package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.20.0.tar.gz
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/src/coq-core.interp/constrextern.ml.html
Source file constrextern.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (*i*) open Pp open CErrors open Util open Names open Nameops open Termops open Libnames open Impargs open CAst open Notation open Constrexpr open Constrexpr_ops open Notation_ops open Glob_term open Glob_ops open Pattern open Detyping open Structures open Notationextern module NamedDecl = Context.Named.Declaration (*i*) (* Translation from glob_constr to front constr *) (**********************************************************************) (* Parametrization *) (* This governs printing of implicit arguments. When [print_implicits] is on then [print_implicits_explicit_args] tells how implicit args are printed. If on, implicit args are printed with the form (id:=arg) otherwise arguments are printed normally and the function is prefixed by "@" *) let print_implicits = ref false let print_implicits_explicit_args = ref false (* Tells if implicit arguments not known to be inferable from a rigid position are systematically printed *) let print_implicits_defensive = ref true (* This forces printing of coercions *) let print_coercions = ref false (* This forces printing of parentheses even when it is implied by associativity/precedence *) let print_parentheses = Notation_ops.print_parentheses (* This forces printing universe names of Type{.} *) let print_universes = Detyping.print_universes (* This suppresses printing of notations *) let print_no_symbol = ref false (* This tells to skip types if a variable has this type by default *) let { Goptions.get = print_use_implicit_types } = Goptions.declare_bool_option_and_ref ~key:["Printing";"Use";"Implicit";"Types"] ~value:true () (* Print primitive tokens, like strings *) let print_raw_literal = ref false (**********************************************************************) let hole = CAst.make @@ CHole (None) let is_reserved_type na t = not !Flags.raw_print && print_use_implicit_types () && match na with | Anonymous -> false | Name id -> try let pat = Reserve.find_reserved_type id in let _ = match_notation_constr ~print_univ:false t ~vars:Id.Set.empty ([],pat) in true with Not_found | No_match -> false (**********************************************************************) (* Turning notations and scopes on and off for printing *) (* This governs printing of projections using the dot notation symbols *) let print_projections = ref false let print_meta_as_hole = ref false let with_universes f = Flags.with_option print_universes f let with_meta_as_hole f = Flags.with_option print_meta_as_hole f let without_symbols f = Flags.with_option print_no_symbol f (**********************************************************************) (* Control printing of records *) (* Set Record Printing flag *) let { Goptions.get = get_record_print } = Goptions.declare_bool_option_and_ref ~key:["Printing";"Records"] ~value:true () let is_record indsp = try let _ = Structure.find indsp in true with Not_found -> false let encode_record r = let indsp = Nametab.global_inductive r in if not (is_record indsp) then user_err ?loc:r.CAst.loc (str "This type is not a structure type."); indsp module PrintingRecordRecord = PrintingInductiveMake (struct let encode _env = encode_record let field = "Record" let title = "Types leading to pretty-printing using record notation: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using record notation" else " are not printed using record notation") end) module PrintingRecordConstructor = PrintingInductiveMake (struct let encode _env = encode_record let field = "Constructor" let title = "Types leading to pretty-printing using constructor form: " let member_message s b = str "Terms of " ++ s ++ str (if b then " are printed using constructor form" else " are not printed using constructor form") end) module PrintingRecord = Goptions.MakeRefTable(PrintingRecordRecord) module PrintingConstructor = Goptions.MakeRefTable(PrintingRecordConstructor) (**********************************************************************) (* Various externalisation functions *) let insert_delimiters e = function | None -> e | Some sc -> CAst.make @@ CDelimiters (DelimUnboundedScope,sc,e) let insert_pat_delimiters ?loc p = function | None -> p | Some sc -> CAst.make ?loc @@ CPatDelimiters (DelimUnboundedScope,sc,p) let insert_pat_alias ?loc p = function | Anonymous -> p | Name _ as na -> CAst.make ?loc @@ CPatAlias (p,(CAst.make ?loc na)) let rec insert_entry_coercion ?loc l c = match l with | [] -> c | (inscope,ntn)::l -> CAst.make ?loc @@ CNotation (Some inscope,ntn,([insert_entry_coercion ?loc l c],[],[],[])) let rec insert_pat_coercion ?loc l c = match l with | [] -> c | (inscope,ntn)::l -> CAst.make ?loc @@ CPatNotation (Some inscope,ntn,([insert_pat_coercion ?loc l c],[],[]),[]) (**********************************************************************) (* conversion of references *) let extern_evar n l = CEvar (n,l) (** We allow customization of the global_reference printer. For instance, in the debugger the tables of global references may be inaccurate *) let rec dirpath_of_modpath = function | MPfile dp -> dp | MPbound mbid -> let (_,id,_) = MBId.repr mbid in DirPath.make [id] | MPdot (t, l) -> Libnames.add_dirpath_suffix (dirpath_of_modpath t) (Label.to_id l) let path_of_global = function | GlobRef.VarRef id -> Libnames.make_path DirPath.empty id (* We rely on the tacite invariant that the label of a constant is used to build its internal name *) | GlobRef.ConstRef cst -> Libnames.make_path (dirpath_of_modpath (Constant.modpath cst)) (Label.to_id (Constant.label cst)) (* We rely on the tacite invariant that an inductive block inherits the name of its first type *) | GlobRef.IndRef (ind,1) -> Libnames.make_path (dirpath_of_modpath (MutInd.modpath ind)) (Label.to_id (MutInd.label ind)) (* These are hacks *) | GlobRef.IndRef (ind,n) -> Libnames.make_path (dirpath_of_modpath (MutInd.modpath ind)) (Id.of_string_soft ("<inductive:" ^ Label.to_string (MutInd.label ind) ^ ":" ^ string_of_int n ^ ">")) | GlobRef.ConstructRef ((ind,1),p) -> Libnames.make_path (dirpath_of_modpath (MutInd.modpath ind)) (Id.of_string_soft ("<constructor:" ^ Label.to_string (MutInd.label ind) ^ ":" ^ string_of_int (p+1) ^ ">")) | GlobRef.ConstructRef ((ind,n),p) -> Libnames.make_path (dirpath_of_modpath (MutInd.modpath ind)) (Id.of_string_soft ("<constructor:" ^ Label.to_string (MutInd.label ind) ^ ":" ^ string_of_int n ^ ":" ^ string_of_int (p+1) ^ ">")) let default_extern_reference ?loc vars r = try Nametab.shortest_qualid_of_global ?loc vars r with Not_found when GlobRef.is_bound r -> qualid_of_path (path_of_global r) let my_extern_reference = ref default_extern_reference let set_extern_reference f = my_extern_reference := f let get_extern_reference () = !my_extern_reference let extern_reference ?loc vars l = !my_extern_reference vars l (**********************************************************************) (* utilities *) let rec fill_arg_scopes args subscopes (_,scopes as all) = match args, subscopes with | [], _ -> [] | a :: args, scopt :: subscopes -> (a, ((constr_some_level,None), (scopt, scopes))) :: fill_arg_scopes