package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.0.tar.gz
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/src/coq-core.proofs/clenv.ml.html
Source file clenv.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Names open Nameops open Termops open Constr open Context open Environ open Evd open EConstr open Vars open Reductionops open Tacred open Pretype_errors open Evarutil open Unification open Tactypes open Logic (******************************************************************) (* Clausal environments *) type meta_arg = metavariable * metavariable list option (* List of clenv meta arguments with the submetas of the clenv it has been possibly chained with. We never need to chain more than two clenvs, so there is no need to make the type recursive. *) type clausenv = { env : env; evd : evar_map; metas : meta_arg list; templval : constr; metaset : Metaset.t; templtyp : constr freelisted; } let mk_clausenv env evd metas templval metaset templtyp = { env; evd; metas; templval; metaset; templtyp; } let update_clenv_evd clenv evd = mk_clausenv clenv.env evd clenv.metas clenv.templval clenv.metaset clenv.templtyp let strip_params env sigma c = match EConstr.kind sigma c with | App (f, args) -> (match EConstr.kind sigma f with | Const cst -> (match Structures.PrimitiveProjections.find_opt_with_relevance cst with | Some (p,r) -> let p = Projection.make p false in let npars = Projection.npars p in if Array.length args > npars then mkApp (mkProj (p, r, args.(npars)), Array.sub args (npars+1) (Array.length args - (npars + 1))) else c | None -> c) | _ -> c) | _ -> c let clenv_strip_proj_params clenv = let templval = strip_params clenv.env clenv.evd clenv.templval in mk_clausenv clenv.env clenv.evd clenv.metas templval clenv.metaset clenv.templtyp let clenv_refresh env sigma ctx clenv = let evd = Evd.meta_merge (Evd.meta_list clenv.evd) (Evd.clear_metas sigma) in match ctx with | Some ctx -> let (subst, ctx) = UnivGen.fresh_sort_context_instance ctx in let emap c = Vars.subst_univs_level_constr subst c in let evd = Evd.merge_sort_context_set Evd.univ_flexible evd ctx in (* Only metas are mentioning the old universes. *) mk_clausenv env (Evd.map_metas emap evd) clenv.metas (emap clenv.templval) clenv.metaset (Evd.map_fl emap clenv.templtyp) | None -> mk_clausenv env evd clenv.metas clenv.templval clenv.metaset clenv.templtyp let clenv_evd ce = ce.evd let clenv_arguments c = List.map fst c.metas let clenv_meta_type env sigma mv = let ty = try Evd.meta_ftype sigma mv with Not_found -> anomaly Pp.(str "unknown meta ?" ++ str (Nameops.string_of_meta mv) ++ str ".") in meta_instance env sigma ty let clenv_value clenv = meta_instance clenv.env clenv.evd { rebus = clenv.templval; freemetas = clenv.metaset } let clenv_type clenv = meta_instance clenv.env clenv.evd clenv.templtyp let clenv_push_prod cl = let typ = whd_all cl.env (clenv_evd cl) (clenv_type cl) in let rec clrec typ = match EConstr.kind cl.evd typ with | Cast (t,_,_) -> clrec t | Prod (na,t,u) -> let mv = new_meta () in let dep = not (noccurn (clenv_evd cl) 1 u) in let na' = if dep then na.binder_name else Anonymous in let e' = meta_declare mv t ~name:na' cl.evd in let concl = if dep then subst1 (mkMeta mv) u else u in let templval = applist (cl.templval, [mkMeta mv]) in let metaset = Metaset.add mv cl.metaset in Some (mv, dep, { templval; metaset; templtyp = mk_freelisted concl; evd = e'; env = cl.env; metas = cl.metas @ [mv, None]; }) | _ -> None in clrec typ (* Instantiate the first [bound] products of [t] with metas (all products if [bound] is [None]; unfold local defs *) (** [clenv_environments sigma n t] returns [sigma',lmeta,ccl] where [lmetas] is a list of metas to be applied to a proof of [t] so that it produces the unification pattern [ccl]; [sigma'] is [sigma] extended with [lmetas]; if [n] is defined, it limits the size of the list even if [ccl] is still a product; otherwise, it stops when [ccl] is not a product; example: if [t] is [forall x y, x=y -> y=x] and [n] is [None], then [lmetas] is [Meta n1;Meta n2;Meta n3] and [ccl] is [Meta n1=Meta n2]; if [n] is [Some 1], [lmetas] is [Meta n1] and [ccl] is [forall y, Meta n1=y -> y=Meta n1] *) let clenv_environments evd bound t = let open EConstr in let open