package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.0.tar.gz
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/src/coq-core.kernel/vmemitcodes.ml.html
Source file vmemitcodes.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Author: Benjamin Grégoire as part of the bytecode-based virtual reduction machine, Oct 2004 *) (* Extension: Arnaud Spiwack (support for native arithmetic), May 2005 *) open Names open Vmvalues open Vmbytecodes open Vmopcodes open Mod_subst open CPrimitives type emitcodes = String.t external tcode_of_code : Bytes.t -> Vmvalues.tcode = "coq_tcode_of_code" (* Relocation information *) type reloc_info = | Reloc_annot of annot_switch | Reloc_const of structured_constant | Reloc_getglobal of Names.Constant.t | Reloc_caml_prim of caml_prim let eq_reloc_info r1 r2 = match r1, r2 with | Reloc_annot sw1, Reloc_annot sw2 -> eq_annot_switch sw1 sw2 | Reloc_annot _, _ -> false | Reloc_const c1, Reloc_const c2 -> eq_structured_constant c1 c2 | Reloc_const _, _ -> false | Reloc_getglobal c1, Reloc_getglobal c2 -> Constant.CanOrd.equal c1 c2 | Reloc_getglobal _, _ -> false | Reloc_caml_prim p1, Reloc_caml_prim p2 -> CPrimitives.equal (caml_prim_to_prim p1) (caml_prim_to_prim p2) | Reloc_caml_prim _, _ -> false let hash_reloc_info r = let open Hashset.Combine in match r with | Reloc_annot sw -> combinesmall 1 (hash_annot_switch sw) | Reloc_const c -> combinesmall 2 (hash_structured_constant c) | Reloc_getglobal c -> combinesmall 3 (Constant.CanOrd.hash c) | Reloc_caml_prim p -> combinesmall 4 (CPrimitives.hash (caml_prim_to_prim p)) module RelocTable = Hashtbl.Make(struct type t = reloc_info let equal = eq_reloc_info let hash = hash_reloc_info end) module Positions : sig type t val of_list : int list -> t val iter : (int -> unit) -> t -> unit end = struct type t = string (* Represent an ordered set of 32-bit integers as an array of successive diffs. We use furthermore an approach where smaller integers use less bytes. Numbers smaller than 255 are stored into one byte. Otherwise we use the byte 0x00 to signal that we store the integer in the next 4 bytes. This is a cheap way to compact this data. *) let output buf n = if n <= 0xFF then Buffer.add_uint8 buf n else let () = Buffer.add_uint8 buf 0x00 in Buffer.add_int32_be buf (Int32.of_int n) let input s pos = let c = Char.code s.[!pos] in if Int.equal c 0x00 then (* TODO: use String.get_int32_be when available in OCaml 4.13.0 *) let c1 = Char.code s.[!pos + 1] in let c2 = Char.code s.[!pos + 2] in let c3 = Char.code s.[!pos + 3] in let c4 = Char.code s.[!pos + 4] in let () = pos := !pos + 5 in (c1 lsl 24) lor (c2 lsl 16) lor (c3 lsl 8) lor c4 else let () = pos := !pos + 1 in c let of_list l = match l with | [] -> "" | n :: l -> let buf = Buffer.create 16 in let () = assert (0 < n) in let () = output buf n in let rec aux cur l = match l with | [] -> () | n :: l -> let () = assert (cur < n) in let () = output buf (n - cur) in aux n l in let () = aux n l in Buffer.contents buf let iter f s = let pos = ref 0 in let len = String.length s in let cur = ref 0 in while !pos < len do let n = input s pos in let () = cur := n + !cur in f !cur done end module NonSubstReloc = struct (** Relocations that are left untouched by module substitution. To reduce the memory footprint, this data is kept on the VM segment. *) type t = | SReloc_Const_sort of Sorts.t | SReloc_Const_evar of Evar.t | SReloc_Const_b0 of tag | SReloc_Const_univ_instance of UVars.Instance.t | SReloc_Const_val of structured_values | SReloc_Const_uint of Uint63.t | SReloc_Const_float of Float64.t | SReloc_Const_string of Pstring.t | SReloc_annot of annot_switch | SReloc_caml_prim of caml_prim let to_reloc = function | SReloc_Const_sort s -> Reloc_const (Const_sort s) | SReloc_Const_evar e -> Reloc_const (Const_evar e) | SReloc_Const_b0 tag -> Reloc_const (Const_b0 tag) | SReloc_Const_univ_instance u -> Reloc_const (Const_univ_instance u) | SReloc_Const_val v -> Reloc_const (Const_val v) | SReloc_Const_uint i -> Reloc_const (Const_uint i) | SReloc_Const_float f -> Reloc_const (Const_float f) | SReloc_Const_string s -> Reloc_const (Const_string s) | SReloc_annot annot -> Reloc_annot annot | SReloc_caml_prim prm -> Reloc_caml_prim prm end module Reloc = struct type t = | SReloc_Const_ind of inductive | SReloc_getglobal of Names.Constant.t | SReloc_indirect of int (* index in the non-subst table *) let to_reloc table = function | SReloc_Const_ind ind -> Reloc_const (Const_ind ind) | SReloc_getglobal cst -> Reloc_getglobal cst | SReloc_indirect i -> NonSubstReloc.to_reloc table.(i) let subst s reloc = match reloc with | SReloc_Const_ind ind -> let ind' = Mod_subst.subst_ind s ind in if ind' == ind then reloc else SReloc_Const_ind ind' | SReloc_getglobal cst -> let cst' = Mod_subst.subst_constant s cst in if cst' == cst then reloc else SReloc_getglobal cst' | SReloc_indirect _ -> reloc end (* Most of the words of the bytecode are comprised of a byte followed by three nul bytes. It is compressed as follows. In the common case, only the byte is output. In the other cases (or when the byte is too large), 255 is output followed by the four original bytes, or 254 is output followed by the first three original bytes (assuming the fourth is nul), or 253 or 252. *) let compress_code src sz = let buf = Buffer.create (sz * 3 / 8) in for i = 0 to sz / 4 - 1 do let c01 = Bytes.get_uint16_le src (i * 4) in let c23 = Bytes.get_uint16_le src (i * 4 + 2) in if c23 = 0 then if c01 < 252 then Buffer.add_uint8 buf c01 else begin Buffer.add_uint8 buf 253; Buffer.add_uint16_le buf c01; end else if c23 = 0xffff && c01 >= 0xff00 then begin Buffer.add_uint8 buf 252; Buffer.add_uint8 buf c01; end else if c23 <= 0xff then begin Buffer.add_uint8 buf 254; Buffer.add_uint16_le buf c01; Buffer.add_uint8 buf c23; end else begin Buffer.add_uint8 buf 255; Buffer.add_uint16_le buf c01; Buffer.add_uint16_le buf c23; end done; Buffer.contents buf let decompress_code src = let sz = String.length src in let buf = Buffer.create (sz * 4) in (* TODO: remove the following two lines once the minimal version of OCaml is 4.13 *) let module String = Bytes in let src = String.unsafe_of_string src in let i = ref 0 in while !i < sz do let c01, c23 = match String.get src !i with | '\000' .. '\251' as c -> i := !i + 1; (Char.code c, 0) | '\252' -> i := !i + 2; (String.get_uint8 src (!i - 1) + 0xff00, 0xffff) | '\253' -> i := !i + 3; (String.get_uint16_le src (!i - 2), 0) | '\254' -> i := !i + 4; (String.get_uint16_le src (!i - 3), String.get_uint8 src (!i - 1)) | '\255' -> i := !i + 5; (String.get_uint16_le src (!i - 4), String.get_int16_le src (!i - 2)) in Buffer.add_uint16_le buf c01; Buffer.add_uint16_le buf c23; done; Buffer.to_bytes buf (** This data type is stored in vo files. *) type patches = { reloc_infos : Reloc.t array; } type to_patch = { tp_code : emitcodes; tp_fv : fv; tp_pos : Positions.t; tp_reloc : NonSubstReloc.t array; } let patch_int tp reloc = let buff = decompress_code tp.tp_code in let iter pos = let id = Bytes.get_int32_le buff pos in let reloc = reloc.