args subscopes all | a :: args, [] -> (a, ((constr_some_level,None), ([], scopes))) :: fill_arg_scopes args [] all let overlap_right_left {notation_entry = entry} lev_after ((typs,_):Notation_term.interpretation) = List.exists (fun (_id,(({notation_subentry = entry'; notation_relative_level = lev; notation_position = side},_),_,_)) -> match side with | Some Right when notation_entry_eq entry entry' -> may_capture_cont_after lev_after lev | _ -> false) typs let update_with_subscope from_entry (entry,(scopt,scl)) lev_after closed scopes = let {notation_subentry = entry; notation_relative_level = lev; notation_position = side} = entry in let lev = if !print_parentheses && side <> None then LevelLe 0 (* min level *) else lev in let lev_after = match side with | Some Left -> Some from_entry.notation_level | Some Right -> if closed then None else lev_after | None -> None in let subentry' = {notation_subentry = entry; notation_relative_level = lev; notation_position = side} in ((subentry',lev_after),(scopt,scl@scopes)) let find_entry_coercion_with_application ?non_included custom entry is_empty_extra_args = if is_empty_extra_args then (* We need a direct coercion from custom to entry *) match availability_of_entry_coercion ?non_included custom entry with | None -> raise No_match | Some coercion -> coercion, [] else (* We need a coercion from custom to constr, then from constr to entry *) match availability_of_entry_coercion custom constr_lowest_level with | None -> raise No_match | Some appcoercion -> match availability_of_entry_coercion constr_some_level entry with | None -> raise No_match | Some coercion -> coercion, appcoercion (**********************************************************************) (* mapping patterns to cases_pattern_expr *) let add_patt_for_params ind l = if !Flags.in_debugger then l else Util.List.addn (Inductiveops.inductive_nparamdecls (Global.env()) ind) (CAst.make @@ CPatAtom None) l let add_cpatt_for_params ind l = if !Flags.in_debugger then l else Util.List.addn (Inductiveops.inductive_nparamdecls (Global.env()) ind) (DAst.make @@ PatVar Anonymous) l let drop_implicits_in_patt cst nb_expl args = let impl_st = implicits_of_global cst in let impl_data = extract_impargs_data impl_st in let rec impls_fit l = function | [], t -> Some (List.rev_append l t) | _, [] -> None | h::t, { CAst.v = CPatAtom None }::tt when is_status_implicit h -> impls_fit l (t,tt) | h::_, _ when is_status_implicit h -> None | _::t, hh::tt -> impls_fit (hh::l) (t,tt) in let try_impls_fit (imps,args) = if not !Constrintern.parsing_explicit && ((!Flags.raw_print || !print_implicits) && List.exists is_status_implicit imps) (* Note: !print_implicits_explicit_args=true not supported for patterns *) then None else impls_fit [] (imps,args) in let rec select = function | [] -> None | (_,imps)::imps_list -> match try_impls_fit (imps,args) with | None -> select imps_list | x -> x in if Int.equal nb_expl 0 then select impl_data else let imps = List.skipn_at_best nb_expl (select_stronger_impargs impl_st) in try_impls_fit (imps,args) let destPrim = function { CAst.v = CPrim t } -> Some t | _ -> None let destPatPrim = function { CAst.v = CPatPrim t } -> Some t | _ -> None let make_notation_gen loc ntn mknot mkprim destprim l bl = match snd ntn,List.map destprim l with (* Special case to avoid writing "- 3" for e.g. (Z.opp 3) *) | "- _", [Some (Number p)] when not (NumTok.Signed.is_zero p) -> assert (bl=[]); mknot (loc,ntn,([mknot (loc,(InConstrEntry,"( _ )"),l,[])]),[]) | _ -> match decompose_notation_key ntn, l with | (InConstrEntry,[Terminal x]), [] -> begin match String.unquote_coq_string x with | Some s -> mkprim (loc, String s) | None -> match NumTok.Unsigned.parse_string x with | Some n -> mkprim (loc, Number (NumTok.SPlus,n)) | None -> mknot (loc,ntn,l,bl) end | (InConstrEntry,[Terminal "-"; Terminal x]), [] -> begin match NumTok.Unsigned.parse_string x with | Some n -> mkprim (loc, Number (NumTok.SMinus,n)) | None -> mknot (loc,ntn,l,bl) end | _ -> mknot (loc,ntn,l,bl) let make_notation loc (inscope,ntn) (terms,termlists,binders,binderlists as subst) = if not (List.is_empty termlists) || not (List.is_empty binderlists) then CAst.make ?loc @@ CNotation (Some inscope,ntn,subst) else make_notation_gen loc ntn (fun (loc,ntn,l,bl) -> CAst.make ?loc @@ CNotation (Some inscope,ntn,(l,[],bl,[]))) (fun (loc,p) -> CAst.make ?loc @@ CPrim p) destPrim terms binders let make_pat_notation ?loc (inscope,ntn) (terms,termlists,binders as subst) = if not (List.is_empty termlists && List.is_empty binders) then (CAst.make ?loc @@ CPatNotation (Some inscope,ntn,subst,[])) else make_notation_gen loc ntn (fun (loc,ntn,l,_) -> CAst.make ?loc @@ CPatNotation (Some inscope,ntn,(l,[],[]),[])) (fun (loc,p) -> CAst.make ?loc @@ CPatPrim p) destPatPrim terms [] let apply_pat_notation (CAst.{v;loc} as c) args = if List.is_empty args then c else match v with | CPatNotation (sc,ntn,subst,[]) -> CAst.make ?loc @@ CPatNotation (sc,ntn,subst,args) | CPatPrim _ -> raise No_match (* TODO: add support for applied primitive token, see also Constrexpr_ops.mkAppPattern *) | CPatDelimiters _ -> raise No_match (* TODO: add support for applied delimited patterns *) | _ -> assert false let pattern_printable_in_both_syntax (ind,_ as c) = let impl_st = extract_impargs_data (implicits_of_global (GlobRef.ConstructRef c)) in let nb_params = Inductiveops.inductive_nparams (Global.env()) ind in List.exists (fun (_,impls) -> (List.length impls >= nb_params) && let params,args = Util.List.chop nb_params impls in not !Flags.raw_print && not !print_implicits && (List.for_all is_status_implicit params)&&(List.for_all (fun x -> not (is_status_implicit x)) args) ) impl_st let extern_record_pattern cstrsp args = try if !Flags.raw_print then raise_notrace Exit; let projs = Structure.find_projections (fst cstrsp) in if PrintingRecord.active (fst cstrsp) then () else if PrintingConstructor.active (fst cstrsp) then raise_notrace Exit else if not (get_record_print ()) then raise_notrace Exit; let rec ip projs args acc = match projs, args with | [], [] -> acc | proj :: q, pat :: tail -> let acc = match proj, pat with | _, { CAst.v = CPatAtom None } -> (* we don't want to have 'x := _' in our patterns *) acc | Some c, _ -> let loc = pat.CAst.loc in (extern_reference ?loc Id.Set.empty (GlobRef.ConstRef c), pat) :: acc | _ -> raise No_match in ip q tail acc | _ -> assert false in Some (List.rev (ip projs args [])) with Not_found | No_match | Exit -> None (* Better to use extern_glob_constr composed with injection/retraction ?? *) let rec extern_cases_pattern_in_scope ((custom,(lev_after:int option)),scopes as allscopes) vars pat = try if !Flags.in_debugger || !Flags.raw_print || !print_raw_literal then raise No_match; let (na,p,key) = uninterp_prim_token_cases_pattern pat scopes in match availability_of_entry_coercion custom constr_lowest_level with | None -> raise No_match | Some coercion -> let loc = cases_pattern_loc pat in insert_pat_coercion ?loc coercion (insert_pat_alias ?loc (insert_pat_delimiters ?loc (CAst.make ?loc @@ CPatPrim p) key) na) with No_match -> try if !Flags.in_debugger || !Flags.raw_print || !print_no_symbol then raise No_match; extern_notation_pattern allscopes vars pat (uninterp_cases_pattern_notations pat) with No_match -> let