package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.pretyping/unification.ml.html
Source file unification.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Pp open Util open Names open Constr open Context open Termops open Environ open EConstr open Vars open Namegen open Evd open Conversion open Reductionops open Structures open Evarutil open Evardefine open Evarsolve open Pretype_errors open Retyping open Locus open Locusops open Find_subterm type metabinding = (metavariable * EConstr.constr * (instance_constraint * instance_typing_status)) type subst0 = (evar_map * metabinding list * ((Environ.env * int) * EConstr.existential * EConstr.t) list) module NamedDecl = Context.Named.Declaration let { Goptions.get = is_keyed_unification } = Goptions.declare_bool_option_and_ref ~key:["Keyed";"Unification"] ~value:false () let debug_tactic_unification = CDebug.create ~name:"tactic-unification" () let occur_meta_or_undefined_evar evd c = (* This is performance-critical. Using the evar-insensitive API changes the resulting heuristic. *) let c = EConstr.Unsafe.to_constr c in let rec occrec c = match Constr.kind c with | Meta _ -> raise Occur | Evar (ev,args) -> let EvarInfo evi = Evd.find evd ev in (match evar_body evi with | Evar_defined c -> occrec (EConstr.Unsafe.to_constr c); SList.Skip.iter occrec args | Evar_empty -> raise Occur) | _ -> Constr.iter occrec c in try occrec c; false with Occur | Not_found -> true let whd_meta sigma c = match EConstr.kind sigma c with | Meta p -> (try Evd.meta_value sigma p with Not_found -> c) (* Not recursive, for some reason *) | _ -> c let occur_meta_evd sigma mv c = let rec occrec c = (* Note: evars are not instantiated by terms with metas *) let c = whd_meta sigma c in match EConstr.kind sigma c with | Meta mv' when Int.equal mv mv' -> raise Occur | Evar (_, args) -> SList.Skip.iter occrec args | _ -> EConstr.iter sigma occrec c in try occrec c; false with Occur -> true (* if lname_typ is [xn,An;..;x1,A1] and l is a list of terms, gives [x1:A1]..[xn:An]c' such that c converts to ([x1:A1]..[xn:An]c' l) *) let abstract_scheme env evd c l lname_typ = let mkLambda_name env (n,a,b) = mkLambda (map_annot (named_hd env evd a) n, a, b) in List.fold_left2 (fun (t,evd) (locc,a) (na,ta) -> let na = match EConstr.kind evd a with Var id -> {na with binder_name=Name id} | _ -> na in (* [occur_meta ta] test removed for support of eelim/ecase but consequences are unclear... if occur_meta ta then error "cannot find a type for the generalisation" else *) if occur_meta evd a then mkLambda_name env (na,ta,t), evd else let t', evd' = Find_subterm.subst_closed_term_occ env evd locc a t in mkLambda_name env (na,ta,t'), evd') (c,evd) (List.rev l) lname_typ (* Precondition: resulting abstraction is expected to be of type [typ] *) let abstract_list_all env evd typ c l = let ctxt,_ = whd_decompose_prod_n env evd (List.length l) typ in let l_with_all_occs = List.map (function a -> (LikeFirst,a)) l in let p,evd = abstract_scheme env evd c l_with_all_occs ctxt in let evd,typp = try let c = EConstr.it_mkLambda (EConstr.Vars.lift (List.length ctxt) c) ctxt in Typing.recheck_against env evd c p with | UserError _ -> error_cannot_find_well_typed_abstraction env evd p l None | Type_errors.TypeError (env',x) -> (* FIXME: plug back the typing information *) error_cannot_find_well_typed_abstraction env evd p l None | Pretype_errors.PretypeError (env',evd,e) -> error_cannot_find_well_typed_abstraction env evd p l (Some (env',e)) in evd,(p,typp) let set_occurrences_of_last_arg n = Evarconv.AtOccurrences AllOccurrences :: List.tl (List.init n (fun _ -> Evarconv.Unspecified Abstraction.Abstract)) let occurrence_test env sigma c1 c2 = match EConstr.eq_constr_universes env sigma c1 c2 with | None -> false, sigma | Some cstr -> try true, Evd.add_universe_constraints sigma cstr with UniversesDiffer | UGraph.UniverseInconsistency _ -> false, sigma let abstract_list_all_with_dependencies env evd typ c l = let (evd, ev) = new_evar env evd typ in let evd,ev' = evar_absorb_arguments env evd (destEvar evd ev) l in let n = List.length l in let () = assert (n <= SList.length (snd ev')) in let argoccs = set_occurrences_of_last_arg n in let evd,b = Evarconv.second_order_matching (Evarconv.default_flags_of TransparentState.empty) env evd ev' (occurrence_test, argoccs) c in if b then let p = nf_evar evd ev in evd, p else error_cannot_find_well_typed_abstraction env evd c l None (* A refinement of [conv_pb]: the integers tells how many arguments were applied in the context of the conversion problem; if the number is non zero, steps of eta-expansion will be allowed *) let opp_status = function | IsSuperType -> IsSubType | IsSubType -> IsSuperType | Conv -> Conv let add_type_status (x,y) = ((x,TypeNotProcessed),(y,TypeNotProcessed)) let extract_instance_status = function | CUMUL -> add_type_status (IsSubType, IsSuperType) | CONV -> add_type_status (Conv, Conv) let rec subst_meta_instances sigma bl c = match EConstr.kind sigma c with | Meta i -> let select (j,_,_) = Int.equal i j in (try pi2 (List.find select bl) with Not_found -> c) | _ -> EConstr.map sigma (subst_meta_instances sigma bl) c (** [env] should be the context in which the metas live *) let pose_all_metas_as_evars env evd t = let evdref = ref evd in let rec aux t = match EConstr.kind !evdref t with | Meta mv -> (match Evd.meta_opt_fvalue !evdref mv with | Some ({rebus=c;freemetas=mvs},_) -> let c = if Evd.Metaset.is_empty mvs then c else aux c in evdref := meta_reassign mv (c,(Conv,TypeNotProcessed)) !evdref; c | None -> let {rebus=ty;freemetas=mvs} = Evd.meta_ftype !evdref mv in let ty = if Evd.Metaset.is_empty mvs then ty else aux ty in let ty = nf_betaiota env !evdref ty in let src = Evd.evar_source_of_meta mv !evdref in let evd, ev = Evarutil.new_evar env !evdref ~src ty in evdref := meta_assign mv (ev,(Conv,TypeNotProcessed)) evd; ev) | _ -> EConstr.map !evdref aux t in let c = aux t in (* side-effect *) (!evdref, c) let solve_pattern_eqn_array (env,nb) f l c (sigma,metasubst,evarsubst : subst0) = match EConstr.kind sigma f with | Meta k -> (* We enforce that the Meta does not depend on the [nb] extra assumptions added by unification to the context *) let env' = pop_rel_context nb env in let sigma,c = pose_all_metas_as_evars env' sigma c in let c = solve_pattern_eqn env sigma l c in let pb = (Conv,TypeNotProcessed) in if noccur_between sigma 1 nb c then sigma,(k,lift (-nb) c,pb)::metasubst,evarsubst else let l = List.map of_alias l in error_cannot_unify_local env sigma (applist (f, l),c,c) | Evar ev -> let env' = pop_rel_context nb env in let sigma,c = pose_all_metas_as_evars env' sigma c in sigma,metasubst,((env,nb),ev,solve_pattern_eqn env sigma l c)::evarsubst | _ -> assert false let push d (env,n) = (push_rel_assum d env,n+1) (*******************************) (* Unification à l'ordre 0 de m et n: [unify_0 env sigma cv_pb m n] renvoie deux listes: metasubst:(int*constr)list récolte les instances des (Meta k) evarsubst:(constr*constr)list récolte les instances des (Const "?k") Attention : pas d'unification entre les différences instances d'une même meta ou evar, il peut rester des doublons *) (* Unification order: *) (* Left to right: unifies first argument and then the other arguments *) (*let unify_l2r x = List.rev x (* Right to left: unifies last argument and then the other arguments *) let unify_r2l x = x let sort_eqns = unify_r2l *) type core_unify_flags = { modulo_conv_on_closed_terms : TransparentState.t option; (* What this flag controls was activated with all constants transparent, *) (* even for auto, since Coq V5.10 *) use_metas_eagerly_in_conv_on_closed_terms : bool; (* This refinement of the conversion on closed terms is activable *) (* (and activated for apply, rewrite but not auto since Feb 2008 for 8.2) *) use_evars_eagerly_in_conv_on_closed_terms : bool; modulo_delta : TransparentState.t; (* This controls which constants are unfoldable; this is on for apply *) (* (but not simple apply) since Feb 2008 for 8.2 *) modulo_delta_types : TransparentState.t; check_applied_meta_types : bool; (* This controls whether meta's applied to arguments have their *) (* type unified with the type of their instance *) use_pattern_unification : bool; (* This solves pattern "?n x1 ... xn = t" when the xi are distinct rels *) (* This says if pattern unification is tried *) use_meta_bound_pattern_unification : bool; (* This is implied by use_pattern_unification; has no particular *) (* reasons to be set differently than use_pattern_unification *) (* except for compatibility of "auto". *) (* This was on for all tactics, including auto, since Sep 2006 for 8.1 *) (* This allowed for instance to unify "forall x:?A, ?B x" with "A' -> B'" *) (* when ?B is a Meta. *) allowed_evars : AllowedEvars.t; (* Evars that are allowed to be instantiated *) (* Useful e.g. for autorewrite *) restrict_conv_on_strict_subterms : bool; (* No conversion at the root of the term; potentially useful for rewrite *) modulo_betaiota : bool; (* Support betaiota in the reduction *) (* Note that zeta is always used *) modulo_eta : bool; (* Support eta in the reduction *) } type unify_flags = { core_unify_flags : core_unify_flags; (* Governs unification of problems of the form "t(?x) = u(?x)" in apply *) merge_unify_flags : core_unify_flags; (* These are the flags to be used when trying to unify *) (* several instances of the same metavariable *) (* Typical situation is when we give a pattern to be matched *) (* syntactically against a subterm but we want the metas of the *) (* pattern to be modulo convertibility *) subterm_unify_flags : core_unify_flags; (* Governs unification of problems of the form "?X a1..an = u" in apply, *) (* hence in rewrite and elim *) allow_K_in_toplevel_higher_order_unification : bool; (* Tells in second-order abstraction over subterms which have not *) (* been found in term are allowed (used for rewrite, elim, or *) (* apply with a lemma whose type has the form "?X a1 ... an") *) resolve_evars : bool (* This says if type classes instances resolution must be used to infer *) (* the remaining evars *) } (* Default flag for unifying a type against a type (e.g. apply) *) (* We set all conversion flags (no flag should be modified anymore) *) let default_core_unify_flags () = let ts = TransparentState.full in { modulo_conv_on_closed_terms = Some ts; use_metas_eagerly_in_conv_on_closed_terms = true; use_evars_eagerly_in_conv_on_closed_terms = false; modulo_delta = ts; modulo_delta_types = ts; check_applied_meta_types = true; use_pattern_unification = true; use_meta_bound_pattern_unification = true; allowed_evars = AllowedEvars.all; restrict_conv_on_strict_subterms = false; modulo_betaiota = true; modulo_eta = true; } (* Default flag for first-order or second-order unification of a type *) (* against another type (e.g. apply) *) (* We set all conversion flags (no flag should be modified anymore) *) let default_unify_flags () = let flags = default_core_unify_flags () in { core_unify_flags = flags; merge_unify_flags = flags; subterm_unify_flags = { flags with modulo_delta = TransparentState.var_full }; allow_K_in_toplevel_higher_order_unification = false; (* Why not? *) resolve_evars = false } let set_no_delta_core_flags flags = { flags with modulo_conv_on_closed_terms = None; modulo_delta = TransparentState.empty; check_applied_meta_types = false; use_pattern_unification = false; use_meta_bound_pattern_unification = true; modulo_betaiota = false } let set_no_delta_flags flags = { core_unify_flags = set_no_delta_core_flags flags.core_unify_flags; merge_unify_flags = set_no_delta_core_flags flags.merge_unify_flags; subterm_unify_flags = set_no_delta_core_flags flags.subterm_unify_flags; allow_K_in_toplevel_higher_order_unification = flags.allow_K_in_toplevel_higher_order_unification; resolve_evars = flags.resolve_evars } (* For the first phase of keyed unification, restrict to conversion (including beta-iota) only on closed terms *) let set_no_delta_open_core_flags flags = { flags with modulo_delta = TransparentState.empty; modulo_betaiota = false; } let set_no_delta_open_flags flags = { core_unify_flags = set_no_delta_open_core_flags flags.core_unify_flags; merge_unify_flags = set_no_delta_open_core_flags flags.merge_unify_flags; subterm_unify_flags = set_no_delta_open_core_flags flags.subterm_unify_flags; allow_K_in_toplevel_higher_order_unification = flags.allow_K_in_toplevel_higher_order_unification; resolve_evars = flags.resolve_evars } (* Default flag for the "simple apply" version of unification of a *) (* type against a type (e.g. apply) *) (* We set only the flags available at the time the new "apply" extended *) (* out of "simple apply" *) let default_no_delta_core_unify_flags () = { (default_core_unify_flags ()) with modulo_delta = TransparentState.empty; check_applied_meta_types = false; use_pattern_unification = false; use_meta_bound_pattern_unification = true; modulo_betaiota = false; } let default_no_delta_unify_flags ts = let flags = default_no_delta_core_unify_flags () in let flags = { flags with modulo_conv_on_closed_terms = Some ts; modulo_delta_types = ts } in { core_unify_flags = flags; merge_unify_flags = flags; subterm_unify_flags = flags; allow_K_in_toplevel_higher_order_unification = false; resolve_evars = false } let allow_new_evars sigma = let undefined = Evd.undefined_map sigma in AllowedEvars.from_pred (fun evk -> not (Evar.Map.mem evk undefined)) (* Default flags for looking for subterms in elimination tactics *) (* Not used in practice at the current date, to the exception of *) (* allow_K) because only closed terms are involved in *) (* induction/destruct/case/elim and w_unify_to_subterm_list does not *) (* call w_unify for induction/destruct/case/elim (13/6/2011) *) let elim_core_flags sigma = { (default_core_unify_flags ()) with modulo_betaiota = false; allowed_evars = allow_new_evars sigma; } let elim_flags_evars sigma = let flags = elim_core_flags sigma in { core_unify_flags = flags; merge_unify_flags = flags; subterm_unify_flags = { flags with modulo_delta = TransparentState.empty }; allow_K_in_toplevel_higher_order_unification = true; resolve_evars = false } let elim_flags () = elim_flags_evars Evd.empty let elim_no_delta_core_flags () = { (elim_core_flags Evd.empty) with modulo_delta = TransparentState.empty; check_applied_meta_types = false; use_pattern_unification = false; modulo_betaiota = false; } let elim_no_delta_flags () = let flags = elim_no_delta_core_flags () in { core_unify_flags = flags; merge_unify_flags = flags; subterm_unify_flags = flags; allow_K_in_toplevel_higher_order_unification = true; resolve_evars = false } (* On types, we don't restrict unification, but possibly for delta *) let set_flags_for_type flags = { flags with modulo_delta = flags.modulo_delta_types; modulo_conv_on_closed_terms = Some flags.modulo_delta_types; use_pattern_unification = true; modulo_betaiota = true; modulo_eta = true; } let use_evars_pattern_unification flags = flags.use_pattern_unification let use_metas_pattern_unification sigma flags nb l = flags.use_pattern_unification || flags.use_meta_bound_pattern_unification && Array.for_all (fun c -> isRel sigma c && destRel sigma c <= nb) l type key = | IsKey of CClosure.table_key | IsProj of Projection.t * Sorts.relevance * EConstr.constr let expand_table_key env = function | ConstKey cst -> constant_opt_value_in env cst | VarKey id -> (try named_body id env with Not_found -> None) | RelKey _ -> None let unfold_projection env p r stk = let s = Stack.Proj (p,r) in s :: stk let expand_key ts env sigma = function | Some (IsKey k) -> Option.map EConstr.of_constr (expand_table_key env k) | Some (IsProj (p, r, c)) -> let red = Stack.zip sigma (whd_betaiota_deltazeta_for_iota_state ts env sigma (c, unfold_projection env p r [])) in if EConstr.eq_constr sigma (EConstr.mkProj (p, r, c)) red then None else Some red | None -> None let isApp_or_Proj sigma c = match kind sigma c with | App _ | Proj _ -> true | _ -> false type unirec_flags = { at_top: bool; with_types: bool; with_cs : bool; } let subterm_restriction opt flags = not opt.at_top && flags.restrict_conv_on_strict_subterms let key_of env sigma b flags f = if subterm_restriction b flags then None else match EConstr.kind sigma f with | Const (cst, u) when is_transparent env (ConstKey cst) && (TransparentState.is_transparent_constant flags.modulo_delta cst || PrimitiveProjections.mem cst) -> let u = EInstance.kind sigma u in Some (IsKey (ConstKey (cst, u))) | Var id when is_transparent env (VarKey id) && TransparentState.is_transparent_variable flags.modulo_delta id -> Some (IsKey (VarKey id)) | Proj (p, r, c) when Names.Projection.unfolded p || (is_transparent env (ConstKey (Projection.constant p)) && (TransparentState.is_transparent_constant flags.modulo_delta (Projection.constant p))) -> Some (IsProj (p, r, c)) | _ -> None let translate_key = function | ConstKey (cst,u) -> ConstKey cst | VarKey id -> VarKey id | RelKey n -> RelKey n let translate_key = function | IsKey k -> translate_key k | IsProj (c, _, _) -> ConstKey (Projection.constant c) let oracle_order env cf1 cf2 = match cf1 with | None -> (match cf2 with | None -> None | Some k2 -> Some false) | Some k1 -> match cf2 with | None -> Some true | Some k2 -> match k1, k2 with | IsProj (p, _, _), IsKey (ConstKey (p',_)) when Environ.QConstant.equal env (Projection.constant p) p' -> Some (not (Projection.unfolded p)) | IsKey (ConstKey (p,_)), IsProj (p', _, _) when Environ.QConstant.equal env p (Projection.constant p') -> Some (Projection.unfolded p') | _ -> Some (Conv_oracle.oracle_order (fun x -> x) (Environ.oracle env) false (translate_key k1) (translate_key k2)) let is_rigid_head sigma flags t = match EConstr.kind sigma t with | Const (cst,u) -> not (TransparentState.is_transparent_constant flags.modulo_delta cst) | Ind (i,u) -> true | Construct _ | Int _ | Float _ | Array _ -> true | Fix _ | CoFix _ -> true | Rel _ | Var _ | Meta _ | Evar _ | Sort _ | Cast (_, _, _) | Prod _ | Lambda _ | LetIn _ | App (_, _) | Case _ | Proj _ -> false (* Why aren't Prod, Sort rigid heads ? *) let constr_cmp pb env sigma flags ?nargs t u = let cstrs = if pb == Conversion.CONV then EConstr.eq_constr_universes env sigma ?nargs t u else EConstr.leq_constr_universes env sigma ?nargs t u in match cstrs with | Some cstrs -> begin try Some (Evd.add_universe_constraints sigma cstrs) with UGraph.UniverseInconsistency _ -> None | Evd.UniversesDiffer -> if is_rigid_head sigma flags t then try Some (Evd.add_universe_constraints sigma (UnivProblem.Set.force cstrs)) with UGraph.UniverseInconsistency _ -> None else None end | None -> None let do_reduce ts (env, nb) sigma c = Stack.zip sigma (whd_betaiota_deltazeta_for_iota_state ts env sigma (c, Stack.empty)) let is_evar_allowed flags evk = AllowedEvars.mem flags.allowed_evars evk let isAllowedEvar sigma flags c = match EConstr.kind sigma c with | Evar (evk,_) -> is_evar_allowed flags evk | _ -> false let subst_defined_metas_evars sigma (bl,el) c = (* This seems to be performance-critical, and using the evar-insensitive primitives blow up the time passed in this function. *) let c = EConstr.Unsafe.to_constr c in let rec substrec c = match Constr.kind c with | Meta i -> let select (j,_,_) = Int.equal i j in substrec (EConstr.Unsafe.to_constr (pi2 (List.find select bl))) | Evar (evk,args) -> let eq c1 c2 = Constr.equal c1 (EConstr.Unsafe.to_constr c2) in let select (_,(evk',args'),_) = Evar.equal evk evk' && SList.equal eq args args' in begin match List.find select el with | (_, _, c) -> substrec (EConstr.Unsafe.to_constr c) | exception Not_found -> let c = EConstr.