package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.parsing/pcoq.ml.html
Source file pcoq.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Genarg open Gramlib (** The parser of Coq *) include Grammar.GMake(CLexer.Lexer) let keyword_state = ref CLexer.empty_keyword_state let get_keyword_state () = !keyword_state let set_keyword_state s = keyword_state := s (** Not marshallable! *) let estate = ref EState.empty let gstate () = { GState.estate = !estate; kwstate = !keyword_state; } module Parsable = struct include Parsable let consume x len = consume x len !keyword_state end module Entry = struct include Entry let make na = let estate', e = make na !estate in estate := estate'; e let parse e p = parse e p (gstate()) let of_parser na p = let estate', e = of_parser na p !estate in estate := estate'; e let parse_token_stream e strm = parse_token_stream e strm (gstate()) let print fmt e = print fmt e !estate let is_empty e = is_empty e !estate let accumulate_in e = accumulate_in e !estate end module Lookahead = struct let err () = raise Stream.Failure type t = int -> CLexer.keyword_state -> (CLexer.keyword_state,Tok.t) LStream.t -> int option let rec contiguous n m strm = n == m || let (_, ep) = Loc.unloc (LStream.get_loc n strm) in let (bp, _) = Loc.unloc (LStream.get_loc (n + 1) strm) in Int.equal ep bp && contiguous (succ n) m strm let check_no_space m _kwstate strm = let n = LStream.count strm in if contiguous n (n+m-1) strm then Some m else None let to_entry s (lk : t) = let run kwstate strm = match lk 0 kwstate strm with None -> err () | Some _ -> () in Entry.(of_parser s { parser_fun = run }) let (>>) (lk1 : t) lk2 n kwstate strm = match lk1 n kwstate strm with | None -> None | Some n -> lk2 n kwstate strm let (<+>) (lk1 : t) lk2 n kwstate strm = match lk1 n kwstate strm with | None -> lk2 n kwstate strm | Some n -> Some n let lk_empty n kwstate strm = Some n let lk_kw kw n kwstate strm = match LStream.peek_nth kwstate n strm with | Tok.KEYWORD kw' | Tok.IDENT kw' -> if String.equal kw kw' then Some (n + 1) else None | _ -> None let lk_kws kws n kwstate strm = match LStream.peek_nth kwstate n strm with | Tok.KEYWORD kw | Tok.IDENT kw -> if List.mem_f String.equal kw kws then Some (n + 1) else None | _ -> None let lk_ident n kwstate strm = match LStream.peek_nth kwstate n strm with | Tok.IDENT _ -> Some (n + 1) | _ -> None let lk_name = lk_ident <+> lk_kw "_" let lk_ident_except idents n kwstate strm = match LStream.peek_nth kwstate n strm with | Tok.IDENT ident when not (List.mem_f String.equal ident idents) -> Some (n + 1) | _ -> None let lk_nat n kwstate strm = match LStream.peek_nth kwstate n strm with | Tok.NUMBER p when NumTok.Unsigned.is_nat p -> Some (n + 1) | _ -> None let rec lk_list lk_elem n kwstate strm = ((lk_elem >> lk_list lk_elem) <+> lk_empty) n kwstate strm let lk_ident_list = lk_list lk_ident let lk_field n kwstate strm = match LStream.peek_nth kwstate n strm with | Tok.FIELD _ -> Some (n+1) | _ -> None let lk_qualid = lk_ident >> lk_list lk_field end (** Grammar extensions *) (** NB: [extend_statement = gram_position option * single_extend_statement list] and [single_extend_statement = string option * gram_assoc option * production_rule list] and [production_rule = symbol list * action] In [single_extend_statement], first two parameters are name and assoc iff a level is created *) (** Type of reinitialization data *) type gram_reinit = Gramlib.Gramext.g_assoc * Gramlib.Gramext.position type extend_rule = | ExtendRule : 'a Entry.t * 'a extend_statement -> extend_rule | ExtendRuleReinit : 'a Entry.t * gram_reinit * 'a extend_statement -> extend_rule module EntryCommand = Dyn.Make () module EntryData = struct type _ t = Ex : 'b Entry.t String.Map.t -> ('a * 'b) t end module EntryDataMap = EntryCommand.Map(EntryData) type ext_kind = | ByGrammar of extend_rule | ByEXTEND of string * (unit -> unit) * (unit -> unit) | ByEntry : ('a * 'b) EntryCommand.tag * string * 'b Entry.t -> ext_kind (** The list of extensions *) let terminal s = CLexer.terminal !keyword_state s let camlp5_state = ref [] let camlp5_entries = ref EntryDataMap.empty (** Deletion *) let grammar_delete e r = let data = match r with | Fresh (_, r) -> List.map (fun (_, _, r) -> r) r | Reuse (_, r) -> [r] in List.iter (fun lev -> List.iter (fun pil -> estate := safe_delete_rule !estate e pil) (List.rev lev)) (List.rev data) let no_add_kw = { add_kw = fun () _ -> () } (* TODO use this for ssr instead of messing with set_keyword_state (needs some API design) *) let _safe_extend_no_kw e ext = let estate', () = safe_extend no_add_kw !estate () e ext in estate := estate' let add_kw = { add_kw = CLexer.add_keyword_tok } let safe_extend e ext = let estate', kwstate' = safe_extend add_kw !estate !keyword_state e ext in estate := estate'; keyword_state := kwstate' let grammar_delete_reinit e reinit d = grammar_delete e d; let a, ext = reinit in let lev = match d with | Reuse (Some n, _) -> n | _ -> assert false in let ext = Fresh (ext, [Some lev,Some a,[]]) in safe_extend e ext (** Extension *) let grammar_extend e ext = let undo () = grammar_delete e ext in let redo () = safe_extend e ext in camlp5_state := ByEXTEND (Entry.name e, undo, redo) :: !camlp5_state; redo () let grammar_extend_sync e ext = camlp5_state := ByGrammar (ExtendRule (e, ext)) :: !camlp5_state; safe_extend e ext let grammar_extend_sync_reinit e reinit ext = camlp5_state := ByGrammar (ExtendRuleReinit (e, reinit, ext)) :: !camlp5_state; safe_extend e ext (** Remove extensions [n] is the number of extended entries (not the number of Grammar commands!) to remove. *) let rec remove_grammars n = if n>0 then match !camlp5_state with | [] -> anomaly ~label:"Pcoq.remove_grammars" (Pp.str "too many rules to remove.") | ByGrammar (ExtendRuleReinit (g, reinit, ext)) :: t -> grammar_delete_reinit g reinit ext; camlp5_state := t; remove_grammars (n-1) | ByGrammar (ExtendRule (g, ext)) :: t -> (try grammar_delete g ext with Not_found -> Feedback.msg_info Pp.(str "failed on " ++ str (Entry.name g)); raise Not_found); camlp5_state := t; remove_grammars (n-1) | ByEXTEND (name, undo,redo)::t -> undo(); camlp5_state := t; remove_grammars n; redo(); camlp5_state := ByEXTEND (name, undo,redo) :: !camlp5_state | ByEntry (tag, name, e) :: t -> estate := Unsafe.clear_entry !estate e; camlp5_state := t; let EntryData.Ex entries = try EntryDataMap.find tag !camlp5_entries with Not_found -> EntryData.Ex String.Map.empty in let entries = String.Map.remove name entries in camlp5_entries := EntryDataMap.add tag (EntryData.Ex entries) !camlp5_entries; remove_grammars (n - 1) let make_rule r = [None, None, r] (** An entry that checks we reached the end of the input. *) (* used by the Tactician plugin *) let eoi_entry en = let e = Entry.make ((Entry.name en) ^ "_eoi") in let symbs = Rule.next (Rule.next Rule.stop (Symbol.nterm en)) (Symbol.token Tok.PEOI) in let act = fun _ x loc -> x in let ext = Fresh (Gramlib.Gramext.First, make_rule [Production.make symbs act]) in safe_extend e ext; e (* Parse a string, does NOT check if the entire string was read (use eoi_entry) *) let parse_string f ?loc x = let strm = Stream.of_string x in Entry.parse f (Parsable.make ?loc strm) module GrammarObj = struct type ('r, _, _) obj = 'r Entry.t let name = "grammar" let default _ = None end module Grammar = Register(GrammarObj) let warn_deprecated_intropattern = CWarnings.create ~name:"deprecated-intropattern-entry" ~category:Deprecation.Version.v8_11 (fun () -> Pp.strbrk "Entry name intropattern has been renamed in order \ to be consistent with the documented grammar of tactics. Use \ \"simple_intropattern\" instead.") let check_compatibility = function | Genarg.ExtraArg s when ArgT.repr s = "intropattern" -> warn_deprecated_intropattern () | _ -> () let register_grammar = Grammar.register0 let genarg_grammar x = check_compatibility x; Grammar.obj x let create_generic_entry2 (type a) s (etyp : a raw_abstract_argument_type) : a Entry.t = let e = Entry.make s in let Rawwit t = etyp in let () = Grammar.register0 t e in e (* Initial grammar entries *) module Prim = struct (* Entries that can be referred via the string -> Entry.t table *) (* Typically for tactic or vernac extensions *) let preident = Entry.make "preident" let ident = Entry.make "ident" let natural = Entry.make "natural" let integer = Entry.make "integer" let bignat = Entry.make "bignat" let bigint = Entry.make "bigint" let string = Entry.make "string" let lstring = Entry.make "lstring" let reference = Entry.make "reference" let fields = Entry.make "fields" let by_notation = Entry.make "by_notation" let smart_global = Entry.make "smart_global" let strategy_level = Entry.make "strategy_level" (* parsed like ident but interpreted as a term *) let hyp = Entry.make "hyp" let var = hyp let name = Entry.make "name" let identref = Entry.make "identref" let univ_decl = Entry.make "univ_decl" let ident_decl = Entry.make "ident_decl" let pattern_ident = Entry.make "pattern_ident" (* A synonym of ident - maybe ident will be located one day *) let base_ident = Entry.make "base_ident" let qualid = Entry.make "qualid" let fullyqualid = Entry.make "fullyqualid" let dirpath = Entry.make "dirpath" let ne_string = Entry.make "ne_string" let ne_lstring = Entry.make "ne_lstring" let bar_cbrace = Entry.make "'|}'" end module Constr = struct (* Entries that can be referred via the string -> Entry.t table *) let constr = Entry.make "constr" let term = Entry.make "term" let constr_eoi = eoi_entry constr let lconstr = Entry.make "lconstr" let binder_constr = Entry.make "binder_constr" let ident = Entry.make "ident" let global = Entry.make "global" let universe_name = Entry.make "universe_name" let sort = Entry.make "sort" let sort_family = Entry.make "sort_family" let pattern = Entry.make "pattern" let constr_pattern = Entry.make "constr_pattern" let cpattern = Entry.make "cpattern" let closed_binder = Entry.make "closed_binder" let binder = Entry.make "binder" let binders = Entry.make "binders" let open_binders = Entry.make "open_binders" let one_open_binder = Entry.make "one_open_binder" let one_closed_binder = Entry.make "one_closed_binder" let binders_fixannot = Entry.make "binders_fixannot" let typeclass_constraint = Entry.make "typeclass_constraint" let record_declaration = Entry.make "record_declaration" let arg = Entry.make "arg" let type_cstr = Entry.make "type_cstr" end module Module = struct let module_expr = Entry.make "module_expr" let