package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/funind_plugin/glob_termops.ml.html
Source file glob_termops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Constr open Glob_term open CErrors open Util open Names (* Some basic functions to rebuild glob_constr In each of them the location is Loc.ghost *) let mkGRef ref = DAst.make @@ GRef (ref, None) let mkGVar id = DAst.make @@ GVar id let mkGApp (rt, rtl) = DAst.make @@ GApp (rt, rtl) let mkGLambda (n, t, b) = DAst.make @@ GLambda (n, Explicit, t, b) let mkGProd (n, t, b) = DAst.make @@ GProd (n, Explicit, t, b) let mkGLetIn (n, b, t, c) = DAst.make @@ GLetIn (n, b, t, c) let mkGCases (rto, l, brl) = DAst.make @@ GCases (RegularStyle, rto, l, brl) let mkGHole () = DAst.make @@ GHole (GBinderType Anonymous) (* Some basic functions to decompose glob_constrs These are analogous to the ones constrs *) let glob_decompose_app = let rec decompose_rapp acc rt = (* msgnl (str "glob_decompose_app on : "++ Printer.pr_glob_constr rt); *) match DAst.get rt with | GApp (rt, rtl) -> decompose_rapp (List.fold_left (fun y x -> x :: y) acc rtl) rt | _ -> (rt, List.rev acc) in decompose_rapp [] (* [glob_make_eq t1 t2] build the glob_constr corresponding to [t2 = t1] *) let glob_make_eq ?(typ = mkGHole ()) t1 t2 = mkGApp (mkGRef (Coqlib.lib_ref "core.eq.type"), [typ; t2; t1]) (* [glob_make_neq t1 t2] build the glob_constr corresponding to [t1 <> t2] *) let glob_make_neq t1 t2 = mkGApp (mkGRef (Coqlib.lib_ref "core.not.type"), [glob_make_eq t1 t2]) let remove_name_from_mapping mapping na = match na with Anonymous -> mapping | Name id -> Id.Map.remove id mapping let change_vars = let rec change_vars mapping rt = DAst.map_with_loc (fun ?loc -> function GRef _ as x -> x | GVar id -> let new_id = try Id.Map.find id mapping with Not_found -> id in GVar new_id | GEvar _ as x -> x | GPatVar _ as x -> x | GApp (rt', rtl) -> GApp (change_vars mapping rt', List.map (change_vars mapping) rtl) | GProj (f, rtl, rt) -> GProj (f, List.map (change_vars mapping) rtl, change_vars mapping rt) | GLambda (name, k, t, b) -> GLambda ( name , k , change_vars mapping t , change_vars (remove_name_from_mapping mapping name) b ) | GProd (name, k, t, b) -> GProd ( name , k , change_vars mapping t , change_vars (remove_name_from_mapping mapping name) b ) | GLetIn (name, def, typ, b) -> GLetIn ( name , change_vars mapping def , Option.map (change_vars mapping) typ , change_vars (remove_name_from_mapping mapping name) b ) | GLetTuple (nal, (na, rto), b, e) -> let new_mapping = List.fold_left remove_name_from_mapping mapping nal in GLetTuple ( nal , (na, Option.map (change_vars mapping) rto) , change_vars mapping b , change_vars new_mapping e ) | GCases (sty, infos, el, brl) -> GCases ( sty , infos , List.map (fun (e, x) -> (change_vars mapping e, x)) el , List.map (change_vars_br mapping) brl ) | GIf (b, (na, e_option), lhs, rhs) -> GIf ( change_vars mapping b , (na, Option.map (change_vars mapping) e_option) , change_vars mapping lhs , change_vars mapping rhs ) | GRec _ -> user_err ?loc Pp.