package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.tactics/induction.ml.html
Source file induction.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module CVars = Vars open Pp open CErrors open Util open Names open Nameops open Constr open Context open Termops open Environ open EConstr open Vars open Namegen open Declarations open Reductionops open Tacred open Genredexpr open Tacmach open Logic open Clenv open Tacticals open Coqlib open Evarutil open Indrec open Unification open Locus open Locusops open Tactypes open Proofview.Notations open Tactics module NamedDecl = Context.Named.Declaration let tclEVARS = Proofview.Unsafe.tclEVARS let inj_with_occurrences e = (AllOccurrences,e) let typ_of env sigma c = let open Retyping in try get_type_of ~lax:true env sigma c with RetypeError e -> user_err (print_retype_error e) (*********************************************) (* Errors *) (*********************************************) exception AlreadyUsed of Id.t exception SchemeDontApply exception NeedFullyAppliedArgument exception NotAnInductionScheme of string exception NotAnInductionSchemeLetIn exception CannotFindInductiveArgument exception MentionConclusionDependentOn of Id.t exception DontKnowWhatToDoWith of intro_pattern_naming_expr exception UnsupportedWithClause exception UnsupportedEqnClause exception UnsupportedInClause of bool exception DontKnowWhereToFindArgument exception MultipleAsAndUsingClauseOnlyList let error ?loc e = Loc.raise ?loc e exception Unhandled let wrap_unhandled f e = try Some (f e) with Unhandled -> None let tactic_interp_error_handler = function | AlreadyUsed id -> Id.print id ++ str " is already used." | SchemeDontApply -> str "Scheme cannot be applied." | NeedFullyAppliedArgument -> str "Need a fully applied argument." | NotAnInductionScheme s -> let s = if not (String.is_empty s) then s^" " else s in str "Cannot recognize " ++ str s ++ str "an induction scheme." | NotAnInductionSchemeLetIn -> str "Strange letin, cannot recognize an induction scheme." | CannotFindInductiveArgument -> str "Cannot find inductive argument of elimination scheme." | MentionConclusionDependentOn id -> str "Conclusion must be mentioned: it depends on " ++ Id.print id ++ str "." | DontKnowWhatToDoWith id -> str "Do not know what to do with " ++ Miscprint.pr_intro_pattern_naming id | UnsupportedEqnClause -> str "'eqn' clause not supported here." | UnsupportedWithClause -> str "'with' clause not supported here." | UnsupportedInClause b -> str (if b then "'in' clause not supported here." else "'eqn' clause not supported here.") | DontKnowWhereToFindArgument -> str "Don't know where to find some argument." | MultipleAsAndUsingClauseOnlyList -> str "'as' clause with multiple arguments and 'using' clause can only occur last." | _ -> raise Unhandled let _ = CErrors.register_handler (wrap_unhandled tactic_interp_error_handler) let fresh_id_in_env avoid id env = let avoid' = ids_of_named_context_val (named_context_val env) in let avoid = if Id.Set.is_empty avoid then avoid' else Id.Set.union avoid' avoid in next_ident_away_in_goal (Global.env ()) id avoid let new_fresh_id avoid id gl = fresh_id_in_env avoid id (Proofview.Goal.env gl) let intros_until_n n = Tactics.try_intros_until (fun _ -> tclIDTAC) (AnonHyp n) let try_intros_until_id_check id = Tactics.try_intros_until (fun _ -> tclIDTAC) (NamedHyp (CAst.make id)) (* Apply a tactic on a quantified hypothesis, an hypothesis in context or a term with bindings *) let tactic_infer_flags with_evar = Pretyping.{ use_coercions = true; use_typeclasses = UseTC; solve_unification_constraints = true; fail_evar = not with_evar; expand_evars = true; program_mode = false; polymorphic = false; } let onOpenInductionArg env sigma tac = function | clear_flag,ElimOnConstr f -> let (sigma', cbl) = f env sigma in Tacticals.tclTHEN (Proofview.Unsafe.tclEVARS sigma') (tac clear_flag (Some sigma,cbl)) | clear_flag,ElimOnAnonHyp n -> Tacticals.tclTHEN (intros_until_n n) (Tacticals.onLastHyp (fun c -> Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.project gl in tac clear_flag (Some sigma,(c,NoBindings)) end)) | clear_flag,ElimOnIdent {CAst.v=id} -> (* A quantified hypothesis *) Tacticals.tclTHEN (try_intros_until_id_check id) (Proofview.Goal.enter begin fun gl -> let sigma = Tacmach.project gl in tac clear_flag (Some sigma,(mkVar id,NoBindings)) end) let with_no_bindings (c, lbind) = if lbind != NoBindings then error UnsupportedWithClause; c (********************************************) (* Elimination tactics *) (********************************************) let index_of_ind_arg sigma t = let rec aux i j t = match EConstr.kind sigma t with | LetIn (_, _, _, t) -> aux i j t | Prod (_,t,u) -> (* heuristic *) if isInd sigma (fst (decompose_app sigma t)) then aux (Some j) (j+1) u else aux i (j+1) u | _ -> match i with | Some i -> i | None -> error CannotFindInductiveArgument in aux None 0 t (* * Elimination tactic with bindings and using an arbitrary * elimination constant called elimc. This constant should end * with a clause (x:I)(P .. ), where P is a bound variable. * The term c is of type t, which is a product ending with a type * matching I, lbindc are the expected terms for c arguments *) type eliminator = | ElimConstant of (Constant.t * EInstance.t) (* Constant generated by a scheme function *) | ElimClause of EConstr.constr with_bindings (* Arbitrary expression provided by the user *) let is_nonrec env mind = (Environ.lookup_mind (fst mind) env).mind_finite == Declarations.BiFinite let find_ind_eliminator env sigma ind s = let c = lookup_eliminator env ind s in let sigma, c = EConstr.fresh_global env sigma c in sigma, destConst sigma c let clear_wildcards = Tactics.Internal.clear_wildcards (*****************************) (* Decomposing introductions *) (*****************************) let insert_before decls lasthyp env = match lasthyp with | None -> push_named_context decls env | Some id -> Environ.fold_named_context (fun _ d env -> let d = map_named_decl EConstr.of_constr d in let env = if Id.equal id (NamedDecl.get_id d) then push_named_context decls env else env in push_named d env) ~init:(reset_context env) env let mk_eq_name env id {CAst.loc;v=ido} = match ido with | IntroAnonymous -> fresh_id_in_env (Id.Set.singleton id) (add_prefix "Heq" id) env | IntroFresh heq_base -> fresh_id_in_env (Id.Set.singleton id) heq_base env | IntroIdentifier id -> if List.mem id (ids_of_named_context (named_context env)) then error (AlreadyUsed id); id (* unsafe *) let mkletin_goal env sigma with_eq dep (id,lastlhyp,ccl,c) ty = let open Context.Named.Declaration in let t = match ty with Some t -> t | _ -> typ_of env sigma c in let r = Retyping.relevance_of_type env sigma t in let decl = if dep then LocalDef (make_annot id r,c,t) else LocalAssum (make_annot id r,t) in match with_eq with | Some (lr,heq) -> let eqdata = build_coq_eq_data () in let args = if lr then [mkVar id;c] else [c;mkVar id]in let (sigma, eq) = Evd.fresh_global env sigma eqdata.eq in let (sigma, refl) = Evd.fresh_global env sigma eqdata.refl in (* NB we are not in the right env for [id] so we only check the partial application. This is enough to produce the desired univ constraint between univ of eq and univ of t *) let sigma, eq = Typing.checked_applist env sigma eq [t] in let eq = applist (eq,args) in let refl = applist (refl, [t;mkVar id]) in let newenv = insert_before [LocalAssum (make_annot heq