module_type = Entry.make "module_type" end let epsilon_value (type s tr a) f (e : (s, tr, a) Symbol.t) = let r = Production.make (Rule.next Rule.stop e) (fun x _ -> f x) in let entry = Entry.make "epsilon" in let ext = Fresh (Gramlib.Gramext.First, [None, None, [r]]) in safe_extend entry ext; try Some (parse_string entry "") with e when CErrors.noncritical e -> None (** Synchronized grammar extensions *) module GramState = Store.Make () type 'a grammar_extension = { gext_fun : 'a -> GramState.t -> extend_rule list * GramState.t; gext_eq : 'a -> 'a -> bool; } module GrammarCommand = Dyn.Make () module GrammarInterp = struct type 'a t = 'a grammar_extension end module GrammarInterpMap = GrammarCommand.Map(GrammarInterp) let grammar_interp = ref GrammarInterpMap.empty type ('a, 'b) entry_extension = { eext_fun : 'a -> GramState.t -> string list * GramState.t; eext_eq : 'a -> 'a -> bool; } module EntryInterp = struct type _ t = Ex : ('a, 'b) entry_extension -> ('a * 'b) t end module EntryInterpMap = EntryCommand.Map(EntryInterp) let entry_interp = ref EntryInterpMap.empty type grammar_entry = | GramExt of int * GrammarCommand.t | EntryExt : int * ('a * 'b) EntryCommand.tag * 'a -> grammar_entry let (grammar_stack : (grammar_entry * GramState.t) list ref) = ref [] type 'a grammar_command = 'a GrammarCommand.tag type ('a, 'b) entry_command = ('a * 'b) EntryCommand.tag let create_grammar_command name interp : _ grammar_command = let obj = GrammarCommand.create name in let () = grammar_interp := GrammarInterpMap.add obj interp !grammar_interp in obj let create_entry_command name (interp : ('a, 'b) entry_extension) : ('a, 'b) entry_command = let obj = EntryCommand.create name in let () = entry_interp := EntryInterpMap.add obj (EntryInterp.Ex interp) !entry_interp in obj let iter_extend_sync = function | ExtendRule (e, ext) -> grammar_extend_sync e ext | ExtendRuleReinit (e, reinit, ext) -> grammar_extend_sync_reinit e reinit ext let extend_grammar_command tag g = let modify = GrammarInterpMap.find tag !grammar_interp in let grammar_state = match !grammar_stack with | [] -> GramState.empty | (_, st) :: _ -> st in let (rules, st) = modify.gext_fun g grammar_state in let () = List.iter iter_extend_sync rules in let nb = List.length rules in grammar_stack := (GramExt (nb, GrammarCommand.Dyn (tag, g)), st) :: !grammar_stack let extend_entry_command (type a) (type b) (tag : (a, b) entry_command) (g : a) : b Entry.t list = let EntryInterp.Ex modify = EntryInterpMap.find tag !entry_interp in let grammar_state = match !grammar_stack with | [] -> GramState.empty | (_, st) :: _ -> st in let (names, st) = modify.eext_fun g grammar_state in let entries = List.map (fun name -> Entry.make name) names in let iter name e = camlp5_state := ByEntry (tag, name, e) :: !camlp5_state; let EntryData.Ex old = try EntryDataMap.find tag !camlp5_entries with Not_found -> EntryData.Ex String.Map.empty in let () = assert (not @@ String.Map.mem name old) in let entries = String.Map.add name e old in camlp5_entries := EntryDataMap.add tag (EntryData.Ex entries) !camlp5_entries in let () = List.iter2 iter names entries in let nb = List.length entries in let () = grammar_stack := (EntryExt (nb, tag, g), st) :: !grammar_stack in entries let find_custom_entry tag name = let EntryData.Ex map = EntryDataMap.find tag !camlp5_entries in String.Map.find name map let extend_dyn_grammar (e, _) = match e with | GramExt (_, (GrammarCommand.Dyn (tag, g))) -> extend_grammar_command tag g | EntