables 2 - the value of the smallest coefficient Given the smallest constraint, we eliminate the variable with the smallest coefficient. The rational is that a constraint with a single variable provides some bound information. When there are several variables, we hope to eliminate all the variables. A necessary condition is to take the variable with the smallest coefficient *) let try_pivot qx wp wp' = match WithProof.simple_pivot qx wp wp' with | None -> None | Some wp2 -> match WithProof.cutting_plane wp2 with | Some wp2 -> Some wp2 | None -> None let fourier_small (sys : WithProof.t list) = let module WPset = Set.Make(WithProof) in let gen_pivot acc qx wp l = let fold acc wp' = match try_pivot qx wp wp' with | None -> acc | Some wp2 -> WPset.add wp2 acc in let acc = WPset.fold (fun wp acc -> fold acc wp) acc acc in List.fold_left (fun acc (_,wp') -> fold acc wp') acc l in let rec all_pivots acc l = match l with | [] -> acc | ((_, qx), wp) :: l' -> all_pivots (gen_pivot acc qx wp l') l' in let sys = WithProof.sort sys in let res = all_pivots WPset.empty sys in WPset.elements res let fourier_small = tr_sys "fourier_small" fourier_small (** [propagate_bounds sys] generate new constraints by exploiting bounds. A bound is a constraint of the form c + a.x >= 0 *) let rev_concat l = let rec conc acc l = match l with [] -> acc | l1 :: lr -> conc (List.rev_append l1 acc) lr in conc [] l let pre_process sys = let sys = normalise sys in let bnd1 = bound_monomials sys in let sys1 = normalise (subst (List.rev_append sys bnd1)) in let pbnd1 = fourier_small sys1 in let sys2 = elim_redundant (List.rev_append pbnd1 sys1) in let bnd2 = bound_monomials sys2 in (* Should iterate ? *) let sys = rev_concat [bnd2; saturate_by_linear_equalities sys2; sys2] in sys let lia (prfdepth : int) sys = let env, sys = develop_constraints prfdepth z_spec sys in if debug then begin Printf.fprintf stdout "Input problem\n"; List.iter (fun s -> Printf.fprintf stdout "%a\n" WithProof.output s) sys; Printf.fprintf stdout "Input problem\n"; let string_of_op = function Eq -> "=" | Ge -> ">=" | Gt -> ">" in List.iter (fun wp -> let ((p, op), _) = WithProof.repr wp in Printf.fprintf stdout "(assert (%s %a))\n" (string_of_op op) Vect.pp_smt p) sys end; let sys = pre_process sys in xlia env sys let nlia prfdepth sys = let env, sys = develop_constraints prfdepth z_spec sys in let is_linear = List.for_all (fun wp -> LinPoly.is_linear @@ WithProof.polynomial wp) sys in if debug then begin Printf.fprintf stdout "Input problem\n"; List.iter (fun s -> Printf.fprintf stdout "%a\n" WithProof.output s) sys end; if is_linear then xlia env (pre_process sys) else (* let sys1 = elim_every_substitution sys in No: if a wrong equation is chosen, the proof may fail. It would only be safe if the variable is linear... *) let sys1 = normalise (elim_simple_linear_equality (WithProof.subst_constant true sys)) in let bnd1 = bound_monomials sys1 in let sys2 = saturate_by_linear_equalities sys1 in let sys3 = nlinear_preprocess (rev_concat [bnd1; sys1; sys2]) in xlia env sys3 (* For regression testing, if bench = true generate a Coq goal *) let lia prfdepth sys = gen_bench ("lia", lia) prfdepth sys let nlia prfdepth sys = gen_bench ("nia", nlia) prfdepth sys (* Local Variables: *) (* coding: utf-8 *) (* End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>