loc = pat.CAst.loc in match DAst.get pat with | PatVar (Name id) when entry_has_global custom || entry_has_ident custom -> CAst.make ?loc (CPatAtom (Some (qualid_of_ident ?loc id))) | pat -> match availability_of_entry_coercion custom constr_lowest_level with | None -> raise No_match | Some coercion -> let allscopes = ((constr_some_level,None),scopes) in let pat = match pat with | PatVar (Name id) -> CAst.make ?loc (CPatAtom (Some (qualid_of_ident ?loc id))) | PatVar (Anonymous) -> CAst.make ?loc (CPatAtom None) | PatCstr(cstrsp,args,na) -> let args = List.map (extern_cases_pattern_in_scope allscopes vars) args in let p = match extern_record_pattern cstrsp args with | Some l -> CPatRecord l | None -> let c = extern_reference Id.Set.empty (GlobRef.ConstructRef cstrsp) in if Constrintern.get_asymmetric_patterns () then if pattern_printable_in_both_syntax cstrsp then CPatCstr (c, None, args) else CPatCstr (c, Some (add_patt_for_params (fst cstrsp) args), []) else let full_args = add_patt_for_params (fst cstrsp) args in match drop_implicits_in_patt (GlobRef.ConstructRef cstrsp) 0 full_args with | Some true_args -> CPatCstr (c, None, true_args) | None -> CPatCstr (c, Some full_args, []) in insert_pat_alias ?loc (CAst.make ?loc p) na in insert_pat_coercion coercion pat and apply_notation_to_pattern ?loc gr ((terms,termlists,binders),(no_implicit,nb_to_drop,more_args)) ((custom, lev_after), (tmp_scope, scopes) as allscopes) vars pat rule = let lev_after = if List.is_empty more_args then lev_after else Some Notation.app_level in let extra_args = let subscopes = find_arguments_scope gr in let more_args_scopes = try List.skipn nb_to_drop subscopes with Failure _ -> [] in let more_args = fill_arg_scopes more_args more_args_scopes (snd allscopes) in let more_args = List.map (fun (c,allscopes) -> extern_cases_pattern_in_scope allscopes vars c) more_args in if Constrintern.get_asymmetric_patterns () || not (List.is_empty termlists) then more_args else if no_implicit then more_args else match drop_implicits_in_patt gr nb_to_drop more_args with | Some true_args -> true_args | None -> raise No_match in match rule with | NotationRule (_,ntn as specific_ntn) -> begin let entry = let entry = fst (Notation.level_of_notation ntn) in if overlap_right_left entry lev_after pat then {entry with notation_level = max_int} else entry in let coercion, appcoercion = find_entry_coercion_with_application custom entry (List.is_empty extra_args) in let closed = not (List.is_empty coercion) in match availability_of_notation specific_ntn (tmp_scope,scopes) with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let scopes' = Option.List.cons scopt scopes in let l = List.map (fun (c,subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in extern_cases_pattern_in_scope scopes vars c) terms in let ll = List.map (fun (c,subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in List.map (extern_cases_pattern_in_scope scopes vars) c) termlists in let bl = List.map (fun (c,subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in (extern_cases_pattern_in_scope scopes vars c, Explicit)) binders in insert_pat_coercion appcoercion (insert_pat_delimiters ?loc (apply_pat_notation (insert_pat_coercion coercion (make_pat_notation ?loc specific_ntn (l,ll,bl))) extra_args) key) end | AbbrevRule kn -> match availability_of_entry_coercion custom constr_lowest_level with | None -> raise No_match | Some coercion -> let qid = Nametab.shortest_qualid_of_abbreviation ?loc vars kn in let l1 = List.rev_map (fun (c,(subentry,(scopt,scl))) -> extern_cases_pattern_in_scope ((subentry,lev_after),(scopt,scl@scopes)) vars c) terms in assert (List.is_empty termlists); assert (List.is_empty binders); insert_pat_coercion ?loc coercion (CAst.make ?loc @@ CPatCstr (qid,None,List.rev_append l1 extra_args)) and extern_notation_pattern allscopes vars t = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try if is_printing_inactive_rule keyrule pat then raise No_match; let loc = t.loc in match DAst.get t with | PatCstr (cstr,args,na) -> let t = if na = Anonymous then t else DAst.make ?loc (PatCstr (cstr,args,Anonymous)) in let p = apply_notation_to_pattern ?loc (GlobRef.ConstructRef cstr) (match_notation_constr_cases_pattern t pat) allscopes vars pat keyrule in insert_pat_alias ?loc p na | PatVar Anonymous -> CAst.make ?loc @@ CPatAtom None | PatVar (Name id) -> CAst.make ?loc @@ CPatAtom (Some (qualid_of_ident ?loc id)) with No_match -> extern_notation_pattern allscopes vars t rules let rec extern_notation_ind_pattern allscopes vars ind args = function | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> try if is_printing_inactive_rule keyrule pat then raise No_match; apply_notation_to_pattern (GlobRef.IndRef ind) (match_notation_constr_ind_pattern ind args pat) allscopes vars pat keyrule with No_match -> extern_notation_ind_pattern allscopes vars ind args rules let extern_ind_pattern_in_scope (custom,scopes as allscopes) vars ind args = (* pboutill: There are letins in pat which is incompatible with notations and not explicit application. *) if !Flags.in_debugger||Inductiveops.inductive_has_local_defs (Global.env()) ind then let c = extern_reference vars (GlobRef.IndRef ind) in let args = List.map (extern_cases_pattern_in_scope allscopes vars) args in CAst.make @@ CPatCstr (c, Some (add_patt_for_params ind args), []) else try if !Flags.raw_print || !print_no_symbol then raise No_match; extern_notation_ind_pattern allscopes vars ind args (uninterp_ind_pattern_notations ind) with No_match -> let c = extern_reference vars (GlobRef.IndRef ind) in let args = List.map (extern_cases_pattern_in_scope allscopes vars) args in match drop_implicits_in_patt (GlobRef.IndRef ind) 0 args with | Some true_args -> CAst.make @@ CPatCstr (c, None, true_args) | None -> CAst.make @@ CPatCstr (c, Some args, []) let extern_cases_pattern vars p = extern_cases_pattern_in_scope ((constr_some_level,None),([],[])) vars p (**********************************************************************) (* Externalising applications *) let occur_name na aty = match na with | Name id -> occur_var_constr_expr id aty | Anonymous -> false let is_gvar id c = match DAst.get c with | GVar id' -> Id.equal id id' | _ -> false let is_projection nargs r = if not !Flags.in_debugger && not !Flags.raw_print && !print_projections then try match r with | GlobRef.ConstRef c -> let n = Structure.projection_nparams c + 1 in if n <= nargs then Some n else None | _ -> None with Not_found -> None else None let is_hole = function CHole _ | CEvar _ -> true | _ -> false let isCRef_no_univ = function | CRef (_,None) -> true | _ -> false let is_significant_implicit a = not (is_hole (a.CAst.v)) let is_needed_for_correct_partial_application tail imp = List.is_empty tail && not (maximal_insertion_of imp) exception Expl (* Take a list of arguments starting at position [q] and their implicit status *) (* Decide for each implicit argument if it skipped or made explicit *) (* If the removal of implicit arguments is not possible, raise [Expl] *) (* [inctx] tells if the term is in a context which will enforce the external type *) (* [n] is the total number of arguments block to which the [args] belong *) let adjust_implicit_arguments inctx n args impl = let rec exprec = function | a::args, imp::impl