(Unsafe.to_constr (whd_evar sigma (of_constr c))) in Constr.map substrec c end | _ -> Constr.map substrec c in try Some (EConstr.of_constr (substrec c)) with Not_found -> None let check_compatibility env pbty flags (sigma,metasubst,evarsubst : subst0) tyM tyN = match subst_defined_metas_evars sigma (metasubst,[]) tyM with | None -> sigma | Some m -> match subst_defined_metas_evars sigma (metasubst,[]) tyN with | None -> sigma | Some n -> if is_ground_term sigma m && is_ground_term sigma n then match infer_conv ~pb:pbty ~ts:flags.modulo_delta_types env sigma m n with | Some sigma -> sigma | None -> error_cannot_unify env sigma (m,n) else sigma let check_compatibility_ustate env pbty flags (sigma,metasubst,evarsubst : subst0) tyM tyN = match subst_defined_metas_evars sigma (metasubst,[]) tyM with | None -> UnivProblem.Set.empty | Some m -> match subst_defined_metas_evars sigma (metasubst,[]) tyN with | None -> UnivProblem.Set.empty | Some n -> if is_ground_term sigma m && is_ground_term sigma n then match infer_conv_ustate ~pb:pbty ~ts:flags.modulo_delta_types env sigma m n with | Some uprob -> uprob | None -> error_cannot_unify env sigma (m,n) else UnivProblem.Set.empty let rec is_neutral env sigma ts t = let (f, l) = decompose_app sigma t in match EConstr.kind sigma f with | Const (c, u) -> not (Environ.evaluable_constant c env) || not (is_transparent env (ConstKey c)) || not (TransparentState.is_transparent_constant ts c) | Var id -> not (Environ.evaluable_named id env) || not (is_transparent env (VarKey id)) || not (TransparentState.is_transparent_variable ts id) | Rel n -> true | Evar _ | Meta _ -> true | Case (_, _, _, _, _, c, _) -> is_neutral env sigma ts c | Proj (p, _, c) -> is_neutral env sigma ts c | Lambda _ | LetIn _ | Construct _ | CoFix _ | Int _ | Float _ | Array _ -> false | Sort _ | Cast (_, _, _) | Prod (_, _, _) | Ind _ -> false (* Really? *) | Fix _ -> false (* This is an approximation *) | App _ -> assert false let is_eta_constructor_app env sigma ts f l1 term = match EConstr.kind sigma f with | Construct (((_, i as ind), j), u) when j == 1 -> let open Declarations in let mib = lookup_mind (fst ind) env in (match mib.Declarations.mind_record with | PrimRecord info when mib.Declarations.mind_finite == Declarations.BiFinite && let (_, projs, _, _) = info.(i) in Array.length projs == Array.length l1 - mib.Declarations.mind_nparams -> (* Check that the other term is neutral *) is_neutral env sigma ts term | _ -> false) | _ -> false let eta_constructor_app env sigma f l1 term = match EConstr.kind sigma f with | Construct (((_, i as ind), j), u) -> let mib = lookup_mind (fst ind) env in (match get_projections env ind with | Some projs -> let npars = mib.Declarations.mind_nparams in let pars, l1' = Array.chop npars l1 in let arg = Array.append pars [|term|] in let l2 = Array.map (fun (p,_) -> mkApp (mkConstU (Projection.Repr.constant p,u), arg)) projs in l1', l2 | _ -> assert false) | _ -> assert false (* If the terms are irrelevant, check that they have the same type. *) let careful_infer_conv ~pb ~ts env sigma m n = if Retyping.relevance_of_term env sigma m == Sorts.Irrelevant && Retyping.relevance_of_term env sigma n == Sorts.Irrelevant then let tm = Retyping.get_type_of env sigma m in let tn = Retyping.get_type_of env sigma n in Option.bind (infer_conv ~pb:CONV ~ts env sigma tm tn) (fun sigma -> infer_conv ~pb ~ts env sigma m n) else infer_conv ~pb ~ts env sigma m n type maybe_ground = Ground | NotGround | Unknown let error_cannot_unify_local env sigma (m, n, p) = error_cannot_unify_local env sigma (fst m, fst n, p) let fast_occur_meta_or_undefined_evar sigma (c, gnd) = match gnd with | Unknown -> occur_meta_or_undefined_evar sigma c | Ground -> false | NotGround -> true let rec unify_0_with_initial_metas (sigma,ms,es as subst : subst0) conv_at_top env cv_pb flags m n = let rec unirec_rec (curenv,nb as curenvnb) pb opt ((sigma,metasubst,evarsubst) as substn : subst0) ?(nargs=0) curm curn = let cM = Evarutil.whd_head_evar sigma curm and cN = Evarutil.whd_head_evar sigma curn in let () = debug_tactic_unification (fun () -> Termops.Internal.print_constr_env curenv sigma cM ++ strbrk" ~= " ++ Termops.Internal.print_constr_env curenv sigma cN) in match (EConstr.kind sigma cM, EConstr.kind sigma cN) with | Meta k1, Meta k2 -> if Int.equal k1 k2 then substn else let stM,stN = extract_instance_status pb in let sigma = if opt.with_types && flags.check_applied_meta_types then let tyM = Typing.meta_type curenv sigma k1 in let tyN = Typing.meta_type curenv sigma k2 in let l, r = if k2 < k1 then tyN, tyM else tyM, tyN in check_compatibility curenv CUMUL flags substn l r else sigma in if k2 < k1 then sigma,(k1,cN,stN)::metasubst,evarsubst else sigma,(k2,cM,stM)::metasubst,evarsubst | Meta k, _ when not (occur_metavariable sigma k cN) (* helps early trying alternatives *) -> let sigma = if opt.with_types && flags.check_applied_meta_types then (try let tyM = Typing.meta_type curenv sigma k in let tyN = get_type_of curenv ~lax:true sigma cN in check_compatibility curenv CUMUL flags substn tyN tyM with RetypeError _ -> (* Renounce, maybe metas/evars prevents typing *) sigma) else sigma in (* Here we check that [cN] does not contain any local variables *) if Int.equal nb 0 then sigma,(k,cN,snd (extract_instance_status pb))::metasubst,evarsubst else if noccur_between sigma 1 nb cN then (sigma, (k,lift (-nb) cN,snd (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | _, Meta k when not (occur_metavariable sigma k cM) (* helps early trying alternatives *) -> let sigma = if opt.with_types && flags.check_applied_meta_types then (try let tyM = get_type_of curenv ~lax:true sigma cM in let tyN = Typing.meta_type curenv sigma k in check_compatibility curenv CUMUL flags substn tyM tyN with RetypeError _ -> (* Renounce, maybe metas/evars prevents typing *) sigma) else sigma in (* Here we check that [cM] does not contain any local variables *) if Int.equal nb 0 then (sigma,(k,cM,fst (extract_instance_status pb))::metasubst,evarsubst) else if noccur_between sigma 1 nb cM then (sigma,(k,lift (-nb) cM,fst (extract_instance_status pb))::metasubst, evarsubst) else error_cannot_unify_local curenv sigma (m,n,cM) | Evar (evk,_ as ev), Evar (evk',_) when is_evar_allowed flags evk && Evar.equal evk evk' -> begin match constr_cmp cv_pb env sigma flags cM cN with | Some sigma -> sigma, metasubst, evarsubst | None -> sigma,metasubst,((curenvnb,ev,cN)::evarsubst) end | Evar (evk,_ as ev), _ when is_evar_allowed flags evk && not (occur_evar sigma evk cN) -> let cmvars = free_rels sigma cM and cnvars = free_rels sigma cN in if Int.Set.subset cnvars cmvars then sigma,metasubst,((curenvnb,ev,cN)::evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | _, Evar (evk,_ as ev) when is_evar_allowed flags evk && not (occur_evar sigma evk cM) -> let cmvars = free_rels sigma cM and cnvars = free_rels sigma cN in if Int.Set.subset cmvars cnvars then sigma,metasubst,((curenvnb,ev,cM)::evarsubst) else error_cannot_unify_local curenv sigma (m,n,cN) | Sort s1, Sort s2 -> (try let sigma' = if pb == CUMUL then Evd.set_leq_sort curenv sigma s1 s2 else Evd.set_eq_sort curenv sigma s1 s2 in (sigma', metasubst, evarsubst) with e when CErrors.noncritical e -> error_cannot_unify curenv sigma (fst m,fst n)) | Lambda (na,t1,c1), Lambda (__,t2,c2) -> unirec_rec (push (na,t1) curenvnb) CONV {opt with at_top = true} (unirec_rec curenvnb CONV {opt with at_top = true; with_types = false} substn t1 t2) c1 c2 | Prod (na,t1,c1), Prod (_,t2,c2) -> unirec_rec (push (na,t1) curenvnb) pb {opt with at_top = true} (unirec_rec curenvnb CONV {opt with at_top = true; with_types = false} substn t1 t2) c1 c2 | LetIn (_,a,_,c), _ -> unirec_rec curenvnb pb opt substn (subst1 a c) cN | _, LetIn (_,a,_,c) -> unirec_rec curenvnb pb opt substn cM (subst1 a c) (* Fast path for projections. *) | Proj (p1,_,c1), Proj (p2,_,c2) when Environ.QConstant.equal env (Projection.constant p1) (Projection.constant p2) -> (try unify_same_proj curenvnb cv_pb {opt with at_top = true} substn c1 c2 with ex when precatchable_exception ex -> unify_not_same_head curenvnb pb opt substn ~nargs cM cN) (* eta-expansion *) | Lambda (na,t1,c1), _ when flags.modulo_eta -> unirec_rec (push (na,t1) curenvnb) CONV {opt with at_top = true} substn c1 (mkApp (lift 1 cN,[|mkRel 1|])) | _, Lambda (na,t2,c2) when flags.modulo_eta -> unirec_rec (push (na,t2) curenvnb) CONV {opt with at_top = true} substn (mkApp (lift 1 cM,[|mkRel 1|])) c2 (* For records *) | App (f1, l1), _ when flags.modulo_eta && (* This ensures cN is an evar, meta or irreducible constant/variable and not a constructor. *) is_eta_constructor_app curenv sigma flags.modulo_delta f1 l1 cN -> (try let opt' = {opt with at_top = true; with_cs = false} in let (sigma, _, _) as substn = check_type_eta_constructor_app curenvnb opt' substn cM cN in let l1', l2' = eta_constructor_app curenv sigma f1 l1 cN in Array.fold_left2 (unirec_rec curenvnb CONV opt' ~nargs:0) substn l1' l2' with ex when precatchable_exception ex -> match EConstr.kind sigma cN with | App(f2,l2) when (isMeta sigma f2 && use_metas_pattern_unification sigma flags nb l2 || use_evars_pattern_unification flags && isAllowedEvar sigma flags f2) -> unify_app_pattern false curenvnb pb opt substn cM f1 l1 cN f2 l2 | _ -> raise ex) | _, App (f2, l2) when flags.modulo_eta && is_eta_constructor_app curenv sigma flags.modulo_delta f2 l2 cM -> (try let opt' = {opt with at_top = true; with_cs = false} in let (sigma, _, _) as substn = check_type_eta_constructor_app curenvnb opt' substn cN cM in let l2', l1' = eta_constructor_app curenv sigma f2 l2 cM in Array.fold_left2 (unirec_rec