(str "Local (co)fixes are not supported") | GFloat _ as x -> x | GCast (b, k, c) -> GCast (change_vars mapping b, k, change_vars mapping c) | GArray (u, t, def, ty) -> GArray ( u , Array.map (change_vars mapping) t , change_vars mapping def , change_vars mapping ty ) | GSort _ | GHole _ | GGenarg _ | GInt _ as x -> x) rt and change_vars_br mapping ({CAst.loc; v = idl, patl, res} as br) = let new_mapping = List.fold_right Id.Map.remove idl mapping in if Id.Map.is_empty new_mapping then br else CAst.make ?loc (idl, patl, change_vars new_mapping res) in change_vars let rec alpha_pat excluded pat = let loc = pat.CAst.loc in match DAst.get pat with | PatVar Anonymous -> let new_id = Indfun_common.fresh_id excluded "_x" in (DAst.make ?loc @@ PatVar (Name new_id), new_id :: excluded, Id.Map.empty) | PatVar (Name id) -> if Id.List.mem id excluded then let new_id = Namegen.next_ident_away id (Id.Set.of_list excluded) in ( DAst.make ?loc @@ PatVar (Name new_id) , new_id :: excluded , Id.Map.add id new_id Id.Map.empty ) else (pat, excluded, Id.Map.empty) | PatCstr (constr, patl, na) -> let new_na, new_excluded, map = match na with | Name id when Id.List.mem id excluded -> let new_id = Namegen.next_ident_away id (Id.Set.of_list excluded) in (Name new_id, new_id :: excluded, Id.Map.add id new_id Id.Map.empty) | _ -> (na, excluded, Id.Map.empty) in let new_patl, new_excluded, new_map = List.fold_left (fun (patl, excluded, map) pat -> let new_pat, new_excluded, new_map = alpha_pat excluded pat in (new_pat :: patl, new_excluded, Id.Map.fold Id.Map.add new_map map)) ([], new_excluded, map) patl in ( DAst.make ?loc @@ PatCstr (constr, List.rev new_patl, new_na) , new_excluded , new_map ) let alpha_patl excluded patl = let patl, new_excluded, map = List.fold_left (fun (patl, excluded, map) pat -> let new_pat, new_excluded, new_map = alpha_pat excluded pat in (new_pat :: patl, new_excluded, Id.Map.fold Id.Map.add new_map map)) ([], excluded, Id.Map.empty) patl in (List.rev patl, new_excluded, map) let raw_get_pattern_id pat acc = let rec get_pattern_id pat = match DAst.get pat with | PatVar Anonymous -> assert false | PatVar (Name id) -> [id] | PatCstr (constr, patternl, _) -> List.fold_right (fun pat idl -> let idl' = get_pattern_id pat in idl' @ idl) patternl [] in get_pattern_id pat @ acc let get_pattern_id pat = raw_get_pattern_id pat [] let rec alpha_rt excluded rt = let loc = rt.CAst.loc in let new_rt = DAst.make ?loc @@ match DAst.get rt with | (GRef _ | GVar _ | GEvar _ | GPatVar _) as rt -> rt | GLambda (Anonymous, k, t, b) -> let new_id = Namegen.next_ident_away (Id.of_string "_x") (Id.Set.of_list excluded) in let new_excluded = new_id :: excluded in let new_t = alpha_rt new_excluded t in let new_b = alpha_rt new_excluded b in GLambda (Name new_id, k, new_t, new_b) | GProd (Anonymous, k, t, b) -> let new_t = alpha_rt excluded t in let new_b = alpha_rt excluded b in GProd (Anonymous, k, new_t, new_b) | GLetIn (Anonymous, b, t, c) -> let new_b = alpha_rt excluded b in let new_t = Option.map (alpha_rt excluded) t in let new_c = alpha_rt excluded c in GLetIn (Anonymous, new_b, new_t, new_c) | GLambda (Name id, k, t, b) -> let new_id = Namegen.next_ident_away id (Id.Set.of_list excluded) in let t, b = if Id.equal new_id id then (t, b) else let replace = change_vars (Id.Map.add id new_id Id.Map.empty) in (t, replace b) in let new_excluded = new_id :: excluded in let new_t = alpha_rt new_excluded t in let new_b = alpha_rt new_excluded b in GLambda (Name new_id, k, new_t, new_b) | GProd (Name id, k, t, b) -> let new_id = Namegen.next_ident_away