when is_status_implicit imp -> let tail = exprec (args,impl) in let visible = !Flags.raw_print || (!print_implicits && !print_implicits_explicit_args) || (is_needed_for_correct_partial_application tail imp) || (!print_implicits_defensive && (not (is_inferable_implicit inctx n imp) || !Flags.beautify) && is_significant_implicit (Lazy.force a)) in if visible then (Lazy.force a,Some (make @@ explicitation imp)) :: tail else tail | a::args, _::impl -> (Lazy.force a,None) :: exprec (args,impl) | args, [] -> List.map (fun a -> (Lazy.force a,None)) args (*In case of polymorphism*) | [], (imp :: _) when is_status_implicit imp && maximal_insertion_of imp -> (* The non-explicit application cannot be parsed back with the same type *) raise Expl | [], _ -> [] in exprec (args,impl) let extern_projection inctx f nexpectedparams args impl = let (args1,args2) = List.chop (nexpectedparams + 1) args in let nextraargs = List.length args2 in let (impl1,impl2) = impargs_for_proj ~nexpectedparams ~nextraargs impl in let n = nexpectedparams + 1 + nextraargs in let args1 = adjust_implicit_arguments inctx n args1 impl1 in let args2 = adjust_implicit_arguments inctx n args2 impl2 in let (c1,expl), args1 = List.sep_last args1 in assert (expl = None); let c = CProj (false,f,args1,c1) in if args2 = [] then c else CApp (CAst.make c, args2) let is_start_implicit = function | imp :: _ -> is_status_implicit imp && maximal_insertion_of imp | [] -> false let extern_record ref args = try if !Flags.raw_print then raise_notrace Exit; let cstrsp = match ref with GlobRef.ConstructRef c -> c | _ -> raise Not_found in let struc = Structure.find (fst cstrsp) in if PrintingRecord.active (fst cstrsp) then () else if PrintingConstructor.active (fst cstrsp) then raise_notrace Exit else if not (get_record_print ()) then raise_notrace Exit; let projs = struc.Structure.projections in let rec cut args n = if Int.equal n 0 then args else match args with | [] -> raise No_match | _ :: t -> cut t (n - 1) in let args = cut args struc.Structure.nparams in let rec ip projs args acc = match projs with | [] -> acc | { Structure.proj_body = None } :: _ -> raise No_match | { Structure.proj_body = Some c; proj_true = false } :: q -> (* we don't want to print locals *) ip q args acc | { Structure.proj_body = Some c; proj_true = true } :: q -> match args with | [] -> raise No_match (* we give up since the constructor is not complete *) | arg :: tail -> let arg = Lazy.force arg in let loc = arg.CAst.loc in let ref = extern_reference ?loc Id.Set.empty (GlobRef.ConstRef c) in ip q tail ((ref, arg) :: acc) in Some (List.rev (ip projs args [])) with | Not_found | No_match | Exit -> None let extern_global impl f us = if not !Constrintern.parsing_explicit && is_start_implicit impl then CAppExpl ((f, us), []) else CRef (f,us) (* Implicit args indexes are in ascending order *) (* inctx is useful only if there is a last argument to be deduced from ctxt *) let extern_applied_ref inctx impl (cf,f) us args = try if not !Constrintern.parsing_explicit && ((!Flags.raw_print || (!print_implicits && not !print_implicits_explicit_args)) && List.exists is_status_implicit impl) then raise Expl; let impl = if !Constrintern.parsing_explicit then [] else impl in let n = List.length args in let ref = CRef (f,us) in let r = CAst.make ref in let ip = is_projection n cf in match ip with | Some i -> (* [t.(f args1) args2] projection-style notation *) extern_projection inctx (f,us) (i-1) args impl | None -> let args = adjust_implicit_arguments inctx n args impl in if args = [] then ref else CApp (r, args) with Expl -> (* A [@f args] node *) let args = List.map Lazy.force args in match is_projection (List.length args) cf with | Some n when !print_projections -> let args = List.map (fun c -> (c,None)) args in let args1, args2 = List.chop n args in let (c1,_), args1 = List.sep_last args1 in let c = CProj (true, (f,us), args1, c1) in if args2 = [] then c else CApp (CAst.make c, args2) | _ -> CAppExpl ((f,us), args) type application_style = | UseCApp of (Constrexpr.constr_expr * Constrexpr.explicitation CAst.t option) list | UseCAppExpl of constr_expr Lazy.t list let is_empty_extra_args = function | UseCApp extra_args -> List.is_empty extra_args | UseCAppExpl extra_args -> List.is_empty extra_args let extern_applied_abbreviation (cf,f) abbrevargs = function | UseCApp extraargs -> let abbrevargs = List.map (fun a -> (a,None)) abbrevargs in let args = abbrevargs @ extraargs in if args = [] then cf else CApp (CAst.make cf, args) | UseCAppExpl extraargs -> let args = abbrevargs @ List.map Lazy.force extraargs in CAppExpl ((f,None), args) let mkFlattenedCApp (head,args) = match head.CAst.v with | CApp (g,args') -> (* may happen with notations for a prefix of an n-ary application *) (* or after removal of a coercion to funclass *) CApp (g,args'@args) | h -> if List.is_empty args then h else CApp (head, args) let extern_applied_notation f = function | UseCApp args -> mkFlattenedCApp (f,args) | UseCAppExpl _ -> raise No_match (* No @f for notations *) let extern_args extern env args = let map (arg, argscopes) = lazy (extern argscopes env arg) in List.map map args let match_coercion_app c = match DAst.get c with | GApp (r, args) -> begin match DAst.get r with | GRef (r,_) -> Some (c.CAst.loc, r, args) | _ -> None end | _ -> None let remove_one_coercion inctx c = try match match_coercion_app c with | Some (loc,r,args) when not (!Flags.raw_print || !print_coercions) -> let nargs = List.length args in (match Coercionops.hide_coercion r with | Some nparams when let inctx = inctx || (* coercion to funclass implying being in context *) nparams+1 < nargs in nparams < nargs && inctx -> (* We skip the coercion *) let l = List.skipn nparams args in let (a,l) = match l with a::l -> (a,l) | [] -> assert false in (* Don't flatten App's in case of funclass so that (atomic) notations on [a] work; should be compatible since printer does not care whether App's are collapsed or not and notations with an implicit coercion using funclass either would have already been confused with ordinary application or would have need a surrounding context and the coercion to funclass would have been made explicit to match *) let a' = if List.is_empty l then a else DAst.make ?loc @@ GApp (a,l) in let inctx = inctx || not (List.is_empty l) in Some (nparams+1, inctx, a') | _ -> None) | _ -> None with Not_found -> None let rec flatten_application c = match DAst.get c with | GApp (f, l) -> begin match DAst.get f with | GApp(a,l') -> let loc = c.CAst.loc in flatten_application (DAst.make ?loc @@ GApp (a,l'@l)) | _ -> c end | a -> c let same_binder_type ty nal c = match nal, DAst.get c with | _::_, (GProd (_,_,_,ty',_) | GLambda (_,_,_,ty',_)) -> glob_constr_eq ty ty' | [], _ -> true | _ -> assert false (**********************************************************************) (* mapping glob_constr to numerals (in presence of coercions, choose the *) (* one with no delimiter if possible) *) let extern_possible_prim_token ((custom,_),scopes) r = if !print_raw_literal then raise No_match; let (n,key) = uninterp_prim_token r scopes in match availability_of_entry_coercion custom constr_lowest_level with | None -> raise No_match | Some coercion -> insert_entry_coercion coercion (insert_delimiters (CAst.make ?loc:(loc_of_glob_constr