Vars in let rec clrec (e,metas) n t = match n, EConstr.kind evd t with | (Some 0, _) -> (e, List.rev metas, t) | (n, Cast (t,_,_)) -> clrec (e,metas) n t | (n, Prod (na,t1,t2)) -> let mv = new_meta () in let dep = not (noccurn evd 1 t2) in let na' = if dep then na.binder_name else Anonymous in let e' = meta_declare mv t1 ~name:na' e in clrec (e', (mv)::metas) (Option.map ((+) (-1)) n) (if dep then (subst1 (mkMeta mv) t2) else t2) | (n, LetIn (na,b,_,t)) -> clrec (e,metas) n (subst1 b t) | (n, _) -> (e, List.rev metas, t) in clrec (evd,[]) bound t let mk_clenv_from_env env sigma n (c,cty) = let evd = clear_metas sigma in let (evd,args,concl) = clenv_environments evd n cty in let templval = mkApp (c, Array.map_of_list mkMeta args) in let metaset = Metaset.of_list args in { templval; metaset; templtyp = mk_freelisted concl; evd = evd; env = env; metas = List.map (fun mv -> mv, None) args; } let mk_clenv_from env sigma c = mk_clenv_from_env env sigma None c let mk_clenv_from_n env sigma n c = mk_clenv_from_env env sigma (Some n) c (******************************************************************) (* [mentions clenv mv0 mv1] is true if mv1 is defined and mentions * mv0, or if one of the free vars on mv1's freelist mentions * mv0 *) let mentions sigma mv0 = let rec menrec mv1 = Int.equal mv0 mv1 || let mlist = try match meta_opt_fvalue sigma mv1 with | Some (b,_) -> b.freemetas | None -> Metaset.empty with Not_found -> Metaset.empty in Metaset.exists menrec mlist in menrec let error_incompatible_inst sigma mv = let na = meta_name sigma mv in match na with | Name id -> user_err Pp.(str "An incompatible instantiation has already been found for " ++ Id.print id) | _ -> anomaly ~label:"clenv_assign" (Pp.str "non dependent metavar already assigned.") (* TODO: replace by clenv_unify (mkMeta mv) rhs ? *) let clenv_assign env sigma mv rhs = let rhs_fls = mk_freelisted rhs in if Metaset.exists (mentions sigma mv) rhs_fls.freemetas then user_err Pp.(str "clenv_assign: circularity in unification"); try begin match meta_opt_fvalue sigma mv with | Some (body, _) -> if not (EConstr.eq_constr sigma body.rebus rhs) then error_incompatible_inst sigma mv else sigma | None -> let st = (Conv,TypeNotProcessed) in meta_assign mv (rhs_fls.rebus, st) sigma end with Not_found -> user_err Pp.(str "clenv_assign: undefined meta") (* [clenv_dependent hyps_only clenv] * returns a list of the metavars which appear in the template of clenv, * and which are dependent, This is computed by taking the metavars of the * template in right-to-left order, and collecting the metavars which appear * in their types, and adding in all the metavars appearing in the * type of clenv. * If [hyps_only] then metavariables occurring in the concl are _excluded_ * If [iter] is also set then all metavariables *recursively* occurring * in the concl are _excluded_ Details of the strategies used for computing the set of unresolved dependent metavariables We typically have a clause of the form lem(?T:Type,?T,?U:Type,?V:Type,?x:?T,?y:?U,?z:?V,?H:hyp(?x,?z)) :concl(?y,?z) Then, we compute: A = the set of all unresolved metas C = the set of metas occurring in concl (here ?y, ?z) C* = the recursive closure of C wrt types (here ?y, ?z, ?U, ?V) D = the set of metas occurring in a type of meta (here ?x, ?T, ?z, ?U, ?V) NL = the set of duplicated metas even if non dependent (here ?T) (we make the assumption that duplicated metas have internal dependencies) Then, for the "apply"-style tactic (hyps_only), missing metas are A inter ((D minus C) union NL) for the optimized "apply"-style tactic (taking in care, f_equal style lemma, from 2/8/10, Coq > 8.3), missing metas are A inter (( D minus C* ) union NL) for the "elim"-style tactic, missing metas are A inter (D union C union NL) In any case, we respect the order given in A. *) let clenv_metas_in_type_of_meta env sigma mv = (mk_freelisted (meta_instance env sigma (meta_ftype sigma mv))).freemetas let dependent_in_type_of_metas env sigma mvs = List.fold_right (fun mv -> Metaset.union (clenv_metas_in_type_of_meta env sigma mv)) mvs Metaset.empty let dependent_closure env sigma mvs = let rec aux mvs acc = Metaset.fold (fun mv deps -> let metas_of_meta_type = clenv_metas_in_type_of_meta env sigma mv in aux metas_of_meta_type (Metaset.union deps metas_of_meta_type)) mvs acc in aux mvs mvs let undefined_metas evd = let fold n b accu = match b with | Clval(_,_,typ) -> accu | Cltyp (_,typ) -> n :: accu in let m = Metamap.fold fold (Evd.meta_list evd) [] in List.sort Int.compare m let clenv_dependent_gen hyps_only ?