id (Id.Set.of_list excluded) in let new_excluded = new_id :: excluded in let t, b = if Id.equal new_id id then (t, b) else let replace = change_vars (Id.Map.add id new_id Id.Map.empty) in (t, replace b) in let new_t = alpha_rt new_excluded t in let new_b = alpha_rt new_excluded b in GProd (Name new_id, k, new_t, new_b) | GLetIn (Name id, b, t, c) -> let new_id = Namegen.next_ident_away id (Id.Set.of_list excluded) in let c = if Id.equal new_id id then c else change_vars (Id.Map.add id new_id Id.Map.empty) c in let new_excluded = new_id :: excluded in let new_b = alpha_rt new_excluded b in let new_t = Option.map (alpha_rt new_excluded) t in let new_c = alpha_rt new_excluded c in GLetIn (Name new_id, new_b, new_t, new_c) | GLetTuple (nal, (na, rto), t, b) -> let rev_new_nal, new_excluded, mapping = List.fold_left (fun (nal, excluded, mapping) na -> match na with | Anonymous -> (na :: nal, excluded, mapping) | Name id -> let new_id = Namegen.next_ident_away id (Id.Set.of_list excluded) in if Id.equal new_id id then (na :: nal, id :: excluded, mapping) else ( Name new_id :: nal , id :: excluded , Id.Map.add id new_id mapping )) ([], excluded, Id.Map.empty) nal in let new_nal = List.rev rev_new_nal in let new_rto, new_t, new_b = if Id.Map.is_empty mapping then (rto, t, b) else let replace = change_vars mapping in (Option.map replace rto, t, replace b) in let new_t = alpha_rt new_excluded new_t in let new_b = alpha_rt new_excluded new_b in let new_rto = Option.map (alpha_rt new_excluded) new_rto in GLetTuple (new_nal, (na, new_rto), new_t, new_b) | GCases (sty, infos, el, brl) -> let new_el = List.map (function rt, i -> (alpha_rt excluded rt, i)) el in GCases (sty, infos, new_el, List.map (alpha_br excluded) brl) | GIf (b, (na, e_o), lhs, rhs) -> GIf ( alpha_rt excluded b , (na, Option.map (alpha_rt excluded) e_o) , alpha_rt excluded lhs , alpha_rt excluded rhs ) | GRec _ -> user_err Pp.(str "Not handled GRec") | (GSort _ | GInt _ | GFloat _ | GHole _ | GGenarg _) as rt -> rt | GCast (b, k, c) -> GCast (alpha_rt excluded b, k, alpha_rt excluded c) | GApp (f, args) -> GApp (alpha_rt excluded f, List.map (alpha_rt excluded) args) | GProj (f, args, c) -> GProj (f, List.map (alpha_rt excluded) args, alpha_rt excluded c) | GArray (u, t, def, ty) -> GArray ( u , Array.map (alpha_rt excluded) t , alpha_rt excluded def , alpha_rt excluded ty ) in new_rt and alpha_br excluded {CAst.loc; v = ids, patl, res} = let new_patl, new_excluded, mapping = alpha_patl excluded patl in let new_ids = List.fold_right raw_get_pattern_id new_patl [] in let new_excluded = new_ids @ excluded in let renamed_res = change_vars mapping res in let new_res = alpha_rt new_excluded renamed_res in CAst.make ?loc (new_ids, new_patl, new_res) (* [is_free_in id rt] checks if [id] is a free variable in [rt] *) let is_free_in id = let rec is_free_in x = DAst.with_loc_val (fun ?loc -> function GRef _ -> false | GVar id' -> Id.compare id' id == 0 | GEvar _ -> false | GPatVar _ -> false | GApp (rt, rtl) | GProj (_, rtl, rt) -> List.exists is_free_in (rt :: rtl) | GLambda (n, _, t, b) | GProd (n, _, t, b) -> let check_in_b = match n with Name id' -> not (Id.equal id' id) | _ -> true in is_free_in t || (check_in_b && is_free_in b) | GLetIn (n, b, t, c) -> let check_in_c = match n with Name id' -> not (Id.equal id' id) | _ -> true in is_free_in b || Option.cata is_free_in true t || (check_in_c && is_free_in c) | GCases (_, _, el, brl) -> List.exists (fun (e, _) -> is_free_in e) el || List.exists is_free_in_br brl | GLetTuple (nal, _, b, t) -> let check_in_nal = not (List.exists (function Name id' -> Id.equal id' id | _ -> false) nal) in is_free_in t || (check_in_nal && is_free_in b) | GIf (cond, _, br1, br2) -> is_free_in cond || is_free_in br1 || is_free_in br2 | GRec _ -> user_err Pp.