r) @@ CPrim n) key) let filter_enough_applied nargs l = (* This is to ensure that notations for coercions are used only when the coercion is fully applied; not explicitly done yet, but we could also expect that the notation is exactly talking about the coercion *) match nargs with | None -> l | Some nargs -> List.filter (fun (keyrule,pat,n as _rule) -> match n with | AppBoundedNotation n -> n >= nargs | AppUnboundedNotation | NotAppNotation -> false) l (* Helper function for safe and optimal printing of primitive tokens *) (* such as those for Int63 *) let extern_prim_token_delimiter_if_required n key_n scope_n scopes = match availability_of_prim_token n scope_n scopes with | Some None -> CPrim n | None -> CDelimiters(DelimUnboundedScope, key_n, CAst.make (CPrim n)) | Some (Some key) -> CDelimiters(DelimUnboundedScope, key, CAst.make (CPrim n)) (**********************************************************************) (* mapping decl *) let extended_glob_local_binder_of_decl loc = function | (p,r,bk,None,t) -> GLocalAssum (p,r,bk,t) | (p,r,bk,Some x, t) -> assert (bk = Explicit); match DAst.get t with | GHole (GNamedHole _) -> GLocalDef (p,r,x,Some t) | GHole _ -> GLocalDef (p,r,x,None) | _ -> GLocalDef (p,r,x,Some t) let extended_glob_local_binder_of_decl ?loc u = DAst.make ?loc (extended_glob_local_binder_of_decl loc u) (**********************************************************************) (* mapping special floats *) (* this helper function is copied from notation.ml as it's not exported *) let qualid_of_ref n = n |> Coqlib.lib_ref |> Nametab.shortest_qualid_of_global Id.Set.empty let q_infinity () = qualid_of_ref "num.float.infinity" let q_neg_infinity () = qualid_of_ref "num.float.neg_infinity" let q_nan () = qualid_of_ref "num.float.nan" let extern_float f scopes = if Float64.is_nan f then CRef(q_nan (), None) else if Float64.is_infinity f then CRef(q_infinity (), None) else if Float64.is_neg_infinity f then CRef(q_neg_infinity (), None) else let n = NumTok.Signed.of_string (Float64.to_hex_string f) in extern_prim_token_delimiter_if_required (Number n) "float" "float_scope" scopes (**********************************************************************) (* mapping glob_constr to constr_expr *) type extern_env = Id.Set.t * UnivNames.universe_binders let extern_env env sigma = vars_of_env env, Evd.universe_binders sigma let empty_extern_env = Id.Set.empty, UnivNames.empty_binders let extern_glob_sort_name uvars = function | GSProp -> CSProp | GProp -> CProp | GSet -> CSet | GLocalUniv u -> CType (qualid_of_lident u) | GRawUniv u -> CRawType u | GUniv u -> begin match UnivNames.qualid_of_level uvars u with | Some qid -> CType qid | None -> CRawType u end let extern_glob_qvar = function | GLocalQVar {v=Anonymous;loc} -> CQAnon loc | GLocalQVar {v=Name id; loc} -> CQVar (qualid_of_ident ?loc id) | GRawQVar q -> CRawQVar q | GQVar q -> CRawQVar q let extern_relevance = function | GRelevant -> CRelevant | GIrrelevant -> CIrrelevant | GRelevanceVar q -> CRelevanceVar (extern_glob_qvar q) let extern_relevance_info = Option.map extern_relevance let extern_glob_quality = function | GQConstant q -> CQConstant q | GQualVar q -> CQualVar (extern_glob_qvar q) let extern_glob_sort uvars (q, l) = Option.map extern_glob_qvar q, map_glob_sort_gen (List.map (on_fst (extern_glob_sort_name uvars))) l (** wrapper to handle print_universes: don't forget small univs *) let extern_glob_sort uvars (s:glob_sort) = let really_extern = !print_universes || match s with | None, UNamed [s, 0] -> begin match s with | GSet | GProp | GSProp -> true | GUniv _ | GLocalUniv _ | GRawUniv _ -> false end | _ -> false in if really_extern then extern_glob_sort uvars s else Constrexpr_ops.expr_Type_sort let extern_instance uvars = function | Some (ql,ul) when !print_universes -> let ql = List.map extern_glob_quality ql in let ul = List.map (map_glob_sort_gen (extern_glob_sort_name uvars)) ul in Some (ql,ul) | _ -> None let extern_ref (vars,uvars) ref us = extern_global (select_stronger_impargs (implicits_of_global ref)) (extern_reference vars ref) (extern_instance uvars us) let extern_var ?loc id = CRef (qualid_of_ident ?loc id,None) let add_vname (vars,uvars) na = add_vname vars na, uvars let rec insert_impargs impargs r = match impargs with | [] -> r | bk :: rest -> match DAst.get r with | GProd (na,rinfo,_,t,c) -> DAst.make ?loc:r.loc (GProd (na, rinfo, bk, t, insert_impargs rest c)) | GLetIn (na,rinfo,b,t,c) -> DAst.make ?loc:r.loc (GLetIn (na, rinfo, b, t, insert_impargs impargs c)) | _ -> r let rec extern inctx scopes vars r = match remove_one_coercion inctx (flatten_application r) with | Some (nargs,inctx,r') -> (try extern_notations inctx scopes vars (Some nargs) r with No_match -> extern inctx scopes vars r') | None -> let r' = match DAst.get r with | GInt i when Coqlib.has_ref "num.int63.wrap_int" -> let wrap = Coqlib.lib_ref "num.int63.wrap_int" in DAst.make (GApp (DAst.make (GRef (wrap, None)), [r])) | GFloat f when Coqlib.has_ref "num.float.wrap_float" -> let wrap = Coqlib.lib_ref "num.float.wrap_float" in DAst.make (GApp (DAst.make (GRef (wrap, None)), [r])) | _ -> r in try extern_notations inctx scopes vars None r' with No_match -> let loc = r.CAst.loc in match DAst.get r with | GRef (ref,us) when entry_has_global (fst (fst scopes)) -> CAst.make ?loc (extern_ref vars ref us) | GVar id when entry_has_global (fst (fst scopes)) || entry_has_ident (fst (fst scopes)) -> CAst.make ?loc (extern_var ?loc id) | c -> match availability_of_entry_coercion (fst (fst scopes)) constr_lowest_level with | None -> raise No_match | Some coercion -> let scopes = ((constr_some_level, None), snd scopes) in let c = match c with (* The remaining cases are only for the constr entry *) | GRef (ref,us) -> extern_ref vars ref us | GVar id -> extern_var ?loc id | GEvar (n,[]) when !print_meta_as_hole -> CHole (None) | GEvar (n,l) -> extern_evar n (List.map (on_snd (extern false scopes vars)) l) | GPatVar kind -> if !print_meta_as_hole then CHole (None) else (match kind with | Evar_kinds.SecondOrderPatVar n -> CPatVar n | Evar_kinds.FirstOrderPatVar n -> CEvar (CAst.make n,[])) | GApp (f,args) -> (match DAst.get f with | GRef (ref,us) -> let subscopes = find_arguments_scope ref in let args = fill_arg_scopes args subscopes (snd scopes) in let args = extern_args (extern true) vars args in (* Try a "{|...