Sorts.Relevant,eq); decl] lastlhyp env in let (sigma, x) = new_evar newenv sigma ~principal:true ccl in (sigma, mkNamedLetIn sigma (make_annot id r) c t (mkNamedLetIn sigma (make_annot heq Sorts.Relevant) refl eq x)) | None -> let newenv = insert_before [decl] lastlhyp env in let (sigma, x) = new_evar newenv sigma ~principal:true ccl in (sigma, mkNamedLetIn sigma (make_annot id r) c t x) let warn_cannot_remove_as_expected = CWarnings.create ~name:"cannot-remove-as-expected" ~category:CWarnings.CoreCategories.tactics (fun (id,inglobal) -> let pp = match inglobal with | None -> mt () | Some ref -> str ", it is used implicitly in " ++ Printer.pr_global ref in str "Cannot remove " ++ Id.print id ++ pp ++ str ".") let clear_for_destruct ids = Proofview.tclORELSE (Tactics.Internal.clear_gen (fun env sigma id err inglobal -> raise (ClearDependencyError (id,err,inglobal))) ids) (function | ClearDependencyError (id,err,inglobal),_ -> warn_cannot_remove_as_expected (id,inglobal); Proofview.tclUNIT () | e -> Exninfo.iraise e) (* Either unfold and clear if defined or simply clear if not a definition *) let expand_hyp id = Tacticals.tclTRY (Tactics.unfold_body id) <*> clear_for_destruct [id] (*****************************) (* High-level induction *) (*****************************) (* * A "natural" induction tactic * - [H0:T0, ..., Hi:Ti, hyp0:P->I(args), Hi+1:Ti+1, ..., Hn:Tn |-G] is the goal - [hyp0] is the induction hypothesis - we extract from [args] the variables which are not rigid parameters of the inductive type, this is [indvars] (other terms are forgotten); - we look for all hyps depending of [hyp0] or one of [indvars]: this is [dephyps] of types [deptyps] respectively - [statuslist] tells for each hyps in [dephyps] after which other hyp fixed in the context they must be moved (when induction is done) - [hyp0succ] is the name of the hyp fixed in the context after which to move the subterms of [hyp0succ] in the i-th branch where it is supposed to be the i-th constructor of the inductive type. Strategy: (cf in [induction_with_atomization_of_ind_arg]) - requantify and clear all [dephyps] - apply induction on [hyp0] - clear those of [indvars] that are variables and [hyp0] - in the i-th subgoal, intro the arguments of the i-th constructor of the inductive type after [hyp0succ] (done in [induct_discharge]) let the induction hypotheses on top of the hyps because they may depend on variables between [hyp0] and the top. A counterpart is that the dep hyps programmed to be intro-ed on top must now be intro-ed after the induction hypotheses - move each of [dephyps] at the right place following the [statuslist] *) let warn_unused_intro_pattern = CWarnings.create ~name:"unused-intro-pattern" ~category:CWarnings.CoreCategories.tactics (fun (env,sigma,names) -> strbrk"Unused introduction " ++ str (String.plural (List.length names) "pattern") ++ str": " ++ prlist_with_sep spc (Miscprint.pr_intro_pattern (fun c -> Printer.pr_econstr_env env sigma (snd (c env sigma)))) names) let check_unused_names env sigma names = if not (List.is_empty names) then warn_unused_intro_pattern (env, sigma, names) let intropattern_of_name gl avoid = function | Anonymous -> IntroNaming IntroAnonymous | Name id -> IntroNaming (IntroIdentifier (new_fresh_id avoid id gl)) let rec consume_pattern avoid na isdep gl = let open CAst in function | [] -> ((CAst.make @@ intropattern_of_name gl avoid na), []) | {loc;v=IntroForthcoming true}::names when not isdep -> consume_pattern avoid na isdep gl names | {loc;v=IntroForthcoming _}::names as fullpat -> (CAst.make ?loc @@ intropattern_of_name gl avoid na, fullpat) | {loc;v=IntroNaming IntroAnonymous}::names -> (CAst.make ?loc @@ intropattern_of_name gl avoid na, names) | {loc;v=IntroNaming (IntroFresh id')}::names -> (CAst.make ?loc @@ IntroNaming (IntroIdentifier (new_fresh_id avoid id' gl)), names) | pat::names -> (pat,names) let re_intro_dependent_hypotheses (lstatus,rstatus) (_,tophyp) = let tophyp = match tophyp with None -> MoveLast | Some hyp -> MoveAfter hyp in let newlstatus = (* if some IH has taken place at the top of hyps *) List.map (function (hyp,MoveLast) -> (hyp,tophyp) | x -> x) lstatus in Tacticals.tclTHEN (Tactics.intros_move rstatus) (Tactics.intros_move newlstatus) let dest_intro_patterns = Tactics.Internal.dest_intro_patterns let safe_dest_intro_patterns with_evars avoid thin dest pat tac = Proofview.tclORELSE (dest_intro_patterns with_evars avoid thin dest pat tac) begin function (e, info) -> match e with | CannotMoveHyp _ -> (* May happen e.g. with "destruct x using s" with an hypothesis which is morally an induction hypothesis to be "MoveLast" if known as such but which is considered instead as a subterm of a constructor to be move at the place of x. *) dest_intro_patterns with_evars avoid thin MoveLast pat tac | e -> Proofview.tclZERO ~info e end type elim_arg_kind = RecArg | IndArg | OtherArg type branch_argument = { ba_kind : elim_arg_kind; ba_assum : bool; ba_dep : bool; ba_name : Id.t; } type recarg_position = | AfterFixedPosition of Id.t option (* None = top of context *) let update_dest (recargdests,tophyp as dests) = function | [] -> dests | hyp::_ -> (match recargdests with | AfterFixedPosition None -> AfterFixedPosition (Some hyp) | x -> x), (match tophyp with None -> Some hyp | x -> x) let get_recarg_dest (recargdests,tophyp) = match recargdests with | AfterFixedPosition None -> MoveLast | AfterFixedPosition (Some id) -> MoveAfter id (* Current policy re-introduces recursive arguments of destructed variable at the place of the original variable while induction hypothesese are introduced at the top of the context. Since in the general case of an inductive scheme, the induction hypotheses can arrive just after the recursive arguments (e.g. as in "forall t1:tree, P t1 -> forall t2:tree, P t2 -> P (node t1 t2)", we need to update the position for t2 after "P t1" is introduced if ever t2 had to be introduced at the top of the context). *) let induct_discharge with_evars dests avoid' tac (avoid,ra) names = let avoid = Id.Set.union avoid' (Id.Set.union avoid (Tactics.Internal.explicit_intro_names names)) in let rec peel_tac ra dests names thin = match ra with | ({ ba_kind = RecArg } as rarg) :: ({ ba_kind = IndArg } as iarg) :: ra' -> Proofview.Goal.enter begin fun gl -> let (recpat,names) = match names with | [{CAst.loc;v=IntroNaming (IntroIdentifier id)} as pat] -> let id' = new_fresh_id avoid (add_prefix "IH" id) gl in (pat, [CAst.make @@ IntroNaming (IntroIdentifier id')]) | _ -> consume_pattern avoid (Name rarg.ba_name) rarg.ba_dep gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [recpat] (fun ids thin -> Proofview.Goal.enter begin fun gl -> let (hyprec,names) = consume_pattern avoid (Name iarg.ba_name) iarg.ba_dep gl names in dest_intro_patterns with_evars avoid thin MoveLast [hyprec] (fun ids' thin -> peel_tac ra' (update_dest dests ids') names thin) end) end | ({ ba_kind = IndArg } as iarg) :: ra' -> Proofview.Goal.enter begin fun gl -> (* Rem: does not happen in Coq schemes, only in user-defined schemes *) let pat,names = consume_pattern avoid (Name iarg.ba_name) iarg.ba_dep gl names in dest_intro_patterns with_evars avoid thin MoveLast [pat] (fun ids thin -> peel_tac ra' (update_dest dests ids) names thin) end | ({ ba_kind = RecArg } as rarg) :: ra' -> Proofview.Goal.enter begin fun gl -> let (pat,names) = consume_pattern avoid (Name rarg.ba_name) rarg.ba_dep gl names in let dest = get_recarg_dest dests in dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end | ({ ba_kind = OtherArg } as oarg) :: ra' -> Proofview.Goal.enter begin fun gl -> let (pat,names) = consume_pattern avoid Anonymous oarg.ba_dep gl names in let dest = get_recarg_dest dests in safe_dest_intro_patterns with_evars avoid thin dest [pat] (fun ids thin -> peel_tac ra' dests names thin) end | [] -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in check_unused_names env sigma names; Tacticals.tclTHEN (clear_wildcards thin) (tac dests) end in peel_tac ra (dests, None) names [] (* - le recalcul de indtyp à chaque itération de atomize_one est pour ne pas s'embêter à regarder si un letin_tac ne fait pas des substitutions aussi sur l'argument voisin *) let expand_projections env sigma c = let rec aux env c = match EConstr.kind sigma c with | Proj (p, _, c) -> Retyping.expand_projection env sigma p (aux env c) [] | _ -> map_constr_with_full_binders env sigma push_rel aux env c in aux env c (* Marche pas... faut prendre en compte l'occurrence précise... *) let atomize_param_of_ind env sigma (hd, params, indices) = let params' = List.map (expand_projections env sigma) params in (* le gl est important pour ne pas préévaluer *) let rec atomize_one accu args args' avoid = function | [] -> let t = applist (hd, params@args) in (List.rev accu, avoid, t) | c :: rem -> match EConstr.kind sigma c with | Var id when not (List.exists (fun c -> occur_var env sigma id c) args') && not (List.exists (fun c -> occur_var env sigma id c) params') -> (* Based on the knowledge given by the user, all constraints on the variable are generalizable in the current environment so that it is clearable after destruction *) atomize_one accu (c::args) (c::args') (Id.Set.add id avoid) rem | _ -> let c' = expand_projections env sigma c in let dependent t = dependent sigma c t in if List.exists dependent params' || List.exists dependent args' then (* This is a case where the argument is constrained in a way which would require some kind of inversion; we follow the (old) discipline of not generalizing over this term, since we don't try to invert the constraint anyway. *) atomize_one accu (c::args) (c'::args') avoid rem else (* We reason blindly on the term and do as if it were generalizable, ignoring the constraints coming from its structure *) let id = match EConstr.kind sigma c with | Var id -> id | _ -> let ty = Retyping.get_type_of env sigma c in id_of_name_using_hdchar env sigma ty Anonymous in let x = fresh_id_in_env avoid id env in let accu = (x, c) :: accu in atomize_one accu (mkVar x::args) (mkVar x::args') (Id.Set.add x avoid) rem in atomize_one [] [] [] Id.Set.empty (List.rev indices) (* [cook_sign] builds the lists [beforetoclear] (preceding the ind. var.) and [aftertoclear] (coming after the ind. var.) of hyps that must be erased, the lists of hyps to be generalize [decldeps] on the goal together with the places [(lstatus,rstatus)] where to re-intro them after induction. To know where to re-intro the dep hyp, we remember the name of the hypothesis [lhyp] after which (if the dep hyp is more recent than [hyp0]) or [rhyp] before which (if older than [hyp0]) its equivalent must be moved when the induction has been applied. Since computation of dependencies and [rhyp] is from more ancient (on the right) to more recent hyp (on the left) but the computation of [lhyp] progresses from the other way, [cook_hyp] is in two passes (an alternative would have been to write an higher-order algorithm). We use references to reduce the accumulation of arguments. To summarize, the situation looks like this Goal(n,x) -| H6:(Q n); x:A; H5:True; H4:(le O n); H3:(P n); H2:True; n:nat Left Right Induction hypothesis is H4 ([hyp0]) Variable parameters of (le O n) is the singleton list with "n" ([indvars]) The dependent hyps are H3 and H6 ([dephyps]) For H3 the memorized places are H5 ([lhyp]) and H2 ([rhyp]) because these names are among the hyp which are fixed through the induction For H6 the neighbours are None ([lhyp]) and H5 ([rhyp]) For H3, because on the right of H4, we remember rhyp (here H2) For H6, because on the left of H4, we remember lhyp (here None) For H4, we remember lhyp (here H5) The right neighbour is then translated into the left neighbour because move_hyp tactic needs the name of the hyp _after_ which we move the hyp to move. But, say in the 2nd subgoal of the hypotheses, the goal will be (m:nat)((P m)->(Q m)->(Goal m)) -> (P Sm)-> (Q Sm)-> (Goal Sm) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^ both go where H4 was goes where goes where H3 was H6 was We have to intro and move m and the recursive hyp first, but then where to move H3 ??? Only the hyp on its right is relevant, but we have to translate it into the name of the hyp on the left Note: this case where some hyp(s) in [dephyps] has(have) the same left neighbour as [hyp0] is the only problematic case with right neighbours. For the other cases (e.g. an hyp H1:(R n) between n and H2 would have posed no problem. But for uniformity, we decided to use the right hyp for all hyps on the right of H4. Other solutions are welcome PC 9 fev 06: Adapted to accept multi argument principle with no main arg hyp. hyp0 is now optional, meaning that it is possible that there is no main induction hypotheses. In this case, we consider the last "parameter" (in [indvars]) as the limit between "left" and "right", BUT it must be included in indhyps. Other solutions are still welcome *) exception Shunt of Id.t move_location let cook_sign hyp0_opt inhyps indvars env sigma = (* First phase from L to R: get [toclear], [decldep] and [statuslist] for the hypotheses before (= more ancient than) hyp0 (see above) *) let toclear = ref [] in let avoid = ref Id.Set.empty in let decldeps = ref [] in let ldeps = ref [] in let rstatus = ref [] in let lstatus = ref [] in let before = ref true in let maindep = ref false in let seek_deps env decl rhyp = let decl = map_named_decl EConstr.of_constr decl in let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then begin before:=false; (* Note that if there was no main induction hypotheses, then hyp is one of indvars too *) toclear := hyp::!toclear; MoveFirst (* fake value *) end else if Id.Set.mem hyp indvars then begin (* The variables in indvars are such that they don't occur any more after generalization, so declare them to clear. *) toclear := hyp::!toclear; rhyp end else let dephyp0 = not !before && List.is_empty inhyps && (Option.cata (fun id -> occur_var_in_decl env sigma id decl) false hyp0_opt) in let depother = List.is_empty inhyps && (Id.Set.exists (fun id -> occur_var_in_decl env sigma id decl) indvars || List.exists (fun decl' -> occur_var_in_decl env sigma (NamedDecl.get_id decl') decl) !decldeps) in if not (List.is_empty inhyps) && Id.List.mem hyp inhyps || dephyp0 || depother then begin decldeps := decl::!decldeps; avoid := Id.Set.add hyp !avoid; maindep := dephyp0 || !maindep; if !before then begin toclear := hyp::!toclear; rstatus := (hyp,rhyp)::!rstatus end else begin toclear := hyp::!toclear; ldeps := hyp::!ldeps (* status computed in 2nd phase *) end; MoveBefore hyp end else MoveBefore hyp in let _ = fold_named_context seek_deps env ~init:MoveFirst in (* 2nd phase from R to L: get left hyp of [hyp0] and [lhyps] *) let compute_lstatus lhyp decl = let hyp = NamedDecl.get_id decl in if (match hyp0_opt with Some hyp0 -> Id.equal hyp hyp0 | _ -> false) then raise (Shunt lhyp); if Id.List.mem hyp !ldeps then begin lstatus := (hyp,lhyp)::!lstatus; lhyp end else if Id.List.mem hyp !toclear then lhyp else MoveAfter hyp in try let _ = fold_named_context_reverse compute_lstatus ~init:MoveLast env in raise (Shunt MoveLast) (* ?? FIXME *) with Shunt lhyp0 -> let lhyp0 = match lhyp0 with | MoveLast -> None | MoveAfter hyp -> Some hyp | _ -> assert false in let statuslists = (!lstatus,List.rev !rstatus) in let recargdests = AfterFixedPosition (if Option.is_empty hyp0_opt then None else lhyp0) in (statuslists, recargdests, !toclear, !decldeps, !avoid, !maindep) (* The general form of an induction principle is the following: forall prm1 prm2 ... prmp, (induction parameters) forall Q1...,(Qi:Ti_1 -> Ti_2 ->...