(iter=true) env sigma concl = let all_undefined = undefined_metas sigma in let deps_in_concl = (mk_freelisted concl).freemetas in let deps_in_hyps = dependent_in_type_of_metas env sigma all_undefined in let deps_in_concl = if hyps_only && iter then dependent_closure env sigma deps_in_concl else deps_in_concl in List.filter (fun mv -> if hyps_only then Metaset.mem mv deps_in_hyps && not (Metaset.mem mv deps_in_concl) else Metaset.mem mv deps_in_hyps || Metaset.mem mv deps_in_concl) all_undefined let clenv_missing ce = clenv_dependent_gen true ce.env ce.evd (clenv_type ce) (******************************************************************) let clenv_unify ?(flags=default_unify_flags ()) cv_pb t1 t2 clenv = update_clenv_evd clenv (w_unify ~flags clenv.env clenv.evd cv_pb t1 t2) let clenv_unify_meta_types ?(flags=default_unify_flags ()) clenv = update_clenv_evd clenv (w_unify_meta_types ~flags:flags clenv.env clenv.evd) let clenv_unique_resolver ?(flags=default_unify_flags ()) clenv concl = let (hd, _) = decompose_app clenv.evd (whd_nored clenv.env clenv.evd clenv.templtyp.rebus) in let clenv = if isMeta clenv.evd hd then clenv_unify_meta_types ~flags clenv else clenv in clenv_unify CUMUL ~flags (clenv_type clenv) concl clenv let adjust_meta_source evd mv = function | loc,Evar_kinds.VarInstance id -> let rec match_name c l = match EConstr.kind evd c, l with | Lambda ({binder_name=Name id},_,c), a::l when EConstr.eq_constr evd a (mkMeta mv) -> Some id | Lambda (_,_,c), a::l -> match_name c l | _ -> None in (* This is very ad hoc code so that an evar inherits the name of the binder in situations like "ex_intro (fun x => P) ?ev p" *) let f = function (mv',(Cltyp (_,t) | Clval (_,_,t))) -> if Metaset.mem mv t.freemetas then let f,l = decompose_app_list evd t.rebus in match EConstr.kind evd f with | Meta mv'' -> (match meta_opt_fvalue evd mv'' with | Some (c,_) -> match_name c.rebus l | None -> None) | _ -> None else None in let id = Option.default id (List.find_map f (Evd.Metamap.bindings (Evd.meta_list evd))) in loc,Evar_kinds.VarInstance id | src -> src (* [clenv_pose_metas_as_evars clenv dep_mvs] * For each dependent evar in the clause-env which does not have a value, * pose a value for it by constructing a fresh evar. We do this in * left-to-right order, so that every evar's type is always closed w.r.t. * metas. * Node added 14/4/08 [HH]: before this date, evars were collected in clenv_dependent by collect_metas in the fold_constr order which is (almost) the left-to-right order of dependencies in term. However, due to K-redexes, collect_metas was sometimes missing some metas. The call to collect_metas has been replaced by a call to undefined_metas, but then the order was the one of definition of the metas (numbers in increasing order) which is _not_ the dependency order when a clenv_fchain occurs (because clenv_fchain plugs a term with a list of consecutive metas in place of a - a priori - arbitrary metavariable belonging to another sequence of consecutive metas: e.g., clenv_fchain may plug (H ?1 ?2) at the position ?6 of (nat_ind ?3 ?4 ?5 ?6), leading to a dependency order 3<4<5<1<2). To ensure the dependency order, we check that the type of each meta to pose is already meta-free, otherwise we postpone the transformation, hoping that no cycle may happen. Another approach could have been to use decimal numbers for metas so that in the example above, (H ?1 ?2) would have been renumbered (H ?6.1 ?6.2) then making the numeric order match the dependency order. *) let clenv_pose_metas_as_evars env sigma dep_mvs = let rec fold sigma = function | [] -> sigma | mv::mvs -> let ty = clenv_meta_type env sigma mv in (* Postpone the evar-ization if dependent on another meta *) (* This assumes no cycle in the dependencies - is it correct ? *) if occur_meta sigma ty then fold sigma (mvs@[mv]) else let src = evar_source_of_meta mv sigma in let src = adjust_meta_source sigma mv src in