(str "Not handled GRec") | GSort _ -> false | GHole _ -> false | GGenarg _ -> false (* XXX isn't this incorrect? *) | GCast (b, _, t) -> is_free_in b || is_free_in t | GInt _ | GFloat _ -> false | GArray (_u, t, def, ty) -> Array.exists is_free_in t || is_free_in def || is_free_in ty) x and is_free_in_br {CAst.v = ids, _, rt} = (not (Id.List.mem id ids)) && is_free_in rt in is_free_in let rec pattern_to_term pt = DAst.with_val (function | PatVar Anonymous -> assert false | PatVar (Name id) -> mkGVar id | PatCstr (constr, patternl, _) -> let cst_narg = Inductiveops.constructor_nallargs (Global.env ()) constr in let implicit_args = Array.to_list (Array.init (cst_narg - List.length patternl) (fun _ -> mkGHole ())) in let patl_as_term = List.map pattern_to_term patternl in mkGApp (mkGRef (GlobRef.ConstructRef constr), implicit_args @ patl_as_term)) pt let replace_var_by_term x_id term = let rec replace_var_by_pattern x = DAst.map (function | GVar id when Id.compare id x_id == 0 -> DAst.get term | (GRef _ | GVar _ | GEvar _ | GPatVar _) as rt -> rt | GApp (rt', rtl) -> GApp (replace_var_by_pattern rt', List.map replace_var_by_pattern rtl) | GProj (f, rtl, rt) -> GProj (f, List.map replace_var_by_pattern rtl, replace_var_by_pattern rt) | GLambda (Name id, _, _, _) as rt when Id.compare id x_id == 0 -> rt | GLambda (name, k, t, b) -> GLambda (name, k, replace_var_by_pattern t, replace_var_by_pattern b) | GProd (Name id, _, _, _) as rt when Id.compare id x_id == 0 -> rt | GProd (name, k, t, b) -> GProd (name, k, replace_var_by_pattern t, replace_var_by_pattern b) | GLetIn (Name id, _, _, _) as rt when Id.compare id x_id == 0 -> rt | GLetIn (name, def, typ, b) -> GLetIn ( name , replace_var_by_pattern def , Option.map replace_var_by_pattern typ , replace_var_by_pattern b ) | GLetTuple (nal, _, _, _) as rt when List.exists (function Name id -> Id.equal id x_id | _ -> false) nal -> rt | GLetTuple (nal, (na, rto), def, b) -> GLetTuple ( nal , (na, Option.map replace_var_by_pattern rto) , replace_var_by_pattern def , replace_var_by_pattern b ) | GCases (sty, infos, el, brl) -> GCases ( sty , infos , List.map (fun (e, x) -> (replace_var_by_pattern e, x)) el , List.map replace_var_by_pattern_br brl ) | GIf (b, (na, e_option), lhs, rhs) -> GIf ( replace_var_by_pattern b , (na, Option.map replace_var_by_pattern e_option) , replace_var_by_pattern lhs , replace_var_by_pattern rhs ) | GRec _ -> CErrors.user_err (Pp.str "Not handled GRec") | (GSort _ | GHole _ | GGenarg _) as rt -> rt (* is this correct for GGenarg? *) | GInt _ as rt -> rt | GFloat _ as rt -> rt | GArray (u, t, def, ty) -> GArray ( u , Array.map replace_var_by_pattern t , replace_var_by_pattern def , replace_var_by_pattern ty ) | GCast (b, k, c) -> GCast (replace_var_by_pattern b, k, replace_var_by_pattern c)) x and replace_var_by_pattern_br ({CAst.loc; v = idl, patl, res} as br) = if List.exists (fun id -> Id.compare id x_id == 0) idl then br else CAst.make ?loc (idl, patl, replace_var_by_pattern res) in replace_var_by_pattern (* checking unifiability of patterns *) exception NotUnifiable let rec are_unifiable_aux env = function | [] -> () | (l, r) :: eqs -> ( match (DAst.get l, DAst.get r) with | PatVar _, _ | _, PatVar _ -> are_unifiable_aux env eqs | PatCstr (constructor1, cpl1, _), PatCstr (constructor2, cpl2, _) -> if not (Environ.QConstruct.equal env constructor2 constructor1) then raise NotUnifiable else let eqs' = try List.combine cpl1 cpl2 @ eqs with Invalid_argument _ -> anomaly (Pp.str "are_unifiable_aux.") in are_unifiable_aux env eqs' ) let are_unifiable env pat1 pat2 = try are_unifiable_aux env [(pat1, pat2)]; true with NotUnifiable -> false let rec eq_cases_pattern_aux env = function | [] -> () | (l, r) :: eqs -> ( match (DAst.get l, DAst.get r) with | PatVar _, PatVar _ -> eq_cases_pattern_aux env eqs | PatCstr (constructor1, cpl1, _), PatCstr (constructor2, cpl2, _) -> if not (Environ.QConstruct.equal env constructor2 constructor1) then raise NotUnifiable else let eqs' = try List.combine cpl1 cpl2 @ eqs with Invalid_argument _ -> anomaly (Pp.str "eq_cases_pattern_aux.") in eq_cases_pattern_aux env eqs' | _ -> raise NotUnifiable ) let eq_cases_pattern env pat1 pat2 = try eq_cases_pattern_aux env [(pat1, pat2)]; true with NotUnifiable -> false let ids_of_pat = let rec ids_of_pat ids = DAst.with_val (function | PatVar Anonymous -> ids | PatVar (Name id) -> Id.Set.add id ids | PatCstr (_, patl, _) -> List.fold_left ids_of_pat ids patl) in ids_of_pat Id.Set.empty let expand_as = let rec add_as map rt = match DAst.get rt with | PatVar _ -> map | PatCstr (_, patl, Name id) -> Id.Map.add id (pattern_to_term rt) (List.fold_left add_as map patl) | PatCstr (_, patl, _) -> List.fold_left add_as map patl in let rec expand_as map = DAst.map (function | (GRef _ | GEvar _ | GPatVar _ | GSort _ | GHole _ | GGenarg _ | GInt _ | GFloat _) as rt -> rt | GVar id as rt -> ( try DAst.get (Id.Map.find id map) with Not_found -> rt ) | GApp (f, args) -> GApp (expand_as map f, List.map (expand_as map) args) | GProj (f, args, c) -> GProj (f, List.map (expand_as map) args, expand_as map c) | GLambda (na, k, t, b) -> GLambda (na, k, expand_as map t, expand_as map b) | GProd (na, k, t, b) -> GProd (na, k, expand_as map t, expand_as map b) | GLetIn (na, v, typ, b) -> GLetIn (na, expand_as map v, Option.map (expand_as map) typ, expand_as map b) | GLetTuple (nal, (na, po), v, b) -> GLetTuple ( nal , (na, Option.map (expand_as map) po) , expand_as map v , expand_as map b ) | GIf (e, (na, po), br1, br2) -> GIf ( expand_as map e , (na, Option.map (expand_as map) po) , expand_as map br1 , expand_as map br2 ) | GRec _ -> user_err Pp.