package coq-core
Install
Dune Dependency
Authors
Maintainers
Sources
md5=66e57ea55275903bef74d5bf36fbe0f1
sha512=1a7eac6e2f58724a3f9d68bbb321e4cfe963ba1a5551b9b011db4b3f559c79be433d810ff262593d753770ee41ea68fbd6a60daa1e2319ea00dff64c8851d70b
doc/coq-core.kernel/Inductive/index.html
Module Inductive
Source
Extracting an inductive type from a construction
find_m*type env sigma c
coerce c
to an recursive type (I args). find_rectype
, find_inductive
and find_coinductive
respectively accepts any recursive type, only an inductive type and only a coinductive type. They raise Not_found
if not convertible to a recursive type.
val find_rectype :
?evars:CClosure.evar_handler ->
Environ.env ->
Constr.types ->
Constr.pinductive * Constr.constr list
val find_inductive :
?evars:CClosure.evar_handler ->
Environ.env ->
Constr.types ->
Constr.pinductive * Constr.constr list
val find_coinductive :
?evars:CClosure.evar_handler ->
Environ.env ->
Constr.types ->
Constr.pinductive * Constr.constr list
Fetching information in the environment about an inductive type. Raises an anomaly if the inductive type is not found.
Functions to build standard types related to inductive
val inductive_paramdecls :
Declarations.mutual_inductive_body UVars.puniverses ->
Constr.rel_context
Returns the parameters of an inductive type with universes instantiated
val inductive_nonrec_rec_paramdecls :
Declarations.mutual_inductive_body UVars.puniverses ->
Constr.rel_context * Constr.rel_context
Returns the parameters of an inductive type with universes instantiated, splitting it into the contexts of recursively uniform and recursively non-uniform parameters
val instantiate_inductive_constraints :
Declarations.mutual_inductive_body ->
UVars.Instance.t ->
Univ.Constraints.t
val constrained_type_of_inductive :
Declarations.mind_specif UVars.puniverses ->
Constr.types Univ.constrained
val constrained_type_of_inductive_knowing_parameters :
Declarations.mind_specif UVars.puniverses ->
param_univs ->
Constr.types Univ.constrained
val relevance_of_ind_body :
Declarations.one_inductive_body ->
UVars.Instance.t ->
Sorts.relevance
val type_of_inductive_knowing_parameters :
?polyprop:bool ->
Declarations.mind_specif UVars.puniverses ->
param_univs ->
Constr.types
For squashing.
Return type as quoted by the user
val constrained_type_of_constructor :
Constr.pconstructor ->
Declarations.mind_specif ->
Constr.types Univ.constrained
val arities_of_constructors :
Constr.pinductive ->
Declarations.mind_specif ->
Constr.types array
Return constructor types in normal form
val type_of_constructors :
Constr.pinductive ->
Declarations.mind_specif ->
Constr.types array
Return constructor types in user form
val abstract_constructor_type_relatively_to_inductive_types_context :
int ->
Names.MutInd.t ->
Constr.types ->
Constr.types
Turns a constructor type recursively referring to inductive types into the same constructor type referring instead to a context made from the abstract declaration of the inductive types (e.g. turns nat->nat
into mkArrowR (Rel 1) (Rel 2)
); takes as arguments the number of inductive types in the block and the name of the block
val expand_arity :
Declarations.mind_specif ->
Constr.pinductive ->
Constr.constr array ->
Names.Name.t Constr.binder_annot array ->
Constr.rel_context
Given an inductive type and its parameters, builds the context of the return clause, including the inductive being eliminated. The additional binder array is only used to set the names of the context variables, we use the less general type to make it easy to use this function on Case nodes.
val expand_branch_contexts :
Declarations.mind_specif ->
UVars.Instance.t ->
Constr.constr array ->
(Names.Name.t Constr.binder_annot array * 'a) array ->
Constr.rel_context array
Given an inductive type and its parameters, builds the context of the return clause, including the inductive being eliminated. The additional binder array is only used to set the names of the context variables, we use the less general type to make it easy to use this function on Case nodes.
type ('constr, 'types, 'r) pexpanded_case =
Constr.case_info
* ('constr * 'r)
* 'constr Constr.pcase_invert
* 'constr
* 'constr array
Given a pattern-matching represented compactly, expands it so as to produce lambda and let abstractions in front of the return clause and the pattern branches.
Dual operation of the above. Fails if the return clause or branch has not the expected form.
val instantiate_context :
UVars.Instance.t ->
Vars.substl ->
Names.Name.t Constr.binder_annot array ->
Constr.rel_context ->
Constr.rel_context
instantiate_context u subst nas ctx
applies both u
and subst
to ctx
while replacing names using nas
(order reversed). In particular, assumes that ctx
and nas
have the same length.
val build_branches_type :
Constr.pinductive ->
(Declarations.mutual_inductive_body * Declarations.one_inductive_body) ->
Constr.constr list ->
Constr.constr ->
Constr.types array
Check a case_info
actually correspond to a Case expression on the given inductive type.
Guard conditions for fix and cofix-points.
is_primitive_positive_container env c
tells if the constant c
is registered as a primitive type that can be seen as a container where the occurrences of its parameters are positive, in which case the positivity and guard conditions are extended to allow inductive types to nest their subterms in these containers.
When chk
is false, the guard condition is not actually checked.
Support for sort-polymorphic inductive types
The "polyprop" optional argument below controls the "Prop-polymorphism". By default, it is allowed. But when "polyprop=false", the following exception is raised when a polymorphic singleton inductive type becomes Prop due to parameter instantiation. This is used by the Ocaml extraction, which cannot handle (yet?) Prop-polymorphism.
val abstract_mind_lc :
int ->
int ->
Names.MutInd.t ->
(Constr.rel_context * Constr.constr) array ->
Constr.constr array