let (sigma, evar) = new_evar env sigma ~src ty in let sigma = clenv_assign env sigma mv evar in fold sigma mvs in fold sigma dep_mvs (******************************************************************) (* [clenv_fchain mv clenv clenv'] * * Resolves the value of "mv" (which must be undefined) in clenv to be * the template of clenv' be the value "c", applied to "n" fresh * metavars, whose types are chosen by destructing "clf", which should * be a clausale forme generated from the type of "c". The process of * resolution can cause unification of already-existing metavars, and * of the fresh ones which get created. This operation is a composite * of operations which pose new metavars, perform unification on * terms, and make bindings. Otherwise said, from [clenv] = [env;sigma;metas |- c:T] [clenv'] = [env';sigma';metas' |- d:U] [mv] = [mi] of type [Ti] in [metas] then, if the unification of [Ti] and [U] produces map [rho], the chaining is [env';sigma';rho'(metas),rho(metas') |- c:rho'(T)] for [rho'] being [rho;mi:=d]. In particular, it assumes that [env'] and [sigma'] extend [env] and [sigma]. *) let fchain_flags () = { (default_unify_flags ()) with allow_K_in_toplevel_higher_order_unification = true } let clenv_instantiate ?(flags=fchain_flags ()) ?submetas mv clenv (c, ty) = let clenv, c = match submetas with | None -> clenv, c | Some metas -> let evd = meta_merge (Metamap.of_list metas) clenv.evd in let clenv = update_clenv_evd clenv evd in let c = applist (c, List.map (fun (mv, _) -> mkMeta mv) metas) in let map (mv0, submetas0 as arg) = if Int.equal mv mv0 then (* we never chain more than 2 clenvs *) let () = assert (Option.is_empty submetas0) in (mv, Some (List.map fst metas)) else arg in let metas = List.map map clenv.metas in { clenv with metas = metas }, c in (* unify the type of the template of [nextclenv] with the type of [mv] *) let clenv = clenv_unify ~flags CUMUL ty (clenv_meta_type clenv.env clenv.evd mv) clenv in let evd = clenv_assign clenv.env clenv.evd mv c in update_clenv_evd clenv evd (***************************************************************) (* Bindings *) (* [clenv_independent clenv] * returns a list of metavariables which appear in the term cval, * and which are not dependent. That is, they do not appear in * the types of other metavars which are in cval, nor in the type * of cval, ctyp. *) let clenv_independent clenv = let mvs = collect_metas clenv.evd (clenv_value clenv) in let ctyp_mvs = (mk_freelisted (clenv_type clenv)).freemetas in let deps = Metaset.union (dependent_in_type_of_metas clenv.env clenv.evd mvs) ctyp_mvs in List.filter (fun mv -> not (Metaset.mem mv deps)) mvs let qhyp_eq h1 h2 = match h1, h2 with | NamedHyp n1, NamedHyp n2 -> lident_eq n1 n2 | AnonHyp i1, AnonHyp i2 -> Int.equal i1 i2 | _ -> false let check_bindings bl = match List.duplicates qhyp_eq (List.map (fun {CAst.v=x} -> fst x) bl) with | NamedHyp s :: _ -> user_err ?loc:s.CAst.loc Pp.(str "The variable " ++ Id.print s.CAst.v ++ str " occurs more than once in binding list."); | AnonHyp n :: _ -> user_err Pp.(str "The position " ++ int n ++ str " occurs more than once in binding list.") | [] -> () let explain_no_such_bound_variable mvl {CAst.v=id;loc} = let open Pp in let expl = match mvl with | [] -> str "(no bound variables at all in the expression)." | [id] -> str "(possible name is: " ++ Id.print id ++ str ")." | _ -> str "(possible names are: " ++ pr_enum Id.print mvl ++ str ")." in user_err ?loc (str "No such bound variable " ++ Id.print id ++ spc () ++ expl) let meta_with_name evd ({CAst.v=id} as lid) = let na = Name id in let fold n clb (l1, l2 as l) = let (na',def) = match clb with | Cltyp (na, _) -> (na, false) | Clval (na, _, _) -> (na, true) in if Name.equal na na' then if def then (n::l1,l2) else (n::l1,n::l2) else l in let (mvl, mvnodef) = Evd.Metamap.fold fold (Evd.meta_list evd) ([], []) in match List.rev mvnodef, List.rev mvl with | _,[] -> let fold n clb l = let na = match clb with | Cltyp (na, _) -> na | Clval (na, _, _) -> na in if na != Anonymous then Name.get_id na :: l else l in let mvl = List.rev (Evd.Metamap.fold fold (Evd.meta_list evd) []) in explain_no_such_bound_variable mvl lid | (n::_,_|_,n::_) -> n let meta_of_binder clause loc mvs = function | NamedHyp s -> meta_with_name clause.evd s | AnonHyp n -> try List.nth mvs (n-1) with (Failure _|Invalid_argument _) -> user_err Pp.