curenvnb CONV opt' ~nargs:0) substn l1' l2' with ex when precatchable_exception ex -> match EConstr.kind sigma cM with | App(f1,l1) when (isMeta sigma f1 && use_metas_pattern_unification sigma flags nb l1 || use_evars_pattern_unification flags && isAllowedEvar sigma flags f1) -> unify_app_pattern true curenvnb pb opt substn cM f1 l1 cN f2 l2 | _ -> raise ex) | Case (ci1, u1, pms1, p1, iv1, c1, cl1), Case (ci2, u2, pms2, (p2,_), iv2, c2, cl2) -> (try let () = if not (QInd.equal curenv ci1.ci_ind ci2.ci_ind) then error_cannot_unify curenv sigma (cM,cN) in let opt' = {opt with at_top = true; with_types = false} in let substn = Array.fold_left2 (unirec_rec curenvnb CONV ~nargs:0 opt') substn pms1 pms2 in let (ci1, _, _, (p1,_), _, c1, cl1) = EConstr.annotate_case env sigma (ci1, u1, pms1, p1, iv1, c1, cl1) in let unif opt substn (ctx1, c1) (_, c2) = let curenvnb' = List.fold_right (fun decl (env, n) -> push_rel decl env, n + 1) ctx1 curenvnb in unirec_rec curenvnb' CONV opt' substn c1 c2 in let substn = unif opt' substn p1 p2 in let substn = unirec_rec curenvnb CONV opt' substn c1 c2 in Array.fold_left2 (unif {opt with at_top = true}) substn cl1 cl2 with ex when precatchable_exception ex -> reduce curenvnb pb opt substn cM cN) | Fix ((ln1,i1),(lna1,tl1,bl1)), Fix ((ln2,i2),(_,tl2,bl2)) when Int.equal i1 i2 && Array.equal Int.equal ln1 ln2 -> (try let opt' = {opt with at_top = true; with_types = false} in let curenvnb' = Array.fold_right2 (fun na t -> push (na,t)) lna1 tl1 curenvnb in Array.fold_left2 (unirec_rec curenvnb' CONV opt' ~nargs:0) (Array.fold_left2 (unirec_rec curenvnb CONV opt' ~nargs:0) substn tl1 tl2) bl1 bl2 with ex when precatchable_exception ex -> reduce curenvnb pb opt substn cM cN) | CoFix (i1,(lna1,tl1,bl1)), CoFix (i2,(_,tl2,bl2)) when Int.equal i1 i2 -> (try let opt' = {opt with at_top = true; with_types = false} in let curenvnb' = Array.fold_right2 (fun na t -> push (na,t)) lna1 tl1 curenvnb in Array.fold_left2 (unirec_rec curenvnb' CONV opt' ~nargs:0) (Array.fold_left2 (unirec_rec curenvnb CONV opt' ~nargs:0) substn tl1 tl2) bl1 bl2 with ex when precatchable_exception ex -> reduce curenvnb pb opt substn cM cN) | App (f1,l1), _ when (isMeta sigma f1 && use_metas_pattern_unification sigma flags nb l1 || use_evars_pattern_unification flags && isAllowedEvar sigma flags f1) -> unify_app_pattern true curenvnb pb opt substn cM f1 l1 cN cN [||] | _, App (f2,l2) when (isMeta sigma f2 && use_metas_pattern_unification sigma flags nb l2 || use_evars_pattern_unification flags && isAllowedEvar sigma flags f2) -> unify_app_pattern false curenvnb pb opt substn cM cM [||] cN f2 l2 | App (f1,l1), App (f2,l2) -> unify_app curenvnb pb opt substn cM f1 l1 cN f2 l2 | App (f1,l1), Proj(p2,_,c2) -> unify_app curenvnb pb opt substn cM f1 l1 cN cN [||] | Proj (p1,_,c1), App(f2,l2) -> unify_app curenvnb pb opt substn cM cM [||] cN f2 l2 | _ -> unify_not_same_head curenvnb pb opt substn ~nargs cM cN and check_type_eta_constructor_app (env,nb as curenvnb) opt ((sigma,metasubst,evarsubst) as substn : subst0) other term = let (((_, i as ind), j), u) = EConstr.destConstruct sigma (fst (decompose_app sigma other)) in (* ensure that we only eta expand if we are at the same inductive (we accept that univs params and indices may be different) *) let fail () = error_cannot_unify env sigma (other, term) in let tterm = try Retyping.get_type_of ~lax:true env sigma term with RetypeError _ -> fail () in let tterm' = Reductionops.whd_all env sigma tterm in match EConstr.kind sigma (fst (decompose_app sigma tterm')) with | Ind (ind',_) when QInd.equal env ind ind' -> substn | _ -> let tother = try Retyping.get_type_of ~lax:true env sigma other with RetypeError _ -> fail () in unirec_rec curenvnb CONV opt ~nargs:0 substn tother tterm and unify_app_pattern dir curenvnb pb opt (sigma, _, _ as substn) cM f1 l1 cN f2 l2 = let f, l, t = if dir then f1, l1, cN else f2, l2, cM in match is_unification_pattern curenvnb sigma f (Array.to_list l) t with | None -> (match EConstr.kind sigma t with | App (f',l') -> if dir then unify_app curenvnb pb opt substn cM f1 l1 t f' l' else unify_app curenvnb pb opt substn t f' l' cN f2 l2 | Proj _ -> unify_app curenvnb pb opt substn cM f1 l1 cN f2 l2 | _ -> (* XXX nargs could be better? *) unify_not_same_head curenvnb pb opt substn ~nargs:0 cM cN) | Some l -> solve_pattern_eqn_array curenvnb f l t substn and unify_app (curenv, nb as curenvnb) pb opt (sigma, metas, evars as substn : subst0) cM f1 l1 cN f2 l2 = try let needs_expansion p c' = match EConstr.kind sigma c' with | Meta _ -> true | Evar _ -> true | Const (c, u) -> Environ.QConstant.equal env c (Projection.constant p) | _ -> false in let expand_proj c c' l = match EConstr.kind sigma c with | Proj (p, _, t) when not (Projection.unfolded p) && needs_expansion p c' -> (try destApp sigma (Retyping.expand_projection curenv sigma p t (Array.to_list l)) with RetypeError _ -> (* Unification can be called on ill-typed terms, due to FO and eta in particular, fail gracefully in that case *) (c, l)) | _ -> (c, l) in let f1, l1 = expand_proj f1 f2 l1 in let f2, l2 = expand_proj f2 f1 l2 in let opta = {opt with at_top = true; with_types = false} in let optf = {opt with at_top = true; with_types = true} in let (f1,l1,f2,l2) = adjust_app_array_size f1 l1 f2 l2 in if Array.length l1 == 0 then error_cannot_unify (fst curenvnb) sigma (cM,cN) else Array.fold_left2 (unirec_rec curenvnb CONV opta ~nargs:0) (unirec_rec curenvnb CONV optf substn f1 f2 ~nargs:(Array.length l1)) l1 l2 with ex when precatchable_exception ex -> try reduce curenvnb pb {opt with with_types = false} substn cM cN with ex when precatchable_exception ex -> try canonical_projections curenvnb pb opt cM cN substn with ex when precatchable_exception ex -> expand curenvnb pb {opt with with_types = false} substn cM f1 l1 cN f2 l2 and unify_same_proj (curenv, nb as curenvnb) cv_pb opt substn c1 c2 = let substn = unirec_rec curenvnb CONV opt substn c1 c2 in try (* Force unification of the types to fill in parameters *) let ty1 = get_type_of curenv ~lax:true sigma c1 in let ty2 = get_type_of curenv ~lax:true sigma c2 in unify_0_with_initial_metas substn true curenv cv_pb { flags with modulo_conv_on_closed_terms = Some TransparentState.full; modulo_delta = TransparentState.full; modulo_eta = true; modulo_betaiota = true } (ty1, Unknown) (ty2, Unknown) with RetypeError _ -> substn and unify_not_same_head curenvnb pb opt (sigma, metas, evars as substn : subst0) ~nargs cM cN = try canonical_projections curenvnb pb opt cM cN substn with ex when precatchable_exception ex -> match constr_cmp cv_pb env sigma flags ~nargs cM cN with | Some sigma -> (sigma, metas, evars) | None -> try reduce curenvnb pb opt substn cM cN with ex when precatchable_exception ex -> let (f1,l1) = match EConstr.kind sigma cM with App (f,l) -> (f,l) | _ -> (cM,[||]) in let (f2,l2) = match EConstr.kind sigma cN with App (f,l) -> (f,l) | _ -> (cN,[||]) in expand curenvnb pb opt substn cM f1 l1 cN f2 l2 and reduce curenvnb pb opt (sigma, metas, evars as substn) cM cN = if flags.modulo_betaiota && not (subterm_restriction opt flags) then let cM' = do_reduce flags.modulo_delta curenvnb sigma cM in if not (EConstr.eq_constr sigma cM cM') then unirec_rec curenvnb pb opt substn cM' cN else let cN' = do_reduce flags.modulo_delta curenvnb sigma cN in if not (EConstr.eq_constr sigma cN cN') then unirec_rec curenvnb pb opt substn cM cN' else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) and expand (curenv,_ as curenvnb) pb opt (sigma,metasubst,evarsubst as substn : subst0) cM f1 l1 cN f2 l2 = let res = (* Try full conversion on meta-free terms. *) (* Back to 1995 (later on called trivial_unify in 2002), the heuristic was to apply conversion on meta-free (but not evar-free!) terms in all cases (i.e. for apply but also for auto and rewrite, even though auto and rewrite did not use modulo conversion in the rest of the unification algorithm). By compatibility we need to support this separately from the main unification algorithm *) (* The exploitation of known metas has been added in May 2007 (it is used by apply and rewrite); it might now be redundant with the support for delta-expansion (which is used essentially for apply)... *) if subterm_restriction opt flags then None else match flags.modulo_conv_on_closed_terms with | None -> None | Some convflags -> let subst = ((if flags.use_metas_eagerly_in_conv_on_closed_terms then metasubst else ms), (if flags.use_evars_eagerly_in_conv_on_closed_terms then evarsubst else es)) in match subst_defined_metas_evars sigma subst cM with | None -> (* some undefined Metas in cM *) None | Some m1 -> match subst_defined_metas_evars sigma subst cN with | None -> (* some undefined Metas in cN *) None | Some n1 -> (* No subterm restriction there, too much incompatibilities *) let uprob = if opt.with_types then try (* Ensure we call conversion on terms of the same type *) let tyM = get_type_of curenv ~lax:true sigma m1 in let tyN = get_type_of curenv ~lax:true sigma n1 in check_compatibility_ustate curenv CUMUL flags substn tyM tyN with RetypeError _ -> (* Renounce, maybe metas/evars prevents typing *) UnivProblem.Set.empty else UnivProblem.Set.empty in match infer_conv_ustate ~pb ~ts:convflags curenv sigma m1 n1 with | Some uprob' -> let uprob = UnivProblem.Set.union uprob uprob' in begin match Evd.add_universe_constraints sigma uprob with | sigma -> Some (sigma, metasubst, evarsubst) | exception (UGraph.UniverseInconsistency _ | UniversesDiffer) -> None end | None -> if is_ground_term sigma m1 && is_ground_term sigma n1 then error_cannot_unify curenv sigma (cM,cN) else None in match res with | Some substn -> substn | None -> let cf1 = key_of curenv sigma opt flags f1 and cf2 = key_of curenv sigma