(Int32.to_int id) in Bytes.set_int32_le buff pos (Int32.of_int reloc) in let () = Positions.iter iter tp.tp_pos in buff let patch (tp, pl) f = let f r = f (Reloc.to_reloc tp.tp_reloc r) in let reloc = CArray.map_left f pl.reloc_infos in let buff = patch_int tp reloc in tcode_of_code buff, tp.tp_fv (* Buffering of bytecode *) type label_definition = Label_defined of int | Label_undefined of (int * int) list type env = { mutable out_buffer : Bytes.t; mutable out_position : int; mutable reloc_pos : int list; mutable reloc_id : int; mutable label_table : label_definition array; (* i-th table element = Label_defined n means that label i was already encountered and lives at offset n i-th table element = Label_undefined l means that the label was not encountered yet, first integer is the location of the value to be patched in the string, seconed one is its origin *) reloc_info : int RelocTable.t; } let out_word env b1 b2 b3 b4 = let p = env.out_position in let buf = let len = Bytes.length env.out_buffer in if p + 3 < len then env.out_buffer else let new_len = min (Sys.max_string_length) (2 * len) in (* Not the right exception... *) let () = if not (p + 3 < new_len) then Vmerrors.too_large_code() in let new_buffer = Bytes.create new_len in let () = Bytes.blit env.out_buffer 0 new_buffer 0 len in let () = env.out_buffer <- new_buffer in new_buffer in let () = Bytes.set_uint8 buf p b1 in let () = Bytes.set_uint8 buf (p + 1) b2 in let () = Bytes.set_uint8 buf (p + 2) b3 in let () = Bytes.set_uint8 buf (p + 3) b4 in env.out_position <- p + 4 let out env opcode = out_word env opcode 0 0 0 let is_immed i = Uint63.le (Uint63.of_int i) Uint63.maxuint31 (* Detect whether the current value of the accu register is no longer needed (i.e., the register is written before being read). If so, the register can be used freely; no need to save and restore it. *) let is_accu_dead = function | [] -> false | c :: _ -> match c with | Kacc _ | Kenvacc _ | Kconst _ | Koffsetclosure _ | Kgetglobal _ -> true | _ -> false let out_int env n = out_word env n (n asr 8) (n asr 16) (n asr 24) (* Handling of local labels and backpatching *) let extend_label_table env needed = let new_size = ref(Array.length env.label_table) in while needed >= !new_size do new_size := 2 * !new_size done; let new_table = Array.make !new_size (Label_undefined []) in Array.blit env.label_table 0 new_table 0 (Array.length env.label_table); env.label_table <- new_table let backpatch env (pos, orig) = let displ = (env.out_position - orig) asr 2 in Bytes.set_int32_le env.out_buffer pos (Int32.of_int displ) let define_label env lbl = if lbl >= Array.length env.label_table then extend_label_table env lbl; match (env.label_table).(lbl) with Label_defined _ -> raise(Failure "CEmitcode.define_label") | Label_undefined patchlist -> List.iter (fun p -> backpatch env p) patchlist; (env.label_table).(lbl) <- Label_defined env.out_position let out_label_with_orig env orig lbl = if lbl >= Array.length env.label_table then extend_label_table env lbl; match (env.label_table).(lbl) with Label_defined def -> out_int env ((def - orig) asr 2) | Label_undefined patchlist -> (env.label_table).