(str "No such binder.") let error_already_defined b = match b with | NamedHyp id -> user_err ?loc:id.CAst.loc Pp.(str "Binder name \"" ++ Id.print id.CAst.v ++ str"\" already defined with incompatible value.") | AnonHyp n -> anomaly Pp.(str "Position " ++ int n ++ str" already defined.") let clenv_unify_binding_type env sigma c t u = if isMeta sigma (fst (decompose_app sigma (whd_nored env sigma u))) then (* Not enough information to know if some subtyping is needed *) CoerceToType, sigma, c else (* Enough information so as to try a coercion now *) try let sigma, c = w_coerce_to_type env sigma c t u in TypeProcessed, sigma, c with | PretypeError (_,_,ActualTypeNotCoercible (_,_, (NotClean _ | ConversionFailed _))) as e -> raise e | e when precatchable_exception e -> TypeNotProcessed, sigma, c let clenv_assign_binding clenv k c = let k_typ = hnf_constr clenv.env clenv.evd (clenv_meta_type clenv.env clenv.evd k) in let c_typ = nf_betaiota clenv.env clenv.evd (Retyping.get_type_of clenv.env clenv.evd c) in let status, sigma, c = clenv_unify_binding_type clenv.env clenv.evd c c_typ k_typ in update_clenv_evd clenv (meta_assign k (c, (Conv, status)) sigma) let clenv_match_args bl clenv = if List.is_empty bl then clenv else let mvs = clenv_independent clenv in check_bindings bl; List.fold_left (fun clenv {CAst.loc;v=(b,c)} -> let k = meta_of_binder clenv loc mvs b in match meta_opt_fvalue clenv.evd k with | Some (body, _) -> if EConstr.eq_constr clenv.evd body.rebus c then clenv else error_already_defined b | None -> clenv_assign_binding clenv k c) clenv bl let error_not_right_number_missing_arguments n = user_err Pp.(strbrk "Not the right number of missing arguments (expected " ++ int n ++ str ").") let clenv_constrain_dep_args hyps_only bl clenv = if List.is_empty bl then clenv else let occlist = clenv_dependent_gen hyps_only clenv.env clenv.evd (clenv_type clenv) in if Int.equal (List.length occlist) (List.length bl) then List.fold_left2 clenv_assign_binding clenv occlist bl else if hyps_only then (* Tolerance for compatibility <= 8.3 *) let occlist' = clenv_dependent_gen hyps_only ~iter:false clenv.env clenv.evd (clenv_type clenv) in if Int.equal (List.length occlist') (List.length bl) then List.fold_left2 clenv_assign_binding clenv occlist' bl else error_not_right_number_missing_arguments (List.length occlist) else error_not_right_number_missing_arguments (List.length occlist) let pose_dependent_evars ?(with_evars=false) env sigma concl = let dep_mvs = clenv_dependent_gen false env sigma concl in if not (List.is_empty dep_mvs) && not with_evars then raise (RefinerError (env, sigma, UnresolvedBindings (List.map (meta_name sigma) dep_mvs))); clenv_pose_metas_as_evars env sigma dep_mvs let clenv_pose_dependent_evars ?with_evars clenv = let sigma = pose_dependent_evars ?with_evars clenv.env clenv.evd (clenv_type clenv) in update_clenv_evd clenv sigma type case_node = (case_info * EInstance.t * EConstr.t array * EConstr.case_return * EConstr.case_invert * EConstr.t) module Internal = struct open Pp open Constr open Termops open Retyping let error_unsupported_deep_meta () = user_err (strbrk "Application of lemmas whose beta-iota normal " ++ strbrk "form contains metavariables deep inside the term is not " ++ strbrk "supported; try \"refine\" instead.") type proof = | RfHole of metavariable | RfGround of EConstr.t | RfApp of proof * proof list | RfProj of Projection.t * ERelevance.t * proof exception NonLinear let is_ground = function | RfGround _ -> true | RfHole _ | RfApp _ | RfProj _ -> false let make_proof env sigma c = let metas = ref Metaset.empty in let rec make c = match EConstr.kind sigma c with | Meta mv -> if Metaset.mem mv !metas then raise NonLinear else let () = metas := Metaset.add mv !metas in RfHole mv | App (f, args) -> let f = make f in let args = Array.map_to_list (fun c -> make c) args in if is_ground f && List.for_all is_ground args then RfGround c else RfApp (f, args) | Proj (p, r, a) -> let a = make a in if is_ground a then RfGround c else RfProj (p, r, a) | _ -> if occur_meta sigma c then error_unsupported_deep_meta () else RfGround