|}" record notation *) (match extern_record ref args with | Some l -> CRecord l | None -> (* Otherwise... *) extern_applied_ref inctx (select_stronger_impargs (implicits_of_global ref)) (ref,extern_reference ?loc (fst vars) ref) (extern_instance (snd vars) us) args) | GProj (f,params,c) -> extern_applied_proj inctx scopes vars f params c args | _ -> let args = List.map (fun c -> (sub_extern true scopes vars c,None)) args in let head = sub_extern false scopes vars f in mkFlattenedCApp (head,args)) | GProj (f,params,c) -> extern_applied_proj inctx scopes vars f params c [] | GLetIn (na,_,b,t,c) -> CLetIn (make ?loc na, sub_extern (Option.has_some t) scopes vars b, Option.map (extern_typ scopes vars) t, extern inctx scopes (add_vname vars na) c) | GProd (na,r,bk,t,c) -> factorize_prod scopes vars na r bk t c | GLambda (na,r,bk,t,c) -> factorize_lambda inctx scopes vars na r bk t c | GCases (sty,rtntypopt,tml,eqns) -> let vars' = List.fold_right (Name.fold_right Id.Set.add) (cases_predicate_names tml) (fst vars) in let vars' = vars', snd vars in let rtntypopt' = Option.map (extern_typ scopes vars') rtntypopt in let tml = List.map (fun (tm,(na,x)) -> let na' = match na, DAst.get tm with | Anonymous, GVar id -> begin match rtntypopt with | None -> None | Some ntn -> if occur_glob_constr id ntn then Some (CAst.make Anonymous) else None end | Anonymous, _ -> None | Name id, GVar id' when Id.equal id id' -> None | Name _, _ -> Some (CAst.make na) in (sub_extern false scopes vars tm, na', Option.map (fun {CAst.loc;v=(ind,nal)} -> let args = List.map (fun x -> DAst.make @@ PatVar x) nal in let fullargs = add_cpatt_for_params ind args in extern_ind_pattern_in_scope scopes (fst vars) ind fullargs ) x)) tml in let eqns = List.map (extern_eqn (inctx || rtntypopt <> None) scopes vars) (factorize_eqns eqns) in CCases (sty,rtntypopt',tml,eqns) | GLetTuple (nal,(na,typopt),tm,b) -> let inctx = inctx || typopt <> None in CLetTuple (List.map CAst.make nal, (Option.map (fun _ -> (make na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern false scopes vars tm, extern inctx scopes (List.fold_left add_vname vars nal) b) | GIf (c,(na,typopt),b1,b2) -> let inctx = inctx || typopt <> None in CIf (sub_extern false scopes vars c, (Option.map (fun _ -> (CAst.make na)) typopt, Option.map (extern_typ scopes (add_vname vars na)) typopt), sub_extern inctx scopes vars b1, sub_extern inctx scopes vars b2) | GRec (fk,idv,blv,tyv,bv) -> let vars' = on_fst (Array.fold_right Id.Set.add idv) vars in (match fk with | GFix (nv,n) -> let listdecl = Array.mapi (fun i fi -> let (bl,ty,def) = blv.(i), tyv.(i), bv.(i) in let bl = List.map (extended_glob_local_binder_of_decl ?loc) bl in let (assums,ids,bl) = extern_local_binder scopes vars bl in let vars0 = on_fst (List.fold_right (Name.fold_right Id.Set.add) ids) vars in let vars1 = on_fst (List.fold_right (Name.fold_right Id.Set.add) ids) vars' in let n = match nv.(i) with | None -> None | Some x -> Some (CAst.make @@ CStructRec (CAst.make @@ Name.get_id (List.nth assums x))) in ((CAst.make fi), None, n, bl, extern_typ scopes vars0 ty, sub_extern true scopes vars1 def)) idv in CFix (CAst.(make ?loc idv.(n)), Array.to_list listdecl) | GCoFix n -> let listdecl = Array.mapi (fun i fi -> let bl = List.map (extended_glob_local_binder_of_decl ?loc) blv.(i) in let (_,ids,bl) = extern_local_binder scopes vars bl in let vars0 = on_fst (List.fold_right (Name.fold_right Id.Set.add) ids) vars in let vars1 = on_fst (List.fold_right (Name.fold_right Id.Set.add) ids) vars' in ((CAst.make fi),None,bl,extern_typ scopes vars0 tyv.(i), sub_extern true scopes vars1 bv.(i))) idv in CCoFix (CAst.(make ?loc idv.(n)),Array.to_list listdecl)) | GSort s -> CSort (extern_glob_sort (snd vars) s) | GHole e -> CHole (Some e) | GGenarg arg -> CGenargGlob arg | GCast (c, k, c') -> let scl = Notation.compute_glob_type_scope c' in let c' = extern_typ scopes vars c' in let c = extern true (fst scopes,(scl, snd (snd scopes))) vars c in CCast (c, k, c') | GInt i -> extern_prim_token_delimiter_if_required (Number NumTok.(Signed.of_bigint CHex (Z.of_int64 (Uint63.to_int64 i)))) "uint63" "uint63_scope" (snd scopes) | GFloat f -> extern_float f (snd scopes) | GString s -> extern_prim_token_delimiter_if_required (String (Pstring.to_string s)) "pstring" "pstring_scope" (snd scopes) | GArray(u,t,def,ty) -> CArray(extern_instance (snd vars) u,Array.map (extern inctx scopes vars) t, extern inctx scopes vars def, extern_typ scopes vars ty) in insert_entry_coercion coercion (CAst.make ?loc c) and extern_typ (subentry,(_,scopes)) = extern true (subentry,(Notation.current_type_scope_names (),scopes)) and sub_extern inctx (subentry,(_,scopes)) = extern inctx (subentry,([],scopes)) and factorize_prod scopes vars na r bk t c = let implicit_type = is_reserved_type na t in let r = extern_relevance_info r in let aty = extern_typ scopes vars t in let vars = add_vname vars na in let store, get = set_temporary_memory () in match na, DAst.get c with | Name id, GCases (Constr.LetPatternStyle, None, [(e,(Anonymous,None))],(_::_ as eqns)) when is_gvar id e && List.length (store (factorize_eqns eqns)) = 1 -> (match get () with | [{CAst.v=(ids,disj_of_patl,b)}] -> let disjpat = List.map (function [pat] -> pat | _ -> assert false) disj_of_patl in let disjpat = if occur_glob_constr id b then List.map (set_pat_alias id) disjpat else disjpat in let b = extern_typ scopes vars b in let p = mkCPatOr (List.map (extern_cases_pattern_in_scope scopes (fst vars)) disjpat) in let binder = CLocalPattern p in (match b.v with | CProdN (bl,b) -> CProdN (binder::bl,b) | _ -> CProdN ([binder],b)) | _ -> assert false) | _, _ -> let c' = extern_typ scopes vars c in match na, c'.v with | Name id, CProdN (CLocalAssum(nal,r',Default bk',ty)::bl,b) when relevance_info_expr_eq r r' && binding_kind_eq bk bk' && not (occur_var_constr_expr id ty) (* avoid na in ty escapes scope *) && (constr_expr_eq aty ty || (constr_expr_eq ty hole && same_binder_type t nal c)) -> let ty = if implicit_type then ty else aty in CProdN (CLocalAssum(make na::nal,r,Default bk,ty)::bl,b) | _, CProdN (bl,b) -> let ty = if implicit_type then hole else aty in CProdN (CLocalAssum([make na],r,Default bk,ty)::bl,b) | _, _ -> let ty = if implicit_type then hole else aty in CProdN ([CLocalAssum([make na],r,Default bk,ty)],c') and factorize_lambda inctx scopes vars na r bk t c = let implicit_type = is_reserved_type na t in let r = extern_relevance_info r in let aty = extern_typ scopes vars t in let vars = add_vname vars na in let store, get = set_temporary_memory () in match na, DAst.get c with | Name id, GCases (Constr.LetPatternStyle, None, [(e,(Anonymous,None))],(_::_ as eqns)) when is_gvar id e && List.length (store (factorize_eqns eqns)) = 1 -> (match get () with | [{CAst.v=(ids,disj_of_patl,b)}] -> let disjpat = List.map (function [pat] -> pat | _ -> assert false) disj_of_patl in let disjpat = if occur_glob_constr id b then List.map (set_pat_alias id) disjpat else disjpat in let b = sub_extern inctx scopes vars b in let p = mkCPatOr (List.map (extern_cases_pattern_in_scope scopes (fst vars)) disjpat) in let binder = CLocalPattern p in (match b.v with | CLambdaN (bl,b) -> CLambdaN (binder::bl,b) | _ -> CLambdaN ([binder],b)) | _ -> assert false) | _, _ -> let c' = sub_extern inctx scopes vars c in match c'.v with | CLambdaN (CLocalAssum(nal,r',Default bk',ty)::bl,b) when relevance_info_expr_eq r r' && binding_kind_eq bk bk' && not (occur_name na ty) (* avoid na in ty escapes scope *) && (constr_expr_eq aty ty || (constr_expr_eq ty hole && same_binder_type t nal c)) -> let aty = if implicit_type then ty else aty in CLambdaN (CLocalAssum(make na::nal,r,Default bk,aty)::bl,b) | CLambdaN (bl,b) -> let ty = if implicit_type then hole else aty in CLambdaN (CLocalAssum([make na],r,Default bk,ty)::bl,b) | _ -> let ty = if implicit_type then hole else aty in CLambdaN ([CLocalAssum([make na],r,Default bk,ty)],c') and extern_local_binder scopes vars = function [] -> ([],[],[]) | b :: l -> match DAst.get b with | GLocalDef (na,r,bd,ty) -> let (assums,ids,l) = extern_local_binder scopes (on_fst (Name.fold_right Id.Set.add na) vars) l in (assums,na::ids, CLocalDef(CAst.make na, extern_relevance_info