(lbl) <- Label_undefined((env.out_position, orig) :: patchlist); out_int env 0 let out_label env l = out_label_with_orig env env.out_position l (* Relocation information *) let enter env info = let pos = env.out_position in let () = env.reloc_pos <- pos :: env.reloc_pos in try RelocTable.find env.reloc_info info with Not_found -> let id = env.reloc_id in let () = env.reloc_id <- id + 1 in let () = RelocTable.add env.reloc_info info id in id let slot_for env r = out_int env (enter env r) let slot_for_const env c = slot_for env (Reloc_const c) let slot_for_annot env a = slot_for env (Reloc_annot a) let slot_for_getglobal env p = slot_for env (Reloc_getglobal p) let slot_for_caml_prim env op = slot_for env (Reloc_caml_prim op) (* Emission of one instruction *) let check_prim_op = function | Int63head0 -> opCHECKHEAD0INT63 | Int63tail0 -> opCHECKTAIL0INT63 | Int63add -> opCHECKADDINT63 | Int63sub -> opCHECKSUBINT63 | Int63mul -> opCHECKMULINT63 | Int63div -> opCHECKDIVINT63 | Int63mod -> opCHECKMODINT63 | Int63divs -> opCHECKDIVSINT63 | Int63mods -> opCHECKMODSINT63 | Int63lsr -> opCHECKLSRINT63 | Int63lsl -> opCHECKLSLINT63 | Int63asr -> opCHECKASRINT63 | Int63land -> opCHECKLANDINT63 | Int63lor -> opCHECKLORINT63 | Int63lxor -> opCHECKLXORINT63 | Int63addc -> opCHECKADDCINT63 | Int63subc -> opCHECKSUBCINT63 | Int63addCarryC -> opCHECKADDCARRYCINT63 | Int63subCarryC -> opCHECKSUBCARRYCINT63 | Int63mulc -> opCHECKMULCINT63 | Int63diveucl -> opCHECKDIVEUCLINT63 | Int63div21 -> opCHECKDIV21INT63 | Int63addMulDiv -> opCHECKADDMULDIVINT63 | Int63eq -> opCHECKEQINT63 | Int63lt -> opCHECKLTINT63 | Int63le -> opCHECKLEINT63 | Int63lts -> opCHECKLTSINT63 | Int63les -> opCHECKLESINT63 | Int63compare -> opCHECKCOMPAREINT63 | Int63compares -> opCHECKCOMPARESINT63 | Float64opp -> opCHECKOPPFLOAT | Float64abs -> opCHECKABSFLOAT | Float64eq -> opCHECKEQFLOAT | Float64lt -> opCHECKLTFLOAT | Float64le -> opCHECKLEFLOAT | Float64compare -> opCHECKCOMPAREFLOAT | Float64equal -> opCHECKEQUALFLOAT | Float64classify -> opCHECKCLASSIFYFLOAT | Float64add -> opCHECKADDFLOAT | Float64sub -> opCHECKSUBFLOAT | Float64mul -> opCHECKMULFLOAT | Float64div -> opCHECKDIVFLOAT | Float64sqrt -> opCHECKSQRTFLOAT | Float64ofUint63 -> opCHECKFLOATOFINT63 | Float64normfr_mantissa -> opCHECKFLOATNORMFRMANTISSA | Float64frshiftexp -> opCHECKFRSHIFTEXP | Float64ldshiftexp -> opCHECKLDSHIFTEXP | Float64next_up -> opCHECKNEXTUPFLOAT | Float64next_down -> opCHECKNEXTDOWNFLOAT | Arraymake | Arrayget | Arrayset | Arraydefault | Arraycopy | Arraylength | Stringmake | Stringlength | Stringget | Stringsub | Stringcat | Stringcompare -> assert false let check_caml_prim_op = function | CAML_Arraymake -> opCHECKCAMLCALL2_1 | CAML_Arrayget -> opCHECKCAMLCALL2 | CAML_Arrayset -> opCHECKCAMLCALL3_1 | CAML_Arraydefault | CAML_Arraycopy | CAML_Arraylength -> opCHECKCAMLCALL1 | CAML_Stringmake -> opCHECKCAMLCALL2 | CAML_Stringlength -> opCHECKCAMLCALL1 | CAML_Stringget -> opCHECKCAMLCALL2 | CAML_Stringsub -> opCHECKCAMLCALL3 | CAML_Stringcat | CAML_Stringcompare -> opCHECKCAMLCALL2 let inplace_prim_op = function | Float64next_up | Float64next_down -> true | _ -> false let check_prim_op_inplace = function | Float64next_up -> opCHECKNEXTUPFLOATINPLACE | Float64next_down -> opCHECKNEXTDOWNFLOATINPLACE | _ -> assert false let emit_instr env = function | Klabel lbl -> define_label env lbl | Kacc n -> if n < 8 then out env(opACC0 + n) else (out env opACC; out_int env n) | Kenvacc n -> if n >= 0 && n <= 3 then out env(opENVACC0 + n) else (out env opENVACC; out_int env n) | Koffsetclosure ofs -> if Int.equal ofs 0 || Int.equal ofs 1 then out env (opOFFSETCLOSURE0 + ofs) else (out env opOFFSETCLOSURE; out_int env ofs) | Kpush -> out env opPUSH | Kpop n -> out env opPOP; out_int env n | Kpush_retaddr lbl -> out env opPUSH_RETADDR; out_label env lbl | Kshort_apply n -> assert (1 <= n && n <= 4); out env(opAPPLY1 + n - 1) | Kapply n -> out env opAPPLY; out_int env n | Kappterm(n, sz) -> if n < 4 then (out env(opAPPTERM1 + n - 1); out_int env sz) else (out env opAPPTERM; out_int env n; out_int env sz) | Kreturn n -> out env opRETURN; out_int env n | Kjump -> out env opRETURN; out_int env 0 | Krestart -> out env opRESTART | Kgrab n -> out env opGRAB; out_int env n | Kgrabrec(rec_arg) -> out env opGRABREC; out_int env rec_arg | Kclosure(lbl, n) -> out env opCLOSURE; out_int env n; out_label env lbl | Kclosurerec(nfv,init,lbl_types,lbl_bodies) -> out env opCLOSUREREC;out_int env (Array.length lbl_bodies); out_int env nfv; out_int env init; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_types; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_bodies | Kclosurecofix(nfv,init,lbl_types,lbl_bodies) -> out env opCLOSURECOFIX;out_int env (Array.length lbl_bodies); out_int env nfv; out_int env init; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_types; let org = env.out_position in Array.iter (out_label_with_orig env org) lbl_bodies | Kgetglobal q -> out env opGETGLOBAL; slot_for_getglobal env q | Ksubstinstance u -> out env opSUBSTINSTANCE; slot_for_const env (Const_univ_instance u) | Kconst (Const_b0 i) when is_immed i -> if i >= 0 && i <= 3 then out env (opCONST0 + i) else (out env opCONSTINT; out_int env i) | Kconst c -> out env opGETGLOBAL; slot_for_const env c | Kmakeblock(n, t) -> if 0 < n && n < 4 then (out env(opMAKEBLOCK1 + n - 1); out_int env t) else (out env opMAKEBLOCK; out_int env n; out_int env t) | Kmakeswitchblock(typlbl,swlbl,annot,sz) -> out env opMAKESWITCHBLOCK; out_label env typlbl; out_label env swlbl; slot_for_annot env annot;out_int env sz | Kswitch (tbl_const, tbl_block) -> let lenb = Array.length tbl_block in let lenc = Array.length tbl_const in assert (lenb < 0x100 && lenc < 0x1000000); out env opSWITCH; out_word env lenb lenc (lenc asr 8) (lenc asr 16); (* out_int env (Array.length tbl_const + (Array.length tbl_block lsl 23)); *) let org = env.out_position in Array.iter (out_label_with_orig env org) tbl_const; Array.iter (out_label_with_orig env org) tbl_block | Kpushfields n -> out env opPUSHFIELDS;out_int env n | Kfield n -> if n <= 1 then out env (opGETFIELD0+n) else (out env opGETFIELD;out_int env n) | Ksetfield n -> out env opSETFIELD; out_int env n | Ksequence _ -> invalid_arg "Vmemitcodes.emit_instr" | Kproj p -> out env opPROJ; out_int env p | Kensurestackcapacity size -> out env opENSURESTACKCAPACITY; out_int env size | Kbranch lbl -> out env opBRANCH; out_label env lbl | Kprim (op, (q,_u)) -> out env (check_prim_op op); slot_for_getglobal env q | Kcamlprim (op,lbl) -> out env (check_caml_prim_op op); out_label env lbl; slot_for_caml_prim env op | Kstop -> out env opSTOP (* Emission of a current list and remaining lists of instructions. Include some peephole optimization. *) let rec emit env insns remaining = match insns with | [] -> (match remaining with [] -> () | (first::rest) -> emit env first rest) (* Peephole optimizations *) | Kpush :: Kacc n :: c -> let rec aux n c nb = match c with | Kpush :: Kacc j :: c when j = n -> aux n c (nb + 1) | _ -> (nb, c) in let (nb, c') = aux n c 1 in if nb >= 3 || (nb >= 2 && n > 7) then ( out env opPUSHACCMANY; out_int env n; out_int env nb; emit env c' remaining) else ( if n = 0 then out env opPUSH else if n < 8 then out env (opPUSHACC1 + n - 1) else (out env opPUSHACC; out_int env n); emit env c remaining) | Kpush :: Kenvacc n :: c -> let rec aux n c nb = match c with | Kpush :: Kenvacc j :: c when j = n - nb -> aux n c (nb + 1) | _ -> (nb, c) in let (nb, c') = aux n c 1 in if nb >= 3 || (nb >= 2 && n > 3) then ( out env opPUSHENVACCMANY; out_int env (n - nb + 1); out_int env nb; emit env