c in try make c with NonLinear -> raise (RefinerError (env, sigma, NonLinearProof c)) let rec as_constr = function | RfHole mv -> EConstr.mkMeta mv | RfGround c -> c | RfApp (f, args) -> EConstr.mkApp (as_constr f, Array.map_of_list as_constr args) | RfProj (p, r, c) -> EConstr.mkProj (p, r, as_constr c) (* Old style mk_goal primitive *) let mk_goal evars hyps concl = (* A goal created that way will not be used by refine and will not be shelved. It must not appear as a future_goal, so the future goals are restored to their initial value after the evar is created. *) let evars = Evd.push_future_goals evars in let inst = EConstr.identity_subst_val hyps in let (evars,evk) = Evarutil.new_pure_evar ~src:(Loc.tag Evar_kinds.GoalEvar) ~typeclass_candidate:false hyps evars concl in let _, evars = Evd.pop_future_goals evars in let ev = EConstr.mkEvar (evk,inst) in (evk, ev, evars) let rec mk_refgoals env sigma goalacc conclty trm = match trm with | RfGround trm -> let ty = Retyping.get_type_of env sigma trm in (goalacc, ty, sigma, trm) | RfHole mv -> let conclty = match conclty with | None -> Typing.meta_type env sigma mv | Some conclty -> conclty in let conclty = nf_betaiota env sigma conclty in let hyps = Environ.named_context_val env in let (gl,ev,sigma) = mk_goal sigma hyps conclty in gl::goalacc, conclty, sigma, ev | RfApp (f, l) -> let (acc',hdty,sigma,applicand) = match f with | RfGround f when Termops.is_template_polymorphic_ind env sigma f -> let ty = (* Template polymorphism of definitions and inductive types *) let args, _ = List.split_when (fun p -> not (is_ground p)) l in let args = Array.map_of_list as_constr args in type_of_global_reference_knowing_parameters env sigma f args in goalacc, ty, sigma, f | _ -> mk_refgoals env sigma goalacc None f in let ((acc'',conclty',sigma), args) = mk_arggoals env sigma acc' hdty l in let ans = EConstr.applist (applicand, args) in (acc'', conclty', sigma, ans) | RfProj (p, r, c) -> let (acc',cty,sigma,c') = mk_refgoals env sigma goalacc None c in let c = EConstr.mkProj (p, r, c') in let ty = get_type_of env sigma c in (acc',ty,sigma,c) and mk_arggoals env sigma goalacc funty allargs = let foldmap (goalacc, funty, sigma) harg = let t = whd_all env sigma funty in match EConstr.kind sigma t with | Prod (_, c1, b) -> let (acc, hargty, sigma, arg) = mk_refgoals env sigma goalacc (Some c1) harg in (acc, EConstr.Vars.subst1 arg b, sigma), arg | _ -> raise (RefinerError (env,sigma,CannotApply (t, as_constr harg))) in List.fold_left_map foldmap (goalacc, funty, sigma) allargs let treat_case env sigma ci lbrty accu = let open EConstr in let fold (sigma, accu) (ctx, ty) = let open Context.Rel.Declaration in let brctx = Array.of_list (List.rev_map get_annot ctx) in let args = Context.Rel.instance mkRel 0 ctx in (* TODO: tweak this to prevent dummy β-cuts *) let ty = nf_betaiota env sigma (it_mkProd_or_LetIn ty ctx) in let hyps = Environ.named_context_val env in let (gl, ev, sigma) = mk_goal sigma hyps ty in let br' = mkApp (ev, args) in (sigma, gl :: accu), (brctx, br') in Array.fold_left_map fold (sigma, accu) lbrty let std_refine env sigma cl r = let r = make_proof env sigma r in let (sgl, _, sigma, trm) = mk_refgoals env sigma [] (Some cl) r in (sigma, sgl, trm) (***********************************************) (* find appropriate names for pattern variables. Useful in the Case and Inversion (case_then_using et case_nodep_then_using) tactics. *) type refiner_kind = | Std of clbinding Metamap.t * EConstr.t | Case of case_node * (EConstr.rel_context * EConstr.t) array let refiner_gen is_case = let open Proofview.Notations in Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let st = Proofview.Goal.state gl in let cl = Proofview.Goal.concl gl in let (sigma, sgl, c) = match is_case with | Case ((ci, u, pms, p, iv, c), branches) -> let ((sigma, accu), lf) = treat_case env sigma ci branches [] in let ans = EConstr.mkCase (ci, u, pms, p, iv, c, lf) in (sigma, accu, ans) | Std (metas, r) -> let sigma = Evd.meta_merge metas sigma in std_refine env sigma cl r in let sigma = Evd.clear_metas sigma in let map gl = Proofview.goal_with_state gl st in let sgl = List.rev_map map sgl in let evk = Proofview.Goal.goal gl in (* Check that the goal itself does not appear in the refined term *) let _ = if not (Evarutil.occur_evar_upto sigma evk c) then () else Pretype_errors.error_occur_check env sigma evk c in let sigma = Evd.define evk c sigma in Proofview.Unsafe.tclEVARS sigma <*> Proofview.Unsafe.tclSETGOALS sgl end let refiner clenv = let r = clenv_value clenv in let metas = Evd.meta_list clenv.evd in refiner_gen (Std (metas, r)) end open Unification let dft = default_unify_flags let res_pf ?