opt flags f2 in match oracle_order curenv cf1 cf2 with | None -> error_cannot_unify curenv sigma (cM,cN) | Some true -> (match expand_key flags.modulo_delta curenv sigma cf1 with | Some c -> unirec_rec curenvnb pb opt substn (whd_betaiotazeta curenv sigma (mkApp(c,l1))) cN | None -> (match expand_key flags.modulo_delta curenv sigma cf2 with | Some c -> unirec_rec curenvnb pb opt substn cM (whd_betaiotazeta curenv sigma (mkApp(c,l2))) | None -> error_cannot_unify curenv sigma (cM,cN))) | Some false -> (match expand_key flags.modulo_delta curenv sigma cf2 with | Some c -> unirec_rec curenvnb pb opt substn cM (whd_betaiotazeta curenv sigma (mkApp(c,l2))) | None -> (match expand_key flags.modulo_delta curenv sigma cf1 with | Some c -> unirec_rec curenvnb pb opt substn (whd_betaiotazeta curenv sigma (mkApp(c,l1))) cN | None -> error_cannot_unify curenv sigma (cM,cN))) and canonical_projections (curenv, _ as curenvnb) pb opt cM cN (sigma,_,_ as substn) = let f1 () = if isApp_or_Proj sigma cM then if CanonicalSolution.is_open_canonical_projection curenv sigma cM then solve_canonical_projection curenvnb pb opt cM cN substn else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) in if not opt.with_cs || begin match flags.modulo_conv_on_closed_terms with | None -> true | Some _ -> subterm_restriction opt flags end then error_cannot_unify (fst curenvnb) sigma (cM,cN) else try f1 () with e when precatchable_exception e -> if isApp_or_Proj sigma cN then if CanonicalSolution.is_open_canonical_projection curenv sigma cN then solve_canonical_projection curenvnb pb opt cN cM substn else error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) and solve_canonical_projection curenvnb pb opt cM cN (sigma,ms,es) = let f1l1 = whd_nored_state (fst curenvnb) sigma (cM,Stack.empty) in let f2l2 = whd_nored_state (fst curenvnb) sigma (cN,Stack.empty) in let (sigma,t,c,bs,(params,params1),(us,us2),(ts,ts1),c1,(n,t2)) = try Evarconv.check_conv_record (fst curenvnb) sigma f1l1 f2l2 with Not_found -> error_cannot_unify (fst curenvnb) sigma (cM,cN) in if Reductionops.Stack.compare_shape ts ts1 then let (evd,ks,_) = List.fold_left (fun (evd,ks,m) b -> if match n with Some n -> Int.equal m n | None -> false then (evd,t2::ks, m-1) else let mv = new_meta () in let evd' = meta_declare mv (substl ks b) evd in (evd', mkMeta mv :: ks, m - 1)) (sigma,[],List.length bs) bs in try let opt' = {opt with with_types = false} in let fold u1 u s = unirec_rec curenvnb pb opt' s u1 (substl ks u) in let foldl acc l1 l2 = try List.fold_right2 fold l1 l2 acc with Invalid_argument _ -> assert false (* check_conv_record ensures lengths coincide *) in let substn = foldl (evd,ms,es) us2 us in let substn = foldl substn params1 params in let substn = Reductionops.Stack.fold2 (fun s u1 u2 -> unirec_rec curenvnb pb opt' s u1 u2) substn ts ts1 in let app = mkApp (c, Array.rev_of_list ks) in (* let substn = unirec_rec curenvnb pb b false substn t cN in *) unirec_rec curenvnb pb opt' substn c1 app with Reductionops.Stack.IncompatibleFold2 -> error_cannot_unify (fst curenvnb) sigma (cM,cN) else error_cannot_unify (fst curenvnb) sigma (cM,cN) in debug_tactic_unification (fun () -> str "Starting unification:" ++ spc() ++ Termops.Internal.print_constr_env env sigma (fst m) ++ strbrk" ~= " ++ Termops.Internal.print_constr_env env sigma (fst n)); let opt = { at_top = conv_at_top; with_types = false; with_cs = true } in try let res = if subterm_restriction opt flags || fast_occur_meta_or_undefined_evar sigma m || fast_occur_meta_or_undefined_evar sigma n then None else let (m, _) = m in let (n, _) = n in let ans = match flags.modulo_conv_on_closed_terms with | Some convflags -> careful_infer_conv ~pb:cv_pb ~ts:convflags env sigma m n | _ -> constr_cmp cv_pb env sigma flags m n in match ans with | Some sigma -> ans | None -> if (match flags.modulo_conv_on_closed_terms, flags.modulo_delta with | Some cv, dl -> let open TransparentState in Id.Pred.subset dl.tr_var cv.tr_var && Cpred.subset dl.tr_cst cv.tr_cst | None, dl -> TransparentState.is_empty dl) then error_cannot_unify env sigma (m, n) else None in let a = match res with | Some sigma -> sigma, ms, es | None -> unirec_rec (env,0) cv_pb opt subst (fst m) (fst n) in debug_tactic_unification (fun () -> str "Leaving unification with success"); a with e -> let e = Exninfo.capture e in debug_tactic_unification (fun () -> str "Leaving unification with failure"); Exninfo.iraise e let unify_0 env sigma pb flags c1 c2 = unify_0_with_initial_metas (sigma,[],[]) true env pb flags (c1, Unknown) (c2, Unknown) let left = true let right = false let rec unify_with_eta keptside flags env sigma c1 c2 = (* Question: try whd_all on ci if not two lambdas? *) match EConstr.kind sigma c1, EConstr.kind sigma c2 with | (Lambda (na,t1,c1'), Lambda (_,t2,c2')) -> let env' = push_rel_assum (na,t1) env in let sigma,metas,evars = unify_0 env sigma CONV flags t1 t2 in let side,(sigma,metas',evars') = unify_with_eta keptside flags env' sigma c1' c2' in (side,(sigma,metas@metas',evars@evars')) | (Lambda (na,t,c1'),_)-> let env' = push_rel_assum (na,t) env in let side = left in (* expansion on the right: we keep the left side *) unify_with_eta side flags env' sigma c1' (mkApp (lift 1 c2,[|mkRel 1|])) | (_,Lambda (na,t,c2')) -> let env' = push_rel_assum (na,t) env in let side = right in (* expansion on the left: we keep the right side *) unify_with_eta side flags env' sigma (mkApp (lift 1 c1,[|mkRel 1|])) c2' | _ -> (keptside,unify_0 env sigma CONV flags c1 c2) (* We solved problems [?n =_pb u] (i.e. [u =_(opp pb) ?n]) and [?n =_pb' u'], we now compute the problem on [u =? u'] and decide which of u or u' is kept Rem: the upper constraint is lost in case u <= ?n <= u' (and symmetrically in the case u' <= ?n <= u) *) let merge_instances env sigma flags st1 st2 c1 c2 = match (opp_status st1, st2) with | (Conv, Conv) -> let side = left (* arbitrary choice, but agrees with compatibility *) in let (side,res) = unify_with_eta side flags env sigma c1 c2 in (side,Conv,res) | ((IsSubType | Conv as oppst1), (IsSubType | Conv)) -> let res = unify_0 env sigma CUMUL flags c2 c1 in if eq_instance_constraint oppst1 st2 then (* arbitrary choice *) (left, st1, res) else if eq_instance_constraint st2 IsSubType then (left, st1, res) else (right, st2, res) | ((IsSuperType | Conv as oppst1), (IsSuperType | Conv)) -> let res = unify_0 env sigma CUMUL flags c1 c2 in if eq_instance_constraint oppst1 st2 then (* arbitrary choice *) (left, st1, res) else if eq_instance_constraint st2 IsSuperType then (left, st1, res) else (right, st2, res) | (IsSuperType,IsSubType) -> (try (left, IsSubType, unify_0 env sigma CUMUL flags c2 c1) with e when CErrors.noncritical e -> (right, IsSubType, unify_0 env sigma CUMUL flags c1 c2)) | (IsSubType,IsSuperType) -> (try (left, IsSuperType, unify_0 env sigma CUMUL flags c1 c2) with e when CErrors.noncritical e -> (right, IsSuperType, unify_0 env sigma CUMUL flags c2 c1)) (* Unification * * Procedure: * (1) The function [unify mc wc M N] produces two lists: * (a) a list of bindings Meta->RHS * (b) a list of bindings EVAR->RHS * * The Meta->RHS bindings cannot themselves contain * meta-vars, so they get applied eagerly to the other * bindings. This may or may not close off all RHSs of * the EVARs. For each EVAR whose RHS is closed off, * we can just apply it, and go on. For each which * is not closed off, we need to do a mimic step - * in general, we have something like: * * ?X == (c e1 e2 ... ei[Meta(k)] ... en) * * so we need to do a mimic step, converting ?X * into * * ?X -> (c ?z1 ... ?zn) * * of the proper types. Then, we can decompose the * equation into * * ?z1 --> e1 * ... * ?zi --> ei[Meta(k)] * ... * ?zn --> en * * and keep on going. Whenever we find that a R.H.S. * is closed, we can, as before, apply the constraint * directly. Whenever we find an equation of the form: * * ?z -> Meta(n) * * we can reverse the equation, put it into our metavar * substitution, and keep going. * * The most efficient mimic possible is, for each * Meta-var remaining in the term, to declare a * new EVAR of the same type. This is supposedly * determinable from the clausale form context - * we look up the metavar, take its type there, * and apply the metavar substitution to it, to * close it off. But this might not always work, * since other metavars might also need to be resolved. *) let applyHead env evd c cl = let rec apprec c cl cty evd = match cl with | [] -> (evd, c) | a::cl -> match EConstr.kind evd (whd_all env evd cty) with | Prod ({binder_name},c1,c2) -> let src = match EConstr.kind evd a with | Meta mv -> Evd.evar_source_of_meta mv evd | _ -> (* Does not matter, the evar will be later instantiated by [a] *) Loc.tag Evar_kinds.InternalHole in let (evd,evar) = Evarutil.new_evar env evd ~src c1 in apprec (mkApp(c,[|evar|])) cl (subst1 evar c2) evd | _ -> user_err Pp.