-> Ti_ni),...Qq, (predicates) branch1, branch2, ... , branchr, (branches of the principle) forall (x1:Ti_1) (x2:Ti_2) ... (xni:Ti_ni), (induction arguments) (HI: I prm1..prmp x1...xni) (optional main induction arg) -> (Qi x1...xni HI (f prm1...prmp x1...xni)).(conclusion) ^^ ^^^^^^^^^^^^^^^^^^^^^^^^ optional optional argument added if even if HI principle generated by functional present above induction, only if HI does not exist [indarg] [farg] HI is not present when the induction principle does not come directly from an inductive type (like when it is generated by functional induction for example). HI is present otherwise BUT may not appear in the conclusion (dependent principle). HI and (f...) cannot be both present. Principles taken from functional induction have the final (f...).*) (* [rel_contexts] and [rel_declaration] actually contain triples, and lists are actually in reverse order to fit [compose_prod]. *) type elim_scheme = { elimt: types; indref: GlobRef.t option; params: rel_context; (* (prm1,tprm1);(prm2,tprm2)...(prmp,tprmp) *) nparams: int; (* number of parameters *) predicates: rel_context; (* (Qq, (Tq_1 -> Tq_2 ->...-> Tq_nq)), (Q1,...) *) npredicates: int; (* Number of predicates *) branches: rel_context; (* branchr,...,branch1 *) nbranches: int; (* Number of branches *) args: rel_context; (* (xni, Ti_ni) ... (x1, Ti_1) *) nargs: int; (* number of arguments *) indarg: rel_declaration option; (* Some (H,I prm1..prmp x1...xni) if HI is in premisses, None otherwise *) concl: types; (* Qi x1...xni HI (f...), HI and (f...) are optional and mutually exclusive *) indarg_in_concl: bool; (* true if HI appears at the end of conclusion *) farg_in_concl: bool; (* true if (f...) appears at the end of conclusion *) } let empty_scheme = { elimt = mkProp; indref = None; params = []; nparams = 0; predicates = []; npredicates = 0; branches = []; nbranches = 0; args = []; nargs = 0; indarg = None; concl = mkProp; indarg_in_concl = false; farg_in_concl = false; } let make_base n id = if Int.equal n 0 || Int.equal n 1 then id else (* This extends the name to accept new digits if it already ends with *) (* digits *) Id.of_string (atompart_of_id (make_ident (Id.to_string id) (Some 0))) (* Builds two different names from an optional inductive type and a number, also deals with a list of names to avoid. If the inductive type is None, then hyprecname is IHi where i is a number. *) let make_up_names n ind_opt cname = let is_hyp = String.equal (atompart_of_id cname) "H" in let base = Id.to_string (make_base n cname) in let ind_prefix = "IH" in let base_ind = if is_hyp then match ind_opt with | None -> Id.of_string ind_prefix | Some ind_id -> add_prefix ind_prefix (Nametab.basename_of_global ind_id) else add_prefix ind_prefix cname in let hyprecname = make_base n base_ind in let avoid = if Int.equal n 1 (* Only one recursive argument *) || Int.equal n 0 then Id.Set.empty else (* Forbid to use cname, cname0, hyprecname and hyprecname0 *) (* in order to get names such as f1, f2, ... *) let avoid = Id.Set.add (make_ident (Id.to_string hyprecname) None) (Id.Set.singleton (make_ident (Id.to_string hyprecname) (Some 0))) in if not (String.equal (atompart_of_id cname) "H") then Id.Set.add (make_ident base (Some 0)) (Id.Set.add (make_ident base None) avoid) else avoid in Id.of_string base, hyprecname, avoid let error_ind_scheme s = error (NotAnInductionScheme s) let occur_rel sigma n c = let res = not (noccurn sigma n c) in res (* This function splits the products of the induction scheme [elimt] into four parts: - branches, easily detectable (they are not referred by rels in the subterm) - what was found before branches (acc1) that is: parameters and predicates - what was found after branches (acc3) that is: args and indarg if any if there is no branch, we try to fill in acc3 with args/indargs. We also return the conclusion. *) let decompose_paramspred_branch_args sigma elimt = let open Context.Rel.Declaration in let rec cut_noccur elimt acc2 = match EConstr.kind sigma elimt with | Prod(nme,tpe,elimt') -> let hd_tpe,_ = decompose_app sigma (snd (decompose_prod_decls sigma tpe)) in if not (occur_rel sigma 1 elimt') && isRel sigma hd_tpe then cut_noccur elimt' (LocalAssum (nme,tpe)::acc2) else let acc3,ccl = decompose_prod_decls sigma elimt in acc2 , acc3 , ccl | App(_, _) | Rel _ -> acc2 , [] , elimt | _ -> error_ind_scheme "" in let rec cut_occur elimt acc1 = match EConstr.kind sigma elimt with | Prod(nme,tpe,c) when occur_rel sigma 1 c -> cut_occur c (LocalAssum (nme,tpe)::acc1) | Prod(nme,tpe,c) -> let acc2,acc3,ccl = cut_noccur elimt [] in acc1,acc2,acc3,ccl | App(_, _) | Rel _ -> acc1,[],[],elimt | _ -> error_ind_scheme "" in let acc1, acc2 , acc3, ccl = cut_occur elimt [] in (* Particular treatment when dealing with a dependent empty type elim scheme: if there is no branch, then acc1 contains all hyps which is wrong (acc1 should contain parameters and predicate only). This happens for an empty type (See for example Empty_set_ind, as False would actually be ok). Then we must find the predicate of the conclusion to separate params_pred from args. We suppose there is only one predicate here. *) match acc2 with | [] -> let hyps,ccl = decompose_prod_decls sigma elimt in let hd_ccl_pred,_ = decompose_app sigma ccl in begin match EConstr.kind sigma hd_ccl_pred with | Rel i -> let acc3,acc1 = List.chop (i-1) hyps in acc1 , [] , acc3 , ccl | _ -> error_ind_scheme "" end | _ -> acc1, acc2 , acc3, ccl let exchange_hd_app sigma subst_hd t = let hd,args= decompose_app sigma t in mkApp (subst_hd, args) (* Builds an elim_scheme from its type and calling form (const+binding). We first separate branches. We obtain branches, hyps before (params + preds), hyps after (args <+ indarg if present>) and conclusion. Then we proceed as follows: - separate parameters and predicates in params_preds. For that we build: forall (x1:Ti_1)(xni:Ti_ni) (HI:I prm1..prmp x1...xni), DUMMY x1...xni HI/farg ^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^ optional opt Free rels appearing in this term are parameters (branches should not appear, and the only predicate would have been Qi but we replaced it by DUMMY). We guess this heuristic catches all params. TODO: generalize to the case where args are merged with branches (?) and/or where several predicates are cited in the conclusion. - finish to fill in the elim_scheme: indarg/farg/args and finally indref. *) let compute_elim_sig sigma elimt = let open Context.Rel.Declaration in let params_preds,branches,args_indargs,conclusion = decompose_paramspred_branch_args sigma elimt in let ccl = exchange_hd_app sigma (mkVar (Id.of_string "__QI_DUMMY__")) conclusion in let concl_with_args = it_mkProd_or_LetIn ccl args_indargs in let nparams = Int.Set.cardinal (free_rels sigma concl_with_args) in let preds,params = List.chop (List.length params_preds - nparams) params_preds in (* A first approximation, further analysis will tweak it *) let res = ref { empty_scheme with (* This fields are ok: *) elimt = elimt; concl = conclusion; predicates = preds; npredicates = List.length preds; branches = branches; nbranches = List.length branches; farg_in_concl = isApp sigma ccl && isApp sigma (last_arg sigma ccl); params = params; nparams = nparams; (* all other fields are unsure at this point. Including these:*) args = args_indargs; nargs = List.length args_indargs; } in try (* Order of tests below is important. Each of them exits if successful. *) (* 1- First see if (f x...) is in the conclusion. *) if !res.farg_in_concl then begin res := { !res with indarg = None; indarg_in_concl = false; farg_in_concl = true }; raise_notrace Exit end; (* 2- If no args_indargs (=!res.nargs at this point) then no indarg *) if Int.equal !res.nargs 0 then raise_notrace Exit; (* 3- Look at last arg: is it the indarg? *) ignore ( match List.hd args_indargs with | LocalDef (hiname,_,hi) -> error_ind_scheme "" | LocalAssum (hiname,hi) -> let hi_ind, hi_args = decompose_app sigma hi in let hi_is_ind = (* hi est d'un type globalisable *) match EConstr.kind sigma hi_ind with | Ind (mind,_) -> true | Var _ -> true | Const _ -> true | Construct _ -> true | _ -> false in let hi_args_enough = (* hi a le bon nbre d'arguments *) Int.equal (Array.length hi_args) (List.length params + !res.nargs -1) in (* FIXME: Ces deux tests ne sont pas suffisants. *) if not (hi_is_ind && hi_args_enough) then raise_notrace Exit (* No indarg *) else (* Last arg is the indarg *) res := {!res with indarg = Some (List.hd !res.args); indarg_in_concl = occur_rel sigma 1 ccl; args = List.tl !res.args; nargs = !res.nargs - 1; }; raise_notrace Exit); raise_notrace Exit(* exit anyway *) with Exit -> (* Ending by computing indref: *) match !res.indarg with | None -> !res (* No indref *) | Some (LocalDef _) -> error_ind_scheme "" | Some (LocalAssum (_,ind)) -> let indhd,indargs = decompose_app sigma ind in try {!res with indref = Some (fst (destRef sigma indhd)) } with DestKO -> error CannotFindInductiveArgument let compute_scheme_signature evd scheme names_info ind_type_guess = let open Context.Rel.Declaration in let f,l = decompose_app evd scheme.concl in (* Vérifier que les arguments de Qi sont bien les xi. *) let cond, check_concl = match scheme.indarg with | Some (LocalDef _) -> error NotAnInductionSchemeLetIn | None -> (* Non standard scheme *) let cond hd = EConstr.eq_constr evd hd ind_type_guess && not scheme.farg_in_concl in (cond, fun _ _ -> ()) | Some (LocalAssum (_,ind)) -> (* Standard scheme from an inductive type *) let indhd,indargs = decompose_app_list evd ind in let cond hd = EConstr.eq_constr evd hd indhd in let check_concl is_pred p = (* Check again conclusion *) let ccl_arg_ok = is_pred (p + scheme.nargs + 1) f == IndArg in let ind_is_ok = List.equal (fun c1 c2 -> EConstr.eq_constr evd c1 c2) (List.lastn scheme.nargs indargs) (Context.Rel.instance_list mkRel 0 scheme.args) in if not (ccl_arg_ok && ind_is_ok) then error_ind_scheme "the conclusion of" in (cond, check_concl) in let is_pred n c = let hd = fst (decompose_app evd c) in match EConstr.kind evd hd with | Rel q when n < q && q <= n+scheme.npredicates -> IndArg | _ when cond hd -> RecArg | _ -> OtherArg in let rec check_branch p c = match EConstr.kind evd c with | Prod (_,t,c) -> (is_pred p t, true, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | LetIn (_,_,_,c) -> (OtherArg, false, not (Vars.noccurn evd 1 c)) :: check_branch (p+1) c | _ when is_pred p c == IndArg -> [] | _ -> raise_notrace Exit in let rec find_branches p lbrch = match lbrch with | LocalAssum (_,t) :: brs -> begin match check_branch p t with | lchck_brch -> let n = List.count (fun (b, _, _) -> b == RecArg) lchck_brch in let recvarname, hyprecname, avoid = make_up_names n scheme.indref names_info in let map (b, is_assum, dep) = { ba_kind = b; ba_assum = is_assum; ba_dep = dep; ba_name = if b == IndArg then hyprecname else recvarname; } in let namesign = List.map map lchck_brch in (avoid, namesign) :: find_branches (p+1) brs | exception Exit -> error_ind_scheme "the branches of" end | LocalDef _ :: _ -> error_ind_scheme "the branches of" | [] -> check_concl is_pred p; [] in Array.of_list (find_branches 0 (List.rev scheme.branches)) let compute_case_signature env mind dep names_info = let indref = GlobRef.IndRef mind in let rec check_branch c = match Constr.kind c with | Prod (_,t,c) -> let hd, _ = Constr.decompose_app t in (* no recursive call in case analysis *) let arg = if Constr.isRefX indref hd then RecArg else OtherArg in (arg, true, not (CVars.noccurn 1 c)) :: check_branch c | LetIn (_,_,_,c) -> (OtherArg, false, not (CVars.noccurn 1 c)) :: check_branch c | _ -> [] in let (mib, mip) = Inductive.lookup_mind_specif env mind in let find_branches k = let (ctx, typ) = mip.mind_nf_lc.(k) in let argctx = List.firstn mip.mind_consnrealdecls.(k) ctx in let _, args = Constr.decompose_app typ in let _, indices = Array.chop mib.mind_nparams args in let base = if dep then Array.append indices (Context.Rel.instance Constr.mkRel 0 argctx) else indices in let base = Constr.mkApp (Constr.mkProp, base) in (* only used for noccurn *) let lchck_brch = check_branch (Term.it_mkProd_or_LetIn base argctx) in let n = List.count (fun (b, _, _) -> b == RecArg) lchck_brch in let recvarname, hyprecname, avoid = make_up_names n (Some indref) names_info in let map (b, is_assum, dep) = { ba_kind = b; ba_assum = is_assum; ba_dep = dep; ba_name = recvarname; } in let namesign = List.map map lchck_brch in (avoid, namesign) in Array.init (Array.length mip.mind_consnames) find_branches let error_cannot_recognize ind = user_err Pp.(str "Cannot recognize a statement based on " ++ Nametab.pr_global_env Id.Set.empty (IndRef ind) ++ str".") let guess_elim_shape env sigma isrec s hyp0 = let tmptyp0 = Typing.type_of_variable env hyp0 in let (mind, u), typ = Tacred.reduce_to_atomic_ind env sigma tmptyp0 in let is_elim = isrec && not (is_nonrec env mind) in let nparams = if is_elim then let gr = lookup_eliminator env mind s in let sigma, ind = Evd.fresh_global env sigma gr in let elimt = Retyping.get_type_of env sigma ind in let scheme = compute_elim_sig sigma elimt in let () = match scheme.indref with | None -> error_cannot_recognize mind | Some ref -> if QGlobRef.equal env ref (IndRef mind) then () else error_cannot_recognize mind in scheme.nparams else let mib = Environ.lookup_mind (fst mind) env in mib.mind_nparams in let hd, args = decompose_app_list sigma typ in let (params, indices) = List.chop nparams args in is_elim, (mind, u), (hd, params, indices) let given_elim env sigma hyp0 (elimc,lbind as e) = let tmptyp0 = Typing.type_of_variable env hyp0 in let ind_type_guess,_ = decompose_app sigma (snd (decompose_prod sigma tmptyp0)) in let sigma, elimt = Typing.type_of env sigma elimc in sigma, (e, elimt), ind_type_guess type scheme_signature = (Id.Set.t * branch_argument list) array type eliminator_source = | CaseOver of Id.t * (inductive * EInstance.t) | ElimOver of Id.t * (inductive * EInstance.t) | ElimUsing of Id.t * (Evd.econstr with_bindings * EConstr.types * scheme_signature) | ElimUsingList of (Evd.econstr with_bindings * EConstr.types * scheme_signature) * Id.t list * Id.t list * EConstr.t list let find_induction_type env sigma isrec elim hyp0 sort = match elim with | None -> let is_elim, ind, typ = guess_elim_shape env sigma isrec sort hyp0 in (* We drop the scheme and elimc/elimt waiting to know if it is dependent, this needs no update to sigma at this point. *) let elim = if is_elim then ElimOver (hyp0, ind) else CaseOver (hyp0, ind) in sigma, typ, elim | Some (elimc, lbind as e) -> let sigma, elimt = Typing.type_of env sigma elimc in let scheme = compute_elim_sig sigma elimt in let () = if Option.is_empty scheme.indarg then error CannotFindInductiveArgument in let ref = match scheme.indref with | None -> error_ind_scheme "" | Some ref -> ref in let tmptyp0 = Typing.type_of_variable env hyp0 in let indtyp = reduce_to_atomic_ref env sigma ref tmptyp0 in let hd, args = decompose_app_list sigma indtyp in let indsign = compute_scheme_signature sigma scheme hyp0 hd in let (params, indices) = List.chop scheme.nparams args in sigma, (hd, params, indices), ElimUsing (hyp0, (e, elimt, indsign)) let is_functional_induction elimc gl = let sigma = Tacmach.project gl in let scheme = compute_elim_sig sigma (Tacmach.pf_get_type_of gl (fst elimc)) in (* The test is not safe: with non-functional induction on non-standard induction scheme, this may fail *) Option.is_empty scheme.indarg (* Instantiate all meta variables of elimclause using lid, some elts of lid are parameters (first ones), the other are arguments. Returns the clause obtained. *) let recolle_clenv i params args elimclause gl = let lindmv = Array.of_list (clenv_arguments elimclause) in let k = match i with None -> Array.length lindmv - List.length args | Some i -> i in (* parameters correspond to first elts of lid. *) let clauses_params = List.mapi (fun i id -> id, lindmv.(i)) params in let clauses_args = List.mapi (fun i id -> id, lindmv.(k+i)) args in let clauses = clauses_params@clauses_args in (* iteration of clenv_instantiate with all infos we have. *) List.fold_right (fun e acc -> let x, i = e in let y = pf_get_hyp_typ x gl in let elimclause' = clenv_instantiate i acc (mkVar x, y) in elimclause') (List.rev clauses) elimclause (* Unification of the goal and the principle applied to meta variables: (elimc ?i ?j ?k...?l). This solves partly meta variables (and may produce new ones). Then refine with the resulting term with holes. *) let induction_tac with_evars params indvars (elim, elimt) = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.project gl in let clause, bindings, index = match elim with | ElimConstant c -> let i = index_of_ind_arg sigma elimt in (mkConstU c, elimt), NoBindings, Some i | ElimClause (elimc, lbindelimc) -> (elimc, elimt), lbindelimc, None in (* elimclause contains this: (elimc ?i ?j ?k...?l) *) let elimclause = make_clenv_binding env sigma clause bindings in (* elimclause' is built from elimclause by instantiating all args and params. *) let elimclause = recolle_clenv index params indvars elimclause gl in Clenv.res_pf ~with_evars ~flags:(elim_flags ()) elimclause end let destruct_tac with_evars indvar dep = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let ty = Typing.type_of_variable env indvar in Clenv.case_pf ~with_evars ~dep (mkVar indvar, ty) end (* Apply induction "in place" taking into account dependent hypotheses from the context, replacing the main hypothesis on which induction applies with the induction hypotheses *) let apply_induction_in_context with_evars inhyps elim indvars names = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let concl = Tacmach.pf_concl gl in let hyp0 = match elim with | ElimUsing (hyp0, _) | ElimOver (hyp0, _) | CaseOver (hyp0, _) -> Some hyp0 | ElimUsingList _ -> None in let statuslists,lhyp0,toclear,deps,avoid,dep_in_hyps = cook_sign hyp0 inhyps indvars env sigma in let tmpcl = it_mkNamedProd_or_LetIn sigma concl deps in let s = Retyping.get_sort_family_of env sigma tmpcl in let deps_cstr = List.fold_left (fun a decl -> if NamedDecl.is_local_assum decl then (mkVar (NamedDecl.get_id decl))::a else a) [] deps in (* Wait the last moment to guess the eliminator so as to know if we need a dependent one or not *) let (sigma, isrec, induct_tac, indsign) = match elim with | CaseOver (id, (mind, u)) -> let dep_in_concl = occur_var env sigma id concl in let dep = dep_in_hyps || dep_in_concl in let dep = dep || default_case_analysis_dependence env mind in let indsign = compute_case_signature env mind dep id in let tac = destruct_tac with_evars id dep in sigma, false, tac, indsign | ElimOver (id, (mind, u)) -> let sigma, ind = find_ind_eliminator env sigma mind s in (* FIXME: we should store this instead of recomputing it *) let elimt = Retyping.get_type_of env sigma (mkConstU ind) in let scheme = compute_elim_sig sigma elimt in let indsign = compute_scheme_signature sigma scheme id (mkIndU (mind, u)) in let tac = induction_tac with_evars [] [id] (ElimConstant ind, elimt) in sigma, true, tac, indsign | ElimUsing (hyp0, (elim, elimt, indsign)) -> let tac = induction_tac with_evars [] [hyp0] (ElimClause elim, elimt) in sigma, (* bugged, should be computed *) true, tac, indsign | ElimUsingList ((elim, elimt, indsign), params, realindvars, patts) -> let tac = Tacticals.tclTHENLIST [ (* pattern to make the predicate appear. *) Tactics.reduce (Pattern (List.map inj_with_occurrences patts)) onConcl; (* Induction by "refine (indscheme ?i ?j ?k...)" + resolution of all possible holes using arguments given by the user (but the functional one). *) (* FIXME: Tester ca avec un principe dependant et non-dependant *) induction_tac with_evars params realindvars (ElimClause elim, elimt); ] in sigma, (* bugged, should be computed *) true, tac, indsign in let branchletsigns = let f ba = ba.ba_assum in Array.map (fun (_,l) -> List.map f l) indsign in let names = compute_induction_names true branchletsigns names in let () = Array.iter (Tactics.Internal.check_name_unicity env toclear []) names in let tac = (if isrec then Tacticals.tclTHENFIRSTn else Tacticals.tclTHENLASTn) (Tacticals.tclTHENLIST [ (* Generalize dependent hyps (but not args) *) if deps = [] then Proofview.tclUNIT () else Tactics.apply_type ~typecheck:false tmpcl deps_cstr; (* side-conditions in elim (resp case) schemes come last (resp first) *) induct_tac; Tacticals.tclMAP expand_hyp toclear; ]) (Array.map2 (induct_discharge with_evars lhyp0 avoid (re_intro_dependent_hypotheses statuslists)) indsign names) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac end let induction_with_atomization_of_ind_arg isrec with_evars elim names hyp0 inhyps = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sort = Tacticals.elimination_sort_of_goal gl in let sigma, ty, elim_info = find_induction_type env sigma isrec elim hyp0 sort in let letins, avoid, t = atomize_param_of_ind env sigma ty in let letins = tclMAP (fun (na, c) -> Tactics.letin_tac None (Name na) c None allHypsAndConcl) letins in Tacticals.tclTHENLIST [ Proofview.Unsafe.tclEVARS sigma; letins; Tactics.change_in_hyp ~check:false None (Tactics.make_change_arg t) (hyp0, InHypTypeOnly); apply_induction_in_context with_evars inhyps elim_info avoid names ] end let msg_not_right_number_induction_arguments scheme = str"Not the right number of induction arguments (expected " ++ pr_enum (fun x -> x) [ if scheme.farg_in_concl then str "the function name" else mt(); if scheme.nparams != 0 then int scheme.nparams ++ str (String.plural