(with_evars=false) ?(with_classes=true) ?(flags=dft ()) clenv = Proofview.Goal.enter begin fun gl -> let concl = Proofview.Goal.concl gl in let clenv = clenv_unique_resolver ~flags clenv concl in let sigma = pose_dependent_evars ~with_evars clenv.env clenv.evd (clenv_type clenv) in let sigma = if with_classes then let sigma = Typeclasses.resolve_typeclasses ~filter:Typeclasses.all_evars ~fail:(not with_evars) clenv.env sigma in (* After an apply, all the subgoals including those dependent shelved ones are in the hands of the user and resolution won't be called implicitely on them. *) Typeclasses.make_unresolvables (fun x -> true) sigma else sigma in let clenv = update_clenv_evd clenv sigma in let metas = Evd.meta_list clenv.evd in let r = clenv_value clenv in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS (Evd.clear_metas sigma)) (Internal.refiner_gen (Std (metas, r))) end type case_analysis = | RealCase of case_node | PrimitiveEta of EConstr.t array let build_case_analysis env sigma (ind, u) params pred indices indarg dep knd = let open Inductiveops in let open Context.Rel.Declaration in (* Assumes that the arguments do not contain free rels *) let indf = make_ind_family ((ind, u), Array.to_list params) in let projs = get_projections env ind in let relevance = Retyping.relevance_of_sort knd in let pnas, deparsign = let arsign = get_arity env indf in let r = Inductiveops.relevance_of_inductive_family env indf in let depind = build_dependent_inductive env indf in let deparsign = LocalAssum (make_annot Anonymous r,depind)::arsign in let set_names env l = let ident_hd env ids t na = let na = Namegen.named_hd env (Evd.from_env env) t na in Namegen.next_name_away na ids in let fold d (ids, l) = let id = ident_hd env ids (get_type d) (get_name d) in (Id.Set.add id ids, set_name (Name id) d :: l) in snd (List.fold_right fold l (Id.Set.empty,[])) in let pctx = let deparsign = set_names env deparsign in if dep then deparsign else LocalAssum (make_annot Anonymous r, depind) :: List.tl deparsign in let pnas = Array.of_list (List.rev_map get_annot pctx) in pnas, deparsign in match projs with | None -> let ci = make_case_info env ind RegularStyle in let pbody = mkApp (pred, if dep then Context.Rel.instance mkRel 0 deparsign else Context.Rel.instance mkRel 1 (List.tl deparsign)) in let iv = if Typeops.should_invert_case env (ERelevance.kind sigma relevance) ci then CaseInvert { indices = indices } else NoInvert in RealCase (ci, u, params, ((pnas, pbody), relevance), iv, indarg) | Some ps -> let args = Array.map (fun (p,r) -> let r = EConstr.Vars.subst_instance_relevance u (ERelevance.make r) in mkProj (Projection.make p true, r, indarg)) ps in PrimitiveEta args let case_pf ?(with_evars=false) ~dep (indarg, typ) = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let sigma = clear_metas sigma in (* Extract inductive data from the argument. *) let hd, args = decompose_app sigma typ in (* Workaround to #5645: reduce_to_atomic_ind produces ill-typed terms *) let sigma, _ = Typing.checked_appvect env sigma hd args in let ind, u = destInd sigma hd in let s = Retyping.get_sort_of env sigma concl in let (mib, mip) = Inductive.lookup_mind_specif env ind in let params, indices = Array.chop mib.mind_nparams args in let () = Indrec.check_valid_elimination env sigma (ind, u) ~dep s in let indf = Inductiveops.make_ind_family ((ind, u), Array.to_list params) in (* Extract the return clause using unification with the conclusion *) let typP = Inductiveops.make_arity env sigma dep indf s in let mvP = new_meta () in let sigma = meta_declare mvP typP sigma in let depargs = Array.append indices [|indarg|] in let templtyp = if dep then mkApp (mkMeta mvP, depargs) else mkApp (mkMeta mvP, indices) in let flags = elim_flags () in let sigma = w_unify_meta_types ~flags env