r, extern false scopes vars bd, Option.map (extern_typ scopes vars) ty) :: l) | GLocalAssum (na,r,bk,ty) -> let implicit_type = is_reserved_type na ty in let ty = extern_typ scopes vars ty in (match extern_local_binder scopes (on_fst (Name.fold_right Id.Set.add na) vars) l with | (assums,ids,CLocalAssum(nal,r',k,ty')::l) when (constr_expr_eq ty ty' || implicit_type && constr_expr_eq ty' hole) && match na with Name id -> not (occur_var_constr_expr id ty') | _ -> true -> (na::assums,na::ids, CLocalAssum(CAst.make na::nal,r',k,ty')::l) | (assums,ids,l) -> let ty = if implicit_type then hole else ty in (na::assums,na::ids, CLocalAssum([CAst.make na],extern_relevance_info r,Default bk,ty) :: l)) | GLocalPattern ((p,_),_,bk,ty) -> let ty = if !Flags.raw_print then Some (extern_typ scopes vars ty) else None in let p = mkCPatOr (List.map (extern_cases_pattern (fst vars)) p) in let (assums,ids,l) = extern_local_binder scopes vars l in let p = match ty with | None -> p | Some ty -> CAst.make @@ (CPatCast (p,ty)) in (assums,ids, CLocalPattern p :: l) and extern_eqn inctx scopes vars {CAst.loc;v=(ids,pll,c)} = let pll = List.map (List.map (extern_cases_pattern_in_scope scopes (fst vars))) pll in make ?loc (pll,extern inctx scopes vars c) and extern_notations inctx scopes vars nargs t = if !Flags.raw_print then raise No_match; try extern_possible_prim_token scopes t with No_match -> if !print_no_symbol then raise No_match; let t = flatten_application t in extern_notation inctx scopes vars t (filter_enough_applied nargs (uninterp_notations t)) and extern_notation inctx ((custom,(lev_after: int option)),scopes as allscopes) vars t rules = match rules with | [] -> raise No_match | (keyrule,pat,n as _rule)::rules -> let loc = Glob_ops.loc_of_glob_constr t in try if is_printing_inactive_rule keyrule pat then raise No_match; let f,args = match DAst.get t with | GApp (f,args) -> f,args | _ -> t,[] in let nallargs = List.length args in let argsscopes,argsimpls = match DAst.get f with | GRef (ref,_) -> let subscopes = find_arguments_scope ref in let impls = select_stronger_impargs (implicits_of_global ref) in subscopes, impls | _ -> [], [] in (* Adjust to the number of arguments expected by the notation *) let (t,args,argsscopes,argsimpls) = match n with | AppBoundedNotation n when nallargs >= n -> let args1, args2 = List.chop n args in let args2scopes = try List.skipn n argsscopes with Failure _ -> [] in let args2impls = if n = 0 then (* Note: NApp(NRef f,[]), hence n=0, encodes @f and conventionally deactivates implicit arguments *) [] else try List.skipn n argsimpls with Failure _ -> [] in DAst.make @@ GApp (f,args1), args2, args2scopes, args2impls | AppUnboundedNotation -> t, [], [], [] | NotAppNotation -> begin match DAst.get f with | GRef (ref,us) -> f, args, argsscopes, argsimpls | _ -> t, [], [], [] end | AppBoundedNotation _ -> raise No_match in (* Try matching ... *) let vars, uvars = vars in let terms,termlists,binders,binderlists = match_notation_constr ~print_univ:(!print_universes) t ~vars pat in let lev_after = if List.is_empty args then lev_after else Some Notation.app_level in (* Try externing extra args... *) let extra_args = let args = fill_arg_scopes args argsscopes (snd allscopes) in let args = extern_args (extern true) (vars,uvars) args in try UseCApp (adjust_implicit_arguments inctx nallargs args argsimpls) with Expl -> UseCAppExpl args in (* Try availability of interpretation ... *) match keyrule with | NotationRule (_,ntn as specific_ntn) -> let entry = fst (Notation.level_of_notation ntn) in let non_included = overlap_right_left entry lev_after pat in let coercion, appcoercion = find_entry_coercion_with_application ~non_included custom entry (is_empty_extra_args extra_args) in (match availability_of_notation specific_ntn scopes with (* Uninterpretation is not allowed in current context *) | None -> raise No_match (* Uninterpretation is allowed in current context *) | Some (scopt,key) -> let closed = not (List.is_empty coercion) in let scopes' = Option.List.cons scopt (snd scopes) in let l = List.map (fun ((vars,c),subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in extern (* assuming no overloading: *) true scopes (vars,uvars) c) terms in let ll = List.map (fun ((vars,l),subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in List.map (extern true scopes (vars,uvars)) l) termlists in let bl = List.map (fun ((vars,bl),subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in (mkCPatOr (List.map (extern_cases_pattern_in_scope scopes vars) bl)), Explicit) binders in let bll = List.map (fun ((vars,bl),subscope) -> let scopes = update_with_subscope entry subscope lev_after closed scopes' in pi3 (extern_local_binder scopes (vars,uvars) bl)) binderlists in let c = make_notation loc specific_ntn (l,ll,bl,bll) in let c = insert_entry_coercion coercion (insert_delimiters c key) in insert_entry_coercion appcoercion (CAst.make ?loc @@ extern_applied_notation c extra_args)) | AbbrevRule kn -> let l = List.map (fun ((vars,c),(subentry,(scopt,scl))) -> extern true ((subentry,lev_after),(scopt,scl@snd scopes)) (vars,uvars) c) terms in let cf = Nametab.shortest_qualid_of_abbreviation ?loc vars kn in let a = CRef (cf,None) in let c = CAst.make ?loc @@ extern_applied_abbreviation (a,cf) l extra_args in if isCRef_no_univ c.CAst.v && entry_has_global custom then c else match availability_of_entry_coercion custom constr_lowest_level with | None -> raise No_match | Some coercion -> insert_entry_coercion coercion c with No_match -> extern_notation inctx allscopes vars t rules and extern_applied_proj inctx scopes vars (cst,us) params c extraargs = let ref = GlobRef.ConstRef cst in let subscopes = find_arguments_scope ref in let nparams = List.length params in let args = params @ c :: extraargs in let args = fill_arg_scopes args subscopes (snd scopes) in let args = extern_args (extern true) vars args in let imps = select_stronger_impargs (implicits_of_global ref) in let f = extern_reference (fst vars) ref in let us = extern_instance (snd vars) us in extern_projection inctx (f,us) nparams args imps let extern_glob_constr vars c = extern false ((constr_some_level,None),([],[])) vars c let extern_glob_type ?impargs vars c = let c = Option.fold_right insert_impargs impargs c in extern_typ ((constr_some_level,None),([],[])) vars c (******************************************************************) (* Main translation function from constr -> constr_expr *) let extern_constr ?(inctx=false) ?scope env sigma t = let r = Detyping.detype Detyping.Later Id.Set.empty env sigma t in let vars = extern_env env sigma in let scope = Option.cata (fun x -> [x]) [] scope in extern inctx ((constr_some_level,None),(scope,[])) vars r let extern_constr_in_scope ?inctx scope env sigma t = extern_constr ?inctx ~scope env sigma t let extern_type ?(goal_concl_style=false) env sigma ?impargs t = (* "goal_concl_style" means do alpha-conversion using the "goal" convention *) (* i.e.: avoid using the names of goal/section/rel variables and the short *) (* names of global definitions of current module when computing names for *) (* bound variables. *) (* Not "goal_concl_style" means do alpha-conversion avoiding only *) (* those goal/section/rel variables that occurs in the subterm under *) (* consideration; see namegen.ml for further details *) let avoid = if goal_concl_style then vars_of_env env else Id.Set.empty in let r = Detyping.detype Detyping.Later ~isgoal:goal_concl_style avoid env sigma t in extern_glob_type ?impargs (extern_env env sigma) r let extern_sort sigma s = extern_glob_sort (Evd.universe_binders sigma) (detype_sort sigma s) let extern_closed_glob ?