(str "Not handled GRec") | GCast (b, k, c) -> GCast (expand_as map b, k, expand_as map c) | GCases (sty, po, el, brl) -> GCases ( sty , Option.map (expand_as map) po , List.map (fun (rt, t) -> (expand_as map rt, t)) el , List.map (expand_as_br map) brl ) | GArray (u, t, def, ty) -> GArray (u, Array.map (expand_as map) t, expand_as map def, expand_as map ty)) and expand_as_br map {CAst.loc; v = idl, cpl, rt} = CAst.make ?loc (idl, cpl, expand_as (List.fold_left add_as map cpl) rt) in expand_as Id.Map.empty (* [resolve_and_replace_implicits] solves implicits of its argument and replaces them by their solution *) let resolve_and_replace_implicits exptyp env sigma rt = let open Evd in let open Evar_kinds in (* we first (pseudo) understand [rt] and get back the computed evar_map *) (* FIXME : JF (30/03/2017) I'm not completely sure to have split understand as needed. If someone knows how to prevent solved existantial removal in understand, please do not hesitate to change the computation of [ctx] here *) let implicit_holes = ref [] in let binder_holes = ref [] in let ctx = let open Pretyping in let open Evarutil in (* Intercept the pretyper for holes and record the generated evar *) let register_evar kind loc evk = match kind with | GImplicitArg (grk, pk, bk) -> implicit_holes := ((loc, grk, pk, bk), evk) :: !implicit_holes | GBinderType na -> binder_holes := ((loc, na), evk) :: !binder_holes | _ -> () in let pretype_hole self kind ?loc ~flags tycon env sigma = let sigma, j = default_pretyper.pretype_hole self kind ?loc ~flags tycon env sigma in (* The value is guaranteed to be an undefined evar at this point *) let evk, _ = EConstr.destEvar sigma j.uj_val in let () = register_evar kind loc evk in sigma, j in let pretype_type self c ?loc ~flags valcon env sigma = let sigma, j = default_pretyper.pretype_type self c ?loc ~flags valcon env sigma in let () = match DAst.get c, EConstr.kind sigma j.utj_val with | GHole (kind), Evar (evk, _) -> register_evar kind c.CAst.loc evk | _ -> () in sigma, j in let flags = Pretyping.all_and_fail_flags in let pretype_flags = { program_mode = false; use_coercions = true; poly = false; resolve_tc = true; } in let vars = Evarutil.VarSet.variables (Global.env ()) in let hypnaming = RenameExistingBut vars in let genv = GlobEnv.make ~hypnaming env sigma Glob_ops.empty_lvar in let pretyper = { default_pretyper with pretype_hole; pretype_type } in let sigma', _ = eval_pretyper pretyper ~flags:pretype_flags (Some exptyp) genv sigma rt in solve_remaining_evars flags env ~initial:sigma sigma' in let ctx = Evd.minimize_universes ctx in let f c = EConstr.of_constr (Evarutil.nf_evars_universes ctx (EConstr.Unsafe.to_constr c)) in let expand_hole evopt default = match evopt with | None -> default | Some evk -> (* we found the evar corresponding to this hole *) let EvarInfo evi = Evd.find ctx evk in match Evd.evar_body evi with | Evar_defined c -> (* we just have to lift the solution in glob_term *) Detyping.detype Detyping.Now Id.Set.empty env ctx (f c) | Evar_empty -> (* the hole was not solved : we do nothing *) default in (* then we map [rt] to replace the implicit holes by their values *) let rec change rt = match DAst.get rt with | GHole (GImplicitArg (grk, pk, bk)) -> let eq (loc1, gr1, p1, b1) (loc2, gr2, p2, b2) = Environ.QGlobRef.equal env gr1 gr2 && p1 = p2 && b1 == (b2 : bool) && loc1 = (loc2 : Loc.t option) in let evopt = List.assoc_f_opt eq (rt.CAst.loc, grk, pk, bk) !implicit_holes in expand_hole evopt rt | GHole (GBinderType na) -> let eq (loc1, na1) (loc2, na2) = Name.equal na1 na2 && loc1 = (loc2 : Loc.t option) in let evopt = List.assoc_f_opt eq (rt.CAst.loc, na) !binder_holes in expand_hole evopt rt | _ -> Glob_ops.map_glob_constr change rt in change rt
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>