scheme.nparams " parameter") else mt (); if scheme.nargs != 0 then int scheme.nargs ++ str (String.plural scheme.nargs " argument") else mt ()] ++ str ")." (* Induction on a list of induction arguments. Analyze the elim scheme (which is mandatory for multiple ind args), check that all parameters and arguments are given (mandatory too). Main differences with induction_from_context is that there is no main induction argument. On the other hand, all args and params must be given, so we help a bit the unifier by making the "pattern" by hand before calling induction_tac *) let induction_without_atomization isrec with_evars elim names lid = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let hyp0 = List.hd lid in (* Check that the elimination scheme has a form similar to the elimination schemes built by Coq. Schemes may have the standard form computed from an inductive type OR (feb. 2006) a non standard form. That is: with no main induction argument and with an optional extra final argument of the form (f x y ...) in the conclusion. In the non standard case, naming of generated hypos is slightly different. *) let (sigma, (elimc, elimt), ind_type_guess) = given_elim env sigma hyp0 elim in let scheme = compute_elim_sig sigma elimt in let indsign = compute_scheme_signature sigma scheme hyp0 ind_type_guess in let nargs_indarg_farg = scheme.nargs + (if scheme.farg_in_concl then 1 else 0) in if not (Int.equal (List.length lid) (scheme.nparams + nargs_indarg_farg)) then let info = Exninfo.reify () in Tacticals.tclZEROMSG ~info (msg_not_right_number_induction_arguments scheme) else let indvars,lid_params = List.chop nargs_indarg_farg lid in (* terms to patternify we must patternify indarg or farg if present in concl *) let realindvars = List.rev (if scheme.farg_in_concl then List.tl indvars else indvars) in let lidcstr = List.map mkVar (List.rev indvars) in let params = List.rev lid_params in let indvars = (* Temporary hack for compatibility, while waiting for better analysis of the form of induction schemes: a scheme like gt_wf_rec was taken as a functional scheme with no parameters, but by chance, because of the addition of at least hyp0 for cook_sign, it behaved as if there was a real induction arg. *) if List.is_empty indvars then Id.Set.singleton (List.hd lid_params) else Id.Set.of_list indvars in let elim = ElimUsingList ((elimc, scheme.elimt, indsign), params, realindvars, lidcstr) in apply_induction_in_context with_evars [] elim indvars names end (* assume that no occurrences are selected *) let clear_unselected_context id inhyps cls = Proofview.Goal.enter begin fun gl -> if occur_var (Tacmach.pf_env gl) (Tacmach.project gl) id (Tacmach.pf_concl gl) && cls.concl_occs == NoOccurrences then error (MentionConclusionDependentOn id); match cls.onhyps with | Some hyps -> let to_erase d = let id' = NamedDecl.get_id d in if Id.List.mem id' inhyps then (* if selected, do not erase *) None else (* erase if not selected and dependent on id or selected hyps *) let test id = occur_var_in_decl (Tacmach.pf_env gl) (Tacmach.project gl) id d in if List.exists test (id::inhyps) then Some id' else None in let ids = List.map_filter to_erase (Proofview.Goal.hyps gl) in clear ids | None -> Proofview.tclUNIT () end let use_bindings env sigma elim must_be_closed (c,lbind) typ = let typ = (* Normalize [typ] until the induction reference becomes plainly visible *) match elim with | None -> (* w/o an scheme, the term has to be applied at least until obtaining an inductive type (even though the arity might be known only by pattern-matching, as in the case of a term of the form "nat_rect ?A ?o ?s n", with ?A to be inferred by matching. *) let sign,t = whd_decompose_prod env sigma typ in it_mkProd t sign | Some (elimc, _) -> (* Otherwise, we compute the induction reference of the scheme and go looking for that. *) let sigma, elimt = Typing.type_of env sigma elimc in let scheme = compute_elim_sig sigma elimt in match scheme.indref with | None -> error CannotFindInductiveArgument | Some indref -> Tacred.reduce_to_quantified_ref ~allow_failure:true env sigma indref typ in let rec find_clause typ = try let indclause = make_clenv_binding env sigma (c,typ) lbind in if must_be_closed && occur_meta (clenv_evd indclause) (clenv_value indclause) then error NeedFullyAppliedArgument; (* We lose the possibility of coercions in with-bindings *) let sigma, term = pose_all_metas_as_evars env (clenv_evd indclause) (clenv_value indclause) in let sigma, typ = pose_all_metas_as_evars env sigma (clenv_type indclause) in sigma, term, typ with e when noncritical e -> match red_product env sigma typ with | None -> raise e | Some typ -> find_clause typ in find_clause typ let check_expected_type env sigma (elimc,bl) elimt = (* Compute the expected template type of the term in case a using clause is given *) let sign,_ = whd_decompose_prod env sigma elimt in let n = List.length sign in if n == 0 then error SchemeDontApply; let sigma,cl = EClause.make_evar_clause env sigma ~len:(n - 1) elimt in let sigma = EClause.solve_evar_clause env sigma true cl bl in let (_,u,_) = destProd sigma (whd_all env sigma cl.cl_concl) in fun t -> match Evarconv.unify_leq_delay env sigma t u with | _sigma -> true | exception Evarconv.UnableToUnify _ -> false let check_enough_applied env sigma elim = (* A heuristic to decide whether the induction arg is enough applied *) match elim with | None -> (* No eliminator given *) fun u -> let t,_ = decompose_app sigma (whd_all env sigma u) in isInd sigma t | Some elimc -> let elimt = Retyping.get_type_of env sigma (fst elimc) in let scheme = compute_elim_sig sigma elimt in match scheme.indref with | None -> (* in the absence of information, do not assume it may be partially applied *) fun _ -> true | Some _ -> (* Last argument is supposed to be the induction argument *) check_expected_type env sigma elimc elimt let guard_no_unifiable = Proofview.guard_no_unifiable >>= function | None -> Proofview.tclUNIT () | Some l -> Proofview.tclENV >>= function env -> Proofview.tclEVARMAP >>= function sigma -> let info = Exninfo.reify () in Proofview.tclZERO ~info (RefinerError (env, sigma, UnresolvedBindings l)) let pose_induction_arg_then isrec with_evars (is_arg_pure_hyp,from_prefix) elim id ((pending,(c0,lbind)),(eqname,names)) t0 inhyps cls tac = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let env = Proofview.Goal.env gl in let ccl = Proofview.Goal.concl gl in let check = check_enough_applied env sigma elim in let sigma', c, _ = use_bindings env sigma elim false (c0,lbind) t0 in let abs = AbstractPattern (from_prefix,check,Name id,(pending,c),cls,false) in let (id,sign,_,lastlhyp,ccl,res) = make_abstraction env sigma' ccl abs in match res with | None -> (* pattern not found *) let with_eq = Option.map (fun eq -> (false,mk_eq_name env id eq)) eqname in let inhyps = if List.is_empty inhyps then inhyps else Option.fold_left (fun inhyps (_,heq) -> heq::inhyps) inhyps with_eq in (* we restart using bindings after having tried type-class resolution etc. on the term given by the user *) let flags = tactic_infer_flags (with_evars && (* do not give a success semantics to edestruct on an open term yet *) false) in let (sigma, c0) = finish_evar_resolution ~flags env sigma (pending,c0) in let tac = (if isrec then (* Historically, induction has side conditions last *) Tacticals.tclTHENFIRST else (* and destruct has side conditions first *) Tacticals.tclTHENLAST) (Tacticals.tclTHENLIST [ Refine.refine ~typecheck:false begin fun sigma -> let b = not with_evars && with_eq != None in let sigma, c, t = use_bindings env sigma elim b (c0,lbind) t0 in mkletin_goal env sigma with_eq false (id,lastlhyp,ccl,c) (Some t) end; if with_evars then Proofview.shelve_unifiable else guard_no_unifiable; if is_arg_pure_hyp then Proofview.tclEVARMAP >>= fun sigma -> Tacticals.tclTRY (clear [destVar sigma c0]) else Proofview.tclUNIT (); if isrec then Proofview.cycle (-1) else Proofview.tclUNIT () ]) (tac inhyps) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) tac | Some (sigma', c) -> (* pattern found *) (* TODO: if ind has predicate parameters, use JMeq instead of eq *) let env = reset_with_named_context sign env in let with_eq = Option.map (fun eq -> (false,mk_eq_name env id eq)) eqname in let inhyps = if List.is_empty inhyps then inhyps else Option.fold_left (fun inhyps (_,heq) -> heq::inhyps) inhyps with_eq in let tac = Tacticals.tclTHENLIST [ Refine.refine ~typecheck:false begin fun sigma -> mkletin_goal env sigma with_eq true (id,lastlhyp,ccl,c) None end; (tac inhyps) ] in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma') tac end let has_generic_occurrences_but_goal cls id env sigma ccl = clause_with_generic_context_selection cls && (* TODO: whd_evar of goal *) (cls.concl_occs != NoOccurrences || not (occur_var env sigma id ccl)) let induction_gen clear_flag isrec with_evars elim ((_pending,(c,lbind)),(eqname,names) as arg) cls = let inhyps = match cls with | Some {onhyps=Some hyps} -> List.map (fun ((_,id),_) -> id) hyps | _ -> [] in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let evd = Proofview.Goal.sigma gl in let ccl = Proofview.Goal.concl gl in let cls = Option.default allHypsAndConcl cls in let t = typ_of env evd c in let is_arg_pure_hyp = isVar evd c && not (mem_named_context_val (destVar evd c) (Global.named_context_val ())) && lbind == NoBindings && not with_evars && Option.is_empty eqname && clear_flag == None && has_generic_occurrences_but_goal cls (destVar evd c) env evd ccl in let enough_applied = check_enough_applied env evd elim t in if is_arg_pure_hyp && enough_applied then (* First case: induction on a variable already in an inductive type and with maximal abstraction over the variable. This is a situation where the induction argument is a clearable variable of the goal w/o occurrence selection and w/o equality kept: no need to generalize *) let id = destVar evd c in Tacticals.tclTHEN (clear_unselected_context id inhyps cls) (induction_with_atomization_of_ind_arg isrec with_evars elim names id inhyps) else (* Otherwise, we look for the pattern, possibly adding missing arguments and declaring the induction argument as a new local variable *) let id = (* Type not the right one if partially applied but anyway for internal use*) let avoid = match eqname with | Some {CAst.v=IntroIdentifier id} -> Id.Set.singleton id | _ -> Id.Set.empty in let x = id_of_name_using_hdchar env evd t Anonymous in new_fresh_id avoid x gl in let info_arg = (is_arg_pure_hyp, not enough_applied) in pose_induction_arg_then isrec with_evars info_arg elim id arg t inhyps cls (induction_with_atomization_of_ind_arg isrec with_evars elim names id) end (* Induction on a list of arguments. First make induction arguments atomic (using letins), then do induction. The specificity here is that all arguments and parameters of the scheme are given (mandatory for the moment), so we don't need to deal with parameters of the inductive type as in induction_gen. *) let induction_gen_l isrec with_evars elim names lc = let newlc = ref [] in let lc = List.map (function | (c,None) -> c | (c,Some{CAst.loc;v=eqname}) -> error ?loc (DontKnowWhatToDoWith eqname)) lc in let rec atomize_list l = match l with | [] -> Proofview.tclUNIT () | c::l' -> Proofview.tclEVARMAP >>= fun sigma -> match EConstr.kind sigma c with | Var id when not (mem_named_context_val id (Global.named_context_val ())) && not with_evars -> let () = newlc:= id::!newlc in atomize_list l' | _ -> Proofview.Goal.enter begin fun gl -> let sigma, t = pf_apply Typing.type_of gl c in let x = id_of_name_using_hdchar (Proofview.Goal.env gl) sigma t Anonymous in let id = new_fresh_id Id.Set.empty x gl in let newl' = List.map (fun r -> replace_term sigma c (mkVar id) r) l' in let () = newlc:=id::!newlc in Tacticals.tclTHENLIST [ tclEVARS sigma; Tactics.letin_tac None (Name id) c None allHypsAndConcl; atomize_list newl'; ] end in Tacticals.tclTHENLIST [ (atomize_list lc); (Proofview.tclUNIT () >>= fun () -> (* ensure newlc has been computed *) induction_without_atomization isrec with_evars elim names !newlc) ] (* Induction either over a term, over a quantified premisse, or over several quantified premisses (like with functional induction principles). TODO: really unify induction with one and induction with several args *) let induction_destruct isrec with_evars (lc,elim) = match lc with | [] -> assert false (* ensured by syntax, but if called inside caml? *) | [c,(eqname,names as allnames),cls] -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.project gl in match elim with | Some elim when is_functional_induction elim gl -> (* Standard induction on non-standard induction schemes *) (* will be removable when is_functional_induction will be more clever *) if not (Option.is_empty cls) then error (UnsupportedInClause true); let _,c = force_destruction_arg false env sigma c in onInductionArg (fun _clear_flag c -> induction_gen_l isrec with_evars elim names [with_no_bindings c,eqname]) c | _ -> (* standard induction *) onOpenInductionArg env sigma (fun clear_flag c -> induction_gen clear_flag isrec with_evars elim (c,allnames) cls) c end | _ -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.project gl in match elim with | None -> (* Several arguments, without "using" clause *) (* TODO: Do as if the arguments after the first one were called with *) (* "destruct", but selecting occurrences on the initial copy of *) (* the goal *) let (a,b,cl) = List.hd lc in let l = List.tl lc in (* TODO *) Tacticals.tclTHEN (onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag isrec with_evars None (a,b) cl) a) (Tacticals.tclMAP (fun (a,b,cl) -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Tacmach.project gl in onOpenInductionArg env sigma (fun clear_flag a -> induction_gen clear_flag false with_evars None (a,b) cl) a end) l) | Some elim -> (* Several induction hyps with induction scheme *) let lc = List.map (on_pi1 (fun c -> snd (force_destruction_arg false env sigma c))) lc in let newlc = List.map (fun (x,(eqn,names),cls) -> if cls != None then error UnsupportedEqnClause; match x with (* FIXME: should we deal with ElimOnIdent? *) | _clear_flag,ElimOnConstr x -> if eqn <> None then error (UnsupportedInClause false); (with_no_bindings x,names) | _ -> error DontKnowWhereToFindArgument) lc in (* Check that "as", if any, is given only on the last argument *) let names,rest = List.sep_last (List.map snd newlc) in if List.exists (fun n -> not (Option.is_empty n)) rest then error MultipleAsAndUsingClauseOnlyList; let newlc = List.map (fun (x,_) -> (x,None)) newlc in induction_gen_l isrec with_evars elim names newlc end let induction ev clr c l e = induction_gen clr true ev e ((None,(c,NoBindings)),(None,l)) None let destruct ev clr c l e = induction_gen clr false ev e ((None,(c,NoBindings)),(None,l)) None
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>