sigma in let sigma = w_unify ~flags env sigma CUMUL templtyp concl in let pred = meta_instance env sigma (mk_freelisted (mkMeta mvP)) in (* Create the branch types *) let branches = let open Inductiveops in let constrs = get_constructors env indf in let get_branch cs = let base = mkApp (pred, cs.cs_concl_realargs) in let argctx = cs.cs_args in if dep then let argctx = Namegen.name_context env sigma argctx in (argctx, applist (base, [build_dependent_constructor cs])) else (argctx, base) in Array.map get_branch constrs in (* Build the case node proper *) let body = build_case_analysis env sigma (ind, u) params pred indices indarg dep s in (* After an apply, all the subgoals including those dependent shelved ones are in the hands of the user and resolution won't be called implicitely on them. *) let sigma = Typeclasses.resolve_typeclasses ~filter:Typeclasses.all_evars ~fail:(not with_evars) env sigma in let sigma = Typeclasses.make_unresolvables (fun x -> true) sigma in (* Note that the environment rel context does not matter for betaiota *) let rec nf_betaiota c = EConstr.map sigma nf_betaiota (whd_betaiota env sigma c) in (* Call the legacy refiner on the result *) let arg = match body with | RealCase (ci, u, pms, (p,r), iv, c) -> let c = nf_betaiota c in let pms = Array.map nf_betaiota pms in let p = on_snd nf_betaiota p in Internal.Case ((ci, u, pms, (p,r), iv, c), branches) | PrimitiveEta args -> let mv = new_meta () in let (ctx, t) = branches.(0) in let sigma = meta_declare mv (it_mkProd_or_LetIn t ctx) sigma in let metas = Evd.meta_list sigma in Internal.Std (metas, mkApp (mkMeta mv, Array.map nf_betaiota args)) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS (Evd.clear_metas sigma)) (Internal.refiner_gen arg) end (* [unifyTerms] et [unify] ne semble pas gérer les Meta, en particulier ne semblent pas vérifier que des instances différentes d'une même Meta sont compatibles. D'ailleurs le "fst" jette les metas provenant de w_Unify. (Utilisé seulement dans prolog.ml) *) let fail_quick_core_unif_flags = { modulo_conv_on_closed_terms = Some TransparentState.full; use_metas_eagerly_in_conv_on_closed_terms = false; use_evars_eagerly_in_conv_on_closed_terms = false; modulo_delta = TransparentState.empty; modulo_delta_types = TransparentState.full; check_applied_meta_types = false; use_pattern_unification = false; use_meta_bound_pattern_unification = true; (* ? *) allowed_evars = Evarsolve.AllowedEvars.all; restrict_conv_on_strict_subterms = false; (* ? *) modulo_betaiota = false; modulo_eta = true; } let fail_quick_unif_flags = { core_unify_flags = fail_quick_core_unif_flags; merge_unify_flags = fail_quick_core_unif_flags; subterm_unify_flags = fail_quick_core_unif_flags; allow_K_in_toplevel_higher_order_unification = false; resolve_evars = false } (* let unifyTerms m n = walking (fun wc -> fst (w_Unify CONV m n [] wc)) *) let unify ?(flags=fail_quick_unif_flags) ~cv_pb m = Proofview.Goal.enter begin fun gl -> let env = Tacmach.pf_env gl in let n = Tacmach.pf_concl gl in let evd = clear_metas (Tacmach.project gl) in try let evd' = w_unify env evd cv_pb ~flags m n in Proofview.Unsafe.tclEVARSADVANCE evd' with e when CErrors.noncritical e -> let info = Exninfo.reify () in Proofview.tclZERO ~info e end (****************************************************************) (* Clausal environment for an application *) let make_clenv_binding_gen hyps_only n env sigma (c,t) = function | ImplicitBindings largs -> let clause = mk_clenv_from_env env sigma n (c,t) in clenv_constrain_dep_args hyps_only largs clause | ExplicitBindings lbind -> let clause = mk_clenv_from_env env sigma n (c, t) in clenv_match_args lbind clause | NoBindings -> mk_clenv_from_env env sigma n (c,t) let make_clenv_binding_apply env sigma n = make_clenv_binding_gen true n env sigma let make_clenv_binding env sigma = make_clenv_binding_gen false None env sigma (****************************************************************) (* Pretty-print *) let pr_clenv clenv = let prc = Termops.Internal.print_constr_env clenv.env clenv.evd in Pp.(h (str"TEMPL: " ++ prc clenv.templval ++ str" : " ++ prc clenv.templtyp.rebus ++ fnl () ++ pr_evar_map (Some 2) clenv.env clenv.evd))
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>