(str "Apply_Head_Then") in let evd, t = Typing.type_of env evd c in apprec c (Array.to_list cl) t evd let is_mimick_head sigma ts f = match EConstr.kind sigma f with | Const (c,u) -> not (TransparentState.is_transparent_constant ts c) | Var id -> not (TransparentState.is_transparent_variable ts id) | (Rel _|Construct _|Ind _) -> true | _ -> false let try_to_coerce env evd c cty tycon = let j = make_judge c cty in let (evd',j',_trace) = Coercion.inh_conv_coerce_rigid_to ~program_mode:false ~resolve_tc:true env evd j tycon in let evd' = Evarconv.solve_unif_constraints_with_heuristics env evd' in let evd' = Evd.map_metas_fvalue (fun c -> nf_evar evd' c) evd' in (evd',j'.uj_val) let w_coerce_to_type env evd c cty mvty = let evd,tycon = pose_all_metas_as_evars env evd mvty in try try_to_coerce env evd c cty tycon with e when precatchable_exception e -> (* inh_conv_coerce_rigid_to should have reasoned modulo reduction but there are cases where it though it was not rigid (like in fst (nat,nat)) and stops while it could have seen that it is rigid *) let cty = Tacred.hnf_constr env evd cty in try_to_coerce env evd c cty tycon let w_coerce env evd mv c = let cty = get_type_of env evd c in let mvty = Typing.meta_type env evd mv in w_coerce_to_type env evd c cty mvty let nf_meta env sigma c = let cl = mk_freelisted c in meta_instance env sigma { cl with rebus = cl.rebus } let unify_to_type env sigma flags c status u = let sigma, c = refresh_universes (Some false) env sigma c in let t = get_type_of env sigma (nf_meta env sigma c) in let t = nf_betaiota env sigma (nf_meta env sigma t) in unify_0 env sigma CUMUL flags t u let unify_type env sigma flags mv status c = let mvty = Typing.meta_type env sigma mv in let mvty = nf_meta env sigma mvty in unify_to_type env sigma (set_flags_for_type flags) c status mvty (* Move metas that may need coercion at the end of the list of instances *) let order_metas metas = let rec order latemetas = function | [] -> List.rev latemetas | (_,_,(_,CoerceToType) as meta)::metas -> order (meta::latemetas) metas | (_,_,(_,_) as meta)::metas -> meta :: order latemetas metas in order [] metas (* Solve an equation ?n[x1=u1..xn=un] = t where ?n is an evar *) let solve_simple_evar_eqn flags env evd ev rhs = match solve_simple_eqn Evarconv.evar_unify flags env evd (None,ev,rhs) with | UnifFailure (evd,reason) -> error_cannot_unify env evd ~reason (mkEvar ev,rhs); | Success evd -> evd (* [w_merge env sigma b metas evars] merges common instances in metas or in evars, possibly generating new unification problems; if [b] is true, unification of types of metas is required *) let w_merge env with_types flags (evd,metas,evars : subst0) = let eflags = Evarconv.default_flags_of flags.modulo_delta_types in let rec w_merge_rec evd metas evars eqns = (* Process evars *) match evars with | ((curenv,nb),(evk,_ as ev),rhs)::evars' -> if Evd.is_defined evd evk then let v = mkEvar ev in let (evd,metas',evars'') = unify_0 curenv evd CONV flags rhs v in w_merge_rec evd (metas'@metas) (evars''@evars') eqns else begin (* This can make rhs' ill-typed if metas are *) let rhs' = subst_meta_instances evd metas rhs in match EConstr.kind evd rhs with | App (f,cl) when occur_meta evd rhs' -> if occur_evar evd evk rhs' then error_occur_check curenv evd evk rhs'; if is_mimick_head evd flags.modulo_delta f then let evd' = mimick_undefined_evar evd flags f cl evk in w_merge_rec evd' metas evars eqns else let evd' = let env' = pop_rel_context nb curenv in let evd', rhs'' = pose_all_metas_as_evars env' evd rhs' in try solve_simple_evar_eqn eflags curenv evd' ev rhs'' with Retyping.RetypeError _ -> error_cannot_unify curenv evd' (mkEvar ev,rhs'') in w_merge_rec evd' metas evars' eqns | _ -> let evd', rhs'' = pose_all_metas_as_evars curenv evd rhs' in let evd' = try solve_simple_evar_eqn eflags curenv evd' ev rhs'' with Retyping.RetypeError _ -> error_cannot_unify curenv evd' (mkEvar ev, rhs'') in w_merge_rec evd' metas evars' eqns end | [] -> (* Process metas *) match metas with | (mv,c,(status,to_type))::metas -> let ((evd,c),(metas'',evars'')),eqns = if with_types && to_type != TypeProcessed then begin match to_type with | CoerceToType -> (* Some coercion may have to be inserted *) (w_coerce env evd mv c,([],[])),eqns | _ -> (* No coercion needed: delay the unification of types *) ((evd,c),([],[])),(mv,status,c)::eqns end else ((evd,c),([],[])),eqns in begin match meta_opt_fvalue evd mv with | Some ({ rebus = c' }, (status', _)) -> let (take_left,st,(evd,metas',evars')) = merge_instances env evd flags status' status c' c in let evd' = if take_left then evd else meta_reassign mv (c,(st,TypeProcessed)) evd in w_merge_rec evd' (metas'@metas@metas'') (evars'@evars'') eqns | None -> let evd' = if occur_meta_evd evd mv c then if isMetaOf evd mv (whd_all env evd c) then evd else error_cannot_unify env evd (mkMeta mv,c) else meta_assign mv (c,(status,TypeProcessed)) evd in w_merge_rec evd' (metas''@metas) evars'' eqns end | [] -> (* Process type eqns *) let rec process_eqns failures = function | (mv,status,c)::eqns -> (match (try Inl (unify_type env evd flags mv status c) with e when CErrors.noncritical e -> Inr e) with | Inr e -> process_eqns (((mv,status,c),e)::failures) eqns | Inl (evd,metas,evars) -> w_merge_rec evd metas evars (List.map fst failures @ eqns)) | [] -> (match failures with | [] -> evd | ((mv,status,c),e)::_ -> raise e) in process_eqns [] eqns and mimick_undefined_evar evd flags hdc args sp = let ev = Evd.find_undefined evd sp in let sp_env = reset_with_named_context (evar_filtered_hyps ev) env in let (evd', c) = applyHead sp_env evd hdc args in let (evd'',mc,ec) = unify_0 sp_env evd' CUMUL flags (get_type_of sp_env evd' c) (Evd.evar_concl ev) in let evd''' = w_merge_rec evd'' mc ec [] in if evd' == evd''' then Evd.define sp c evd''' else Evd.define sp (Evarutil.nf_evar evd''' c) evd''' in let check_types evd = let metas = Evd.meta_list evd in let eqns = Metamap.fold (fun mv b acc -> match b with | Clval (n, (t, (c, TypeNotProcessed)), v) -> (mv, c, t.rebus) :: acc | _ -> acc) metas [] in w_merge_rec evd [] [] (List.rev eqns) in let res = (* merge constraints *) w_merge_rec evd (order_metas metas) (* Assign evars in the order of assignments during unification *) (List.rev evars) [] in if with_types then check_types res else res let w_unify_meta_types env ?(flags=default_unify_flags ()) evd = let metas,evd = retract_coercible_metas evd in w_merge env true flags.merge_unify_flags (evd,metas,[]) (* [w_unify env evd M N] performs a unification of M and N, generating a bunch of unification constraints in the process. These constraints are processed, one-by-one - they may either generate new bindings, or, if there is already a binding, new unifications, which themselves generate new constraints. This continues until we get failure, or we run out of constraints. [clenv_typed_unify M N clenv] expects in addition that expected types of metavars are unifiable with the types of their instances *) let head_app env sigma m = fst (whd_nored_state env sigma (m, Stack.empty)) let isEvar_or_Meta sigma c = match EConstr.kind sigma c with | Evar _ | Meta _ -> true | _ -> false let check_types env flags (sigma,_,_ as subst) m n = if isEvar_or_Meta sigma (head_app env sigma m) then unify_0_with_initial_metas subst true env CUMUL flags (get_type_of env sigma n, Unknown) (get_type_of env sigma m, Unknown) else if isEvar_or_Meta sigma (head_app env sigma n) then unify_0_with_initial_metas subst true env CUMUL flags (get_type_of env sigma m, Unknown) (get_type_of env sigma n, Unknown) else subst let try_resolve_typeclasses env evd flag m n = if flag then Typeclasses.resolve_typeclasses ~filter:Typeclasses.no_goals ~fail:true env evd else evd let w_unify_core_0 env evd with_types cv_pb flags m n = let (mc1,evd') = retract_coercible_metas evd in let (sigma,ms,es) = check_types env (set_flags_for_type flags.core_unify_flags) (evd',mc1,[]) (fst m) (fst n) in let subst2 = unify_0_with_initial_metas (sigma,ms,es) false env cv_pb flags.core_unify_flags m n in let evd = w_merge env with_types flags.merge_unify_flags subst2 in try_resolve_typeclasses env evd flags.resolve_evars m n let w_typed_unify env evd = w_unify_core_0 env evd true let w_typed_unify_array env evd flags f1 l1 f2 l2 = let f1,l1,f2,l2 = adjust_app_array_size f1 l1 f2 l2 in let (mc1,evd') = retract_coercible_metas evd in let fold_subst subst m n = unify_0_with_initial_metas subst true env CONV flags.core_unify_flags (m, Unknown) (n, Unknown) in let subst = fold_subst (evd', [], []) f1 f2 in let subst = Array.fold_left2 fold_subst subst l1 l2 in let evd = w_merge env true flags.merge_unify_flags subst in try_resolve_typeclasses env evd flags.resolve_evars (mkApp(f1,l1)) (mkApp(f2,l2)) (* takes a substitution s, an open term op and a closed term cl try to find a subterm of cl which matches op, if op is just a Meta FAIL because we cannot find a binding *) let iter_fail f a = let n = Array.length a in let rec ffail i = if Int.equal i n then user_err Pp.(str "iter_fail") else try f a.(i) with ex when precatchable_exception ex -> ffail (i+1) in ffail 0 (* make_abstraction: a variant of w_unify_to_subterm which works on contexts, with evars, and possibly with occurrences *) let indirectly_dependent sigma c d decls = not (isVar sigma c) && (* This test is not needed if the original term is a variable, but it is needed otherwise, as e.g. when abstracting over "2" in "forall H:0=2, H=H:>(0=1+1) -> 0=2." where there is now obvious way to see that the second hypothesis depends indirectly over 2 *) let open Context.Named.Declaration in List.exists (fun d' -> exists (fun c -> Termops.local_occur_var sigma (NamedDecl.get_id d') c) d) decls let default_matching_core_flags sigma = let ts = TransparentState.full in { modulo_conv_on_closed_terms = Some TransparentState.empty; use_metas_eagerly_in_conv_on_closed_terms = false; use_evars_eagerly_in_conv_on_closed_terms = false; modulo_delta = TransparentState.empty; modulo_delta_types = ts; check_applied_meta_types = true; use_pattern_unification = false; use_meta_bound_pattern_unification = false; allowed_evars = allow_new_evars sigma; restrict_conv_on_strict_subterms = false; modulo_betaiota = false; modulo_eta = false; } let default_matching_merge_flags sigma = let ts = TransparentState.full in let flags = default_matching_core_flags sigma in { flags with modulo_conv_on_closed_terms = Some ts; modulo_delta = ts; modulo_betaiota = true; modulo_eta = true; use_pattern_unification = true; } let default_matching_flags sigma = let flags = default_matching_core_flags sigma in { core_unify_flags = flags; merge_unify_flags = default_matching_merge_flags sigma; subterm_unify_flags = flags; (* does not matter *) resolve_evars = false; allow_K_in_toplevel_higher_order_unification = false; } (* This supports search of occurrences of term from a pattern *) (* from_prefix is useful e.g. for subterms in an inductive type: we can say *) (* "destruct t" and it finds "t u" *) exception PatternNotFound let make_pattern_test from_prefix_of_ind is_correct_type env sigma (pending,c) = let flags = if from_prefix_of_ind then let flags = default_matching_flags (Option.default Evd.empty pending) in { flags with core_unify_flags = { flags.core_unify_flags with modulo_conv_on_closed_terms = Some TransparentState.full; restrict_conv_on_strict_subterms = true } } else default_matching_flags (Option.default Evd.empty pending) in let n = Array.length (snd (decompose_app sigma c)) in let cgnd = if occur_meta_or_undefined_evar sigma c then NotGround else Ground in let matching_fun _ t = (* make_pattern_test is only ever called with an empty rel context *) if not (EConstr.Vars.closed0 sigma t) then raise (NotUnifiable None); try let t',l2 = if from_prefix_of_ind then (* We check for fully applied subterms of the form "u u1 .. un" *) (* of inductive type knowing only a prefix "u u1 .. ui" *) let t,l = decompose_app_list sigma t in let l1,l2 = try List.chop n l with Failure _ -> raise (NotUnifiable None) in if not (List.for_all (fun c -> Vars.closed0 sigma c) l2) then raise (NotUnifiable None) else applist (t,l1), l2 else t, [] in let sigma = w_typed_unify env sigma Conversion.CONV flags (c, cgnd) (t', Unknown) in let ty = Retyping.get_type_of env sigma t in if not (is_correct_type ty) then raise (NotUnifiable None); Some(sigma, t, l2) with | PretypeError (_,_,CannotUnify (c1,c2,Some e)) -> raise (NotUnifiable (Some (c1,c2,e))) (* MS: This is pretty bad, it catches Not_found for example *) | e when CErrors.noncritical e -> raise (NotUnifiable None) in let merge_fun c1 c2 = match c1, c2 with | Some (_,c1,x), Some (evd,c2,_) -> begin match infer_conv ~pb:CONV env evd c1 c2 with | Some evd -> (let t1 = get_type_of env evd c1 in let t2 = get_type_of env evd c2 in match infer_conv ~pb:CONV env evd t1 t2 with | Some evd -> Some (evd, c1, x) | None -> raise (NotUnifiable None)) | None -> raise (NotUnifiable None) end | Some _, None -> c1 | None, Some _ -> c2 | None, None -> None in { match_fun = matching_fun; merge_fun = merge_fun; testing_state = None; last_found = None }, (fun test -> match test.testing_state with | None -> None | Some (sigma,_,l) -> let rec strong_whd_meta t = EConstr.map sigma strong_whd_meta (whd_meta sigma t) in let c = applist (strong_whd_meta c, l) in Some (sigma, c)) let make_eq_test env evd c = let out cstr = match cstr.last_found with None -> None | _ -> Some (cstr.testing_state, c) in (make_eq_univs_test env evd c, out) let make_abstraction_core name (test,out) env sigma c ty occs check_occs concl = let id = let t = match ty with Some t -> t | None -> get_type_of env sigma c in let x = id_of_name_using_hdchar env sigma t name in let ids = Environ.ids_of_named_context_val (named_context_val env) in if name == Anonymous then next_ident_away_in_goal env x ids else if mem_named_context_val x (named_context_val env) then user_err (str "The variable " ++ Id.print x ++ str " is already declared.") else x in let likefirst = clause_with_generic_occurrences occs in let mkvarid () = EConstr.mkVar id in let compute_dependency _ d (sign,depdecls) = let d = map_named_decl EConstr.of_constr d in let hyp = NamedDecl.get_id d in match occurrences_of_hyp hyp occs with | NoOccurrences, InHyp -> (push_named_context_val d sign,depdecls) | (AllOccurrences | AtLeastOneOccurrence), InHyp as occ -> let occ = if likefirst then LikeFirst else AtOccs occ in let newdecl = replace_term_occ_decl_modulo env sigma occ test mkvarid d in if Context.Named.Declaration.equal (EConstr.eq_constr sigma) d newdecl && not (indirectly_dependent sigma c d depdecls) then if check_occs && not (in_every_hyp occs) then raise (PretypeError (env,sigma,NoOccurrenceFound (c,Some hyp))) else (push_named_context_val d sign, depdecls) else (push_named_context_val newdecl sign, newdecl :: depdecls) | occ -> (* There are specific occurrences, hence not like first *) let newdecl = replace_term_occ_decl_modulo env sigma (AtOccs occ) test mkvarid d in (push_named_context_val newdecl sign, newdecl :: depdecls) in try let sign,depdecls = fold_named_context compute_dependency env ~init:(empty_named_context_val,[]) in let ccl = match occurrences_of_goal occs with | NoOccurrences -> concl | occ -> let occ = if likefirst then LikeFirst else AtOccs occ in replace_term_occ_modulo env sigma occ test mkvarid concl in let lastlhyp = if List.is_empty depdecls then None else Some (NamedDecl.get_id (List.last depdecls)) in let res = match out test with | None -> None | Some (sigma, c) -> Some (sigma,c) in (id,sign,depdecls,lastlhyp,ccl,res) with SubtermUnificationError e -> raise (PretypeError (env,sigma,CannotUnifyOccurrences e)) (** [make_abstraction] is the main entry point to abstract over a term or pattern at some occurrences; it returns: - the id used for the abstraction - the type of the abstraction - the declarations from the context which depend on the term or pattern - the most recent hyp before which there is no dependency in the term of pattern - the abstracted conclusion - an evar universe context effect to apply on the goal - the term or pattern to abstract fully instantiated *) type prefix_of_inductive_support_flag = bool type abstraction_request = | AbstractPattern of prefix_of_inductive_support_flag * (types -> bool) * Name.t * (evar_map option * constr) * clause * bool | AbstractExact of Name.t * constr * types option * clause * bool type 'r abstraction_result = Names.Id.t * named_context_val * named_declaration list * Names.Id.t option * types * (evar_map * constr) option let make_abstraction env evd ccl abs = match abs with | AbstractPattern (from_prefix,check,name,c,occs,check_occs) -> make_abstraction_core name (make_pattern_test from_prefix check env evd c) env evd (snd c) None occs check_occs ccl | AbstractExact (name,c,ty,occs,check_occs) -> make_abstraction_core name (make_eq_test env evd c) env evd c ty occs check_occs ccl let keyed_unify env evd kop = if not (is_keyed_unification ()) then fun cl -> true else match kop with | None -> fun _ -> true | Some kop -> fun cl -> let kc = Keys.constr_key (fun c -> EConstr.kind evd c) cl in match kc with | None -> false | Some kc -> Keys.equiv_keys kop kc type 'aconstr akind = | AApp of 'aconstr * 'aconstr array | ACast of 'aconstr (* only the main term *) | AOther of 'aconstr array module AConstr : sig type t val proj : t -> EConstr.t val make : evar_map -> EConstr.t -> t val kind : t -> t akind val mkApp : t * t array -> t val closed0 : t -> bool end = struct type t = { proj : EConstr.t; self : t akind; data : int; } let proj c = c.proj let closed0 c = Int.equal c.data 0 let max (i : int) (j : int) = if i < j then j else i let max_array f a = Array.fold_left (fun n v -> max (f v) n) 0 a let lift (i : int) = if Int.equal i 0 then 0 else i - 1 let liftn k (i : int) = if i < k then 0 else i - k let data v = v.data let kind v = v.self let mkApp (c, al) = if Array.is_empty al then c else match kind c with | AApp (c0, al0) -> { proj = mkApp (c.proj, Array.map proj al); self = AApp (c0, Array.append al0 al); data = max c.data (max_array data al) } | _ -> { proj = mkApp (c.proj, Array.map proj al); self = AApp (c, al); data = max c.data (max_array data al) } let get_max_rel sigma c = let rec aux n accu c = match EConstr.kind sigma c with | Rel i -> if i <= n then accu else max accu (i - n) | _ -> EConstr.fold_with_binders sigma succ aux n accu c in aux 0 0 c let get_max_rel_array sigma v = Array.fold_left (fun accu c -> max accu (get_max_rel sigma c)) 0 v let anorec = AOther [||] let rec make sigma c0 = match EConstr.kind sigma c0 with | (Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _ | Int _ | Float _) -> { proj = c0; self = anorec; data = 0 } | Rel n -> { proj = c0; self = anorec; data = n } | Cast (c, k, t) -> let c = make sigma c in (* unification doesn't recurse in the type *) let td = get_max_rel sigma t in { proj = c0; self = ACast c; data = max c.data td } | Lambda (na, t, c) | Prod (na, t, c) -> let t = make sigma t in let c = make sigma c in { proj = c0; self = AOther [|t; c|]; data = max t.data (lift c.data) } | LetIn (na, b, t, c) -> let b = make sigma b in (* unification doesn't recurse in the type *) let td = get_max_rel sigma t in let c = make sigma c in { proj = c0; self = AOther [|b; c|]; data = max b.data (max td (lift c.data)) } | App (c, al) -> let c = make sigma c in let ald, al = make_array sigma al in { proj = c0; self = AApp (c, al); data = max c.data ald } | Proj (p, _, t) -> let t = make sigma t in { proj = c0; self = AOther [|t|]; data = t.data } | Evar (e, al) -> (* Unification doesn't recurse on the subterms in evar instances *) let data = SList.Skip.fold (fun accu v -> max accu (get_max_rel sigma v)) 0 al in { proj = c0; self = AOther [||]; data } | Case (ci, u, pms, (p,_), iv, c, bl) -> let pmsd = get_max_rel_array sigma pms in let pd = let (nas, p) = p in let pd = get_max_rel sigma p in liftn (Array.length nas) pd in let ivd = match iv with | NoInvert -> 0 | CaseInvert { indices } -> get_max_rel_array sigma indices in let c = make sigma c in let fold accu (nas, p) = let p = make sigma p in max accu (liftn (Array.length nas) p.data), p in let bld, bl = Array.fold_left_map fold 0 bl in let data = max pmsd @@ max pd @@ max ivd @@ max c.data bld in (* Unification only recurses on the discriminee and the branches *) { proj = c0; self = AOther (Array.append [|c|] bl); data } | Fix (_, (_, tl, bl)) | CoFix(_,(_,tl,bl)) -> let tld, tl = make_array sigma tl in let bld, bl = make_array sigma bl in let data = max tld (liftn (Array.length tl) bld) in { proj = c0; self = AOther (Array.append tl bl); data } | Array(u,t,def,ty) -> let td, t = make_array sigma t in let def = make sigma def in let ty = make sigma ty in let data = max td (max def.data ty.data) in { proj = c0; self = AOther (Array.append [|def;ty|] t); data } and make_array sigma v = let fold accu c = let c = make sigma c in max accu c.data, c in Array.fold_left_map fold 0 v end (* Tries to find an instance of term [cl] in term [op]. Unifies [cl] to every subterm of [op] until it finds a match. Fails if no match is found *) let w_unify_to_subterm env evd ?