c' remaining) else ( if n >= 0 && n <= 3 then out env (opPUSHENVACC0 + n) else (out env opPUSHENVACC; out_int env n); emit env c remaining) | Kpush :: Koffsetclosure ofs :: c -> if Int.equal ofs 0 || Int.equal ofs 1 then out env(opPUSHOFFSETCLOSURE0 + ofs) else (out env opPUSHOFFSETCLOSURE; out_int env ofs); emit env c remaining | Kpush :: Kgetglobal id :: c -> out env opPUSHGETGLOBAL; slot_for_getglobal env id; emit env c remaining | Kpush :: Kconst (Const_b0 i) :: c when is_immed i -> if i >= 0 && i <= 3 then out env (opPUSHCONST0 + i) else (out env opPUSHCONSTINT; out_int env i); emit env c remaining | Kpush :: Kconst const :: c -> out env opPUSHGETGLOBAL; slot_for_const env const; emit env c remaining | Kpushfields 1 :: c when is_accu_dead c -> out env opGETFIELD0; emit env (Kpush :: c) remaining | Kpop n :: Kjump :: c -> out env opRETURN; out_int env n; emit env c remaining | Ksequence c1 :: c -> emit env c1 (c :: remaining) | Kprim (op1, (q1, _)) :: Kprim (op2, (q2, _)) :: c when inplace_prim_op op2 -> out env (check_prim_op op1); slot_for_getglobal env q1; out env (check_prim_op_inplace op2); slot_for_getglobal env q2; emit env c remaining (* Default case *) | instr :: c -> emit_instr env instr; emit env c remaining (* Substitution *) let subst_patches subst p = let infos = CArray.Smart.map (fun r -> Reloc.subst subst r) p.reloc_infos in { reloc_infos = infos } type 'a pbody_code = | BCdefined of bool array * 'a * patches | BCalias of Names.Constant.t | BCconstant type body_code = to_patch pbody_code let subst_body_code s = function | BCdefined (m, x, tp) -> BCdefined (m, x, subst_patches s tp) | BCalias cu -> BCalias (subst_constant s cu) | BCconstant -> BCconstant let to_memory fv code = let env = { out_buffer = Bytes.create 1024; out_position = 0; reloc_id = 0; reloc_pos = []; label_table = Array.make 16 (Label_undefined []); reloc_info = RelocTable.create 91; } in emit env code []; let code = compress_code env.out_buffer env.out_position in let code = CString.hcons code in let fold reloc id accu = (id, reloc) :: accu in let reloc = RelocTable.fold fold env.reloc_info [] in let reloc = List.sort (fun (id1, _) (id2, _) -> Int.compare id1 id2) reloc in let uid = ref 0 in let table = ref [] in let push r = let id = !uid in let () = table := r :: !table in let () = incr uid in Reloc.SReloc_indirect id in let map (_, r) = let open NonSubstReloc in match r with | Reloc_getglobal cst -> Reloc.SReloc_getglobal cst | Reloc_const (Const_ind ind) -> Reloc.SReloc_Const_ind ind | Reloc_annot annot -> push (SReloc_annot annot) | Reloc_caml_prim prm -> push (SReloc_caml_prim prm) | Reloc_const (Const_sort s) -> push (SReloc_Const_sort s) | Reloc_const (Const_evar e) -> push (SReloc_Const_evar e) | Reloc_const (Const_b0 tag) -> push (SReloc_Const_b0 tag) | Reloc_const (Const_univ_instance u) -> push (SReloc_Const_univ_instance u) | Reloc_const (Const_val v) -> push (SReloc_Const_val v) | Reloc_const (Const_uint i) -> push (SReloc_Const_uint i) | Reloc_const (Const_float f) -> push (SReloc_Const_float f) | Reloc_const (Const_string s) -> push (SReloc_Const_string s) in let reloc_infos = CArray.map_of_list map reloc in let positions = Positions.of_list (List.rev env.reloc_pos) in let reloc = { reloc_infos } in let to_patch = { tp_code = code; tp_fv = fv; tp_pos = positions; tp_reloc = CArray.rev_of_list !table; } in Array.iter (fun lbl -> (match lbl with Label_defined _ -> assert true | Label_undefined patchlist -> assert (patchlist = []))) env.label_table; (to_patch, reloc)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>