(goal_concl_style=false) ?(inctx=false) ?scope env sigma t = let avoid = if goal_concl_style then vars_of_env env else Id.Set.empty in let r = Detyping.detype_closed_glob ~isgoal:goal_concl_style avoid env sigma t in let vars = extern_env env sigma in let scope = Option.cata (fun x -> [x]) [] scope in extern inctx ((constr_some_level,None),(scope,[])) vars r (******************************************************************) (* Main translation function from pattern -> constr_expr *) let any_any_branch = (* | _ => _ *) CAst.make ([],[DAst.make @@ PatVar Anonymous], DAst.make @@ GHole (GInternalHole)) let compute_displayed_name_in_pattern sigma avoid na c = let open Namegen in compute_displayed_name_in_gen (fun _ -> Patternops.noccurn_pattern) sigma avoid na c let glob_of_pat_under_context glob_of_pat avoid env sigma (nas, pat) = let fold (avoid, env, nas, epat) na = let na, avoid = compute_displayed_name_in_pattern (Global.env ()) sigma avoid na epat in let env = Termops.add_name na env in let epat = match epat with PLambda (_, _, p) -> p | _ -> assert false in (avoid, env, na :: nas, epat) in let epat = Array.fold_right (fun na p -> PLambda (na, PMeta None, p)) nas pat in let (avoid', env', nas, _) = Array.fold_left fold (avoid, env, [], epat) nas in let pat = glob_of_pat avoid' env' sigma pat in (Array.rev_of_list nas, pat) let rec glob_of_pat : 'a. _ -> _ -> _ -> 'a constr_pattern_r -> _ = fun (type a) avoid env sigma (pat: a constr_pattern_r) -> DAst.make @@ match pat with | PRef ref -> GRef (ref,None) | PVar id -> GVar id | PEvar (evk,l) -> let filter (id, pat) = match pat with PVar id' -> Id.equal id id' | _ -> true in let EvarInfo evi = Evd.find sigma evk in let hyps = Evd.evar_filtered_context evi in let map decl pat = NamedDecl.get_id decl, pat in let l = List.filter filter @@ List.map2 map hyps l in let id = match Evd.evar_ident evk sigma with | None -> Id.of_string "__" | Some id -> id in GEvar (CAst.make id,List.map (fun (id,c) -> (CAst.make id, glob_of_pat avoid env sigma c)) l) | PRel n -> let id = try match lookup_name_of_rel n env with | Name id -> id | Anonymous -> anomaly ~label:"glob_constr_of_pattern" (Pp.str "index to an anonymous variable.") with Not_found -> Id.of_string ("_UNBOUND_REL_"^(string_of_int n)) in GVar id | PMeta None -> GHole (GInternalHole) | PMeta (Some n) -> GPatVar (Evar_kinds.FirstOrderPatVar n) | PUninstantiated (PGenarg g) -> GGenarg g | PProj (p,c) -> GApp (DAst.make @@ GRef (GlobRef.ConstRef (Projection.constant p),None), [glob_of_pat avoid env sigma c]) | PApp (f,args) -> GApp (glob_of_pat avoid env sigma f,Array.map_to_list (glob_of_pat avoid env sigma) args) | PSoApp (n,args) -> GApp (DAst.make @@ GPatVar (Evar_kinds.SecondOrderPatVar n), List.map (glob_of_pat avoid env sigma) args) | PProd (na,t,c) -> let na',avoid' = compute_displayed_name_in_pattern (Global.env ()) sigma avoid na c in let env' = Termops.add_name na' env in GProd (na',None,Explicit,glob_of_pat avoid env sigma t,glob_of_pat avoid' env' sigma c) | PLetIn (na,b,t,c) -> let na',avoid' = Namegen.compute_displayed_let_name_in (Global.env ()) sigma Namegen.RenamingForGoal avoid na in let env' = Termops.add_name na' env in GLetIn (na',None,glob_of_pat avoid env sigma b, Option.map (glob_of_pat avoid env sigma) t, glob_of_pat avoid' env' sigma c) | PLambda (na,t,c) -> let na',avoid' = compute_displayed_name_in_pattern (Global.env ()) sigma avoid na c in let env' = Termops.add_name na' env in GLambda (na',None,Explicit,glob_of_pat avoid env sigma t, glob_of_pat avoid' env' sigma c) | PIf (c,b1,b2) -> GIf (glob_of_pat avoid env sigma c, (Anonymous,None), glob_of_pat avoid env sigma b1, glob_of_pat avoid env sigma b2) | PCase ({cip_style=Constr.LetStyle},None,tm,[(0,n,b)]) -> let n, b = glob_of_pat_under_context glob_of_pat avoid env sigma (n, b) in let nal = Array.to_list n in GLetTuple (nal,(Anonymous,None),glob_of_pat avoid env sigma tm,b) | PCase (info,p,tm,bl) -> let mat = match bl, info.cip_ind with | [], _ -> [] | _, Some ind -> let map (i, n, c) = let n, c = glob_of_pat_under_context glob_of_pat avoid env sigma (n, c) in let nal = Array.to_list n in let mkPatVar na = DAst.make @@ PatVar na in let p = DAst.make @@ PatCstr ((ind,i+1),List.map mkPatVar nal,Anonymous) in let ids = List.map_filter Nameops.Name.to_option nal in CAst.make @@ (ids,[p],c) in List.map map bl | _, None -> anomaly (Pp.str "PCase with some branches but unknown inductive.") in let mat = if info.cip_extensible then mat @ [any_any_branch] else mat in let indnames,rtn = match p, info.cip_ind with | None, _ -> (Anonymous,None),None | Some p, Some ind -> let nas, p = glob_of_pat_under_context glob_of_pat avoid env sigma p in let nas = Array.rev_to_list nas in ((List.hd nas, Some (CAst.make (ind, List.tl nas))), Some p) | _ -> anomaly (Pp.str "PCase with non-trivial predicate but unknown inductive.") in GCases (Constr.RegularStyle,rtn,[glob_of_pat avoid env sigma tm,indnames],mat) | PFix ((ln,i),(lna,tl,bl)) -> let def_avoid, def_env, lfi = Array.fold_left (fun (avoid, env, l) na -> let id = Namegen.next_name_away na avoid in (Id.Set.add id avoid, Name id :: env, id::l)) (avoid, env, []) lna in let n = Array.length tl in let v = Array.map3 (fun c t i -> Detyping.share_pattern_names glob_of_pat (i+1) [] def_avoid def_env sigma c (Patternops.lift_pattern n t)) bl tl ln in GRec(GFix (Array.map (fun i -> Some i) ln,i),Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) | PCoFix (ln,(lna,tl,bl)) -> let def_avoid, def_env, lfi = Array.fold_left (fun (avoid, env, l) na -> let id = Namegen.next_name_away na avoid in (Id.Set.add id avoid, Name id :: env, id::l)) (avoid, env, []) lna in let ntys = Array.length tl in let v = Array.map2 (fun c t -> share_pattern_names glob_of_pat 0 [] def_avoid def_env sigma c (Patternops.lift_pattern ntys t)) bl tl in GRec(GCoFix ln,Array.of_list (List.rev lfi), Array.map (fun (bl,_,_) -> bl) v, Array.map (fun (_,_,ty) -> ty) v, Array.map (fun (_,bd,_) -> bd) v) | PSort Sorts.InSProp -> GSort Glob_ops.glob_SProp_sort | PSort Sorts.InProp -> GSort Glob_ops.glob_Prop_sort | PSort Sorts.InSet -> GSort Glob_ops.glob_Set_sort | PSort (Sorts.InType | Sorts.InQSort) -> GSort Glob_ops.glob_Type_sort | PInt i -> GInt i | PFloat f -> GFloat f | PString s -> GString s | PArray(t,def,ty) -> let glob_of = glob_of_pat avoid env sigma in GArray (None, Array.map glob_of t, glob_of def, glob_of ty) let extern_constr_pattern env sigma pat = extern true ((constr_some_level,None),([],[])) (* XXX no vars? *) (Id.Set.empty, Evd.universe_binders sigma) (glob_of_pat Id.Set.empty env sigma pat) let extern_rel_context where env sigma sign = let a = detype_rel_context Detyping.Later where Id.Set.empty ([],env) sigma sign in let vars = extern_env env sigma in let a = List.map (extended_glob_local_binder_of_decl) a in pi3 (extern_local_binder ((constr_some_level,None),([],[])) vars a)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>