(flags=default_unify_flags ()) (op,cl) = let bestexn = ref None in let kop = Keys.constr_key (fun c -> EConstr.kind evd c) op in let opgnd = if occur_meta_or_undefined_evar evd op then NotGround else Ground in let rec matchrec cl = let rec strip_outer_cast c = match AConstr.kind c with | ACast c -> strip_outer_cast c | _ -> c in let cl = strip_outer_cast cl in (try let is_closed = AConstr.closed0 cl in let cl = AConstr.proj cl in if is_closed && not (isEvar evd cl) && keyed_unify env evd kop cl then (try if is_keyed_unification () then let f1, l1 = decompose_app evd op in let f2, l2 = decompose_app evd cl in w_typed_unify_array env evd flags f1 l1 f2 l2,cl else w_typed_unify env evd CONV flags (op, opgnd) (cl, Unknown),cl with ex when Pretype_errors.unsatisfiable_exception ex -> bestexn := Some ex; user_err Pp.(str "Unsat")) else user_err Pp.(str "Bound 1") with ex when precatchable_exception ex -> (match AConstr.kind cl with | ACast _ -> assert false (* just got stripped *) | AApp (f,args) -> let n = Array.length args in assert (n>0); let c1 = AConstr.mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in (try matchrec c1 with ex when precatchable_exception ex -> matchrec c2) | AOther a -> iter_fail matchrec a)) in try matchrec cl with ex when precatchable_exception ex -> match !bestexn with | None -> raise (PretypeError (env,evd,NoOccurrenceFound (op, None))) | Some e -> raise e (* Tries to find all instances of term [cl] in term [op]. Unifies [cl] to every subterm of [op] and return all the matches. Fails if no match is found *) let w_unify_to_subterm_all env evd ?(flags=default_unify_flags ()) (op,cl) = let return a b = let (evd,c as a) = a () in if List.exists (fun (evd',c') -> EConstr.eq_constr evd' c c') b then b else a :: b in let fail str _ = user_err (Pp.str str) in let bind f g a = let a1 = try f a with ex when precatchable_exception ex -> a in try g a1 with ex when precatchable_exception ex -> a1 in let bind_iter f a = let n = Array.length a in let rec ffail i = if Int.equal i n then fun a -> a else bind (f a.(i)) (ffail (i+1)) in ffail 0 in let opgnd = if occur_meta_or_undefined_evar evd op then NotGround else Ground in let rec matchrec cl = let cl = strip_outer_cast evd cl in (bind (if closed0 evd cl then return (fun () -> w_typed_unify env evd CONV flags (op, opgnd) (cl, Unknown),cl) else fail "Bound 1") (match EConstr.kind evd cl with | App (f,args) -> let n = Array.length args in assert (n>0); let c1 = mkApp (f,Array.sub args 0 (n-1)) in let c2 = args.(n-1) in bind (matchrec c1) (matchrec c2) | Case(_,_,_,_,_,c,lf) -> (* does not search in the predicate *) bind (matchrec c) (bind_iter matchrec (Array.map snd lf)) | Proj (p,_,c) -> matchrec c | LetIn(_,c1,_,c2) -> bind (matchrec c1) (matchrec c2) | Fix(_,(_,types,terms)) -> bind (bind_iter matchrec types) (bind_iter matchrec terms) | CoFix(_,(_,types,terms)) -> bind (bind_iter matchrec types) (bind_iter matchrec terms) | Prod (_,t,c) -> bind (matchrec t) (matchrec c) | Lambda (_,t,c) -> bind (matchrec t) (matchrec c) | Array(_u,t,def,ty) -> bind (bind (bind_iter matchrec t) (matchrec def)) (matchrec ty) | Cast (_, _, _) -> fail "Match_subterm" (* Is this expected? *) | Rel _ | Var _ | Meta _ | Evar _ | Sort _ | Const _ | Ind _ | Construct _ | Int _ | Float _ -> fail "Match_subterm")) in let res = matchrec cl [] in match res with | [] -> raise (PretypeError (env,evd,NoOccurrenceFound (op, None))) | _ -> List.map fst res let w_unify_to_subterm_list env evd flags hdmeta oplist t = List.fold_right (fun op (evd,l) -> let op = whd_meta evd op in if isMeta evd op then if flags.allow_K_in_toplevel_higher_order_unification then (evd,op::l) else error_abstraction_over_meta env evd hdmeta (destMeta evd op) else let allow_K = flags.allow_K_in_toplevel_higher_order_unification in let flags = if is_keyed_unification () || occur_meta_or_existential evd op then (* This is up to delta for subterms w/o metas ... *) flags else (* up to Nov 2014, unification was bypassed on evar/meta-free terms; now it is called in a minimalistic way, at least to possibly unify pre-existing non frozen evars of the goal or of the pattern *) set_no_delta_flags flags in let t' = (strip_outer_cast evd op, AConstr.make evd t) in let (evd',cl) = try if is_keyed_unification () then try (* First try finding a subterm w/o conversion on open terms *) let flags = set_no_delta_open_flags flags in w_unify_to_subterm env evd ~flags t' with e when CErrors.noncritical e -> (* If this fails, try with full conversion *) w_unify_to_subterm env evd ~flags t' else w_unify_to_subterm env evd ~flags t' with PretypeError (env,_,NoOccurrenceFound _) when allow_K || (* w_unify_to_subterm does not go through evars, so the next step, which was already in <= 8.4, is needed at least for compatibility of rewrite *) dependent evd op t -> (evd,op) in if not allow_K && (* ensure we found a different instance *) List.exists (fun op -> EConstr.eq_constr evd' op cl) l then error_non_linear_unification env evd hdmeta cl else (evd',cl::l)) oplist (evd,[]) let w_unify_to_subterm env sigma ?flags (c, t) = w_unify_to_subterm env sigma ?flags (c, AConstr.make sigma t) let secondOrderAbstraction env evd flags typ (p, oplist) = (* Remove delta when looking for a subterm *) let flags = { flags with core_unify_flags = flags.subterm_unify_flags } in let (evd',cllist) = w_unify_to_subterm_list env evd flags p oplist typ in let typp = Typing.meta_type env evd' p in let evd',(pred,predtyp) = abstract_list_all env evd' typp typ cllist in match infer_conv ~pb:CUMUL env evd' predtyp typp with | None -> error_wrong_abstraction_type env evd' (Evd.meta_name evd p) pred typp predtyp; | Some evd' -> w_merge env false flags.merge_unify_flags (evd',[p,pred,(Conv,TypeProcessed)],[]) let secondOrderDependentAbstraction env evd flags typ (p, oplist) = let typp = Typing.meta_type env evd p in let evd, pred = abstract_list_all_with_dependencies env evd typp typ oplist in w_merge env false flags.merge_unify_flags (evd,[p,pred,(Conv,TypeProcessed)],[]) let secondOrderAbstractionAlgo dep = if dep then secondOrderDependentAbstraction else secondOrderAbstraction let w_unify2 env evd flags dep cv_pb ty1 ty2 = let c1, oplist1 = whd_nored_stack env evd ty1 in let c2, oplist2 = whd_nored_stack env evd ty2 in match EConstr.kind evd c1, EConstr.kind evd c2 with | Meta p1, _ -> (* Find the predicate *) secondOrderAbstractionAlgo dep env evd flags ty2 (p1, oplist1) | _, Meta p2 -> (* Find the predicate *) secondOrderAbstractionAlgo dep env evd flags ty1 (p2, oplist2) | _ -> user_err Pp.(str "w_unify2") (* The unique unification algorithm works like this: If the pattern is flexible, and the goal has a lambda-abstraction at the head, then we do a first-order unification. If the pattern is not flexible, then we do a first-order unification, too. If the pattern is flexible, and the goal doesn't have a lambda-abstraction head, then we second-order unification. *) (* We decide here if first-order or second-order unif is used for Apply *) (* We apply a term of type (ai:Ai)C and try to solve a goal C' *) (* The type C is in clenv.templtyp.rebus with a lot of Meta to solve *) (* 3-4-99 [HH] New fo/so choice heuristic : In case we have to unify (Meta(1) args) with ([x:A]t args') we first try second-order unification and if it fails first-order. Before, second-order was used if the type of Meta(1) and [x:A]t was convertible and first-order otherwise. But if failed if e.g. the type of Meta(1) had meta-variables in it. *) let w_unify env evd cv_pb ?(flags=default_unify_flags ()) ty1 ty2 = let hd1,l1 = decompose_app evd (whd_nored env evd ty1) in let hd2,l2 = decompose_app evd (whd_nored env evd ty2) in let is_empty1 = Array.is_empty l1 in let is_empty2 = Array.is_empty l2 in match EConstr.kind evd hd1, not is_empty1, EConstr.kind evd hd2, not is_empty2 with (* Pattern case *) | (Meta _, true, Lambda _, _ | Lambda _, _, Meta _, true) when Int.equal (Array.length l1) (Array.length l2) -> (try w_typed_unify_array env evd flags hd1 l1 hd2 l2 with ex when precatchable_exception ex -> try w_unify2 env evd flags false cv_pb ty1 ty2 with PretypeError (env,_,NoOccurrenceFound _) as e -> raise e) (* Second order case *) | (Meta _, true, _, _ | _, _, Meta _, true) -> (try w_unify2 env evd flags false cv_pb ty1 ty2 with PretypeError (env,_,NoOccurrenceFound _) as e -> raise e | ex when precatchable_exception ex -> try w_typed_unify_array env evd flags hd1 l1 hd2 l2 with ex' when precatchable_exception ex' -> (* Last chance, use pattern-matching with typed dependencies (done late for compatibility) *) try w_unify2 env evd flags true cv_pb ty1 ty2 with ex' when precatchable_exception ex' -> raise ex) (* General case: try first order *) | _ -> w_typed_unify env evd cv_pb flags (ty1, Unknown) (ty2, Unknown) (* Profiling *) let w_unify env evd cv_pb flags ty1 ty2 = w_unify env evd cv_pb ~flags:flags ty1 ty2 let w_unify env evd cv_pb ?(flags=default_unify_flags ()) ty1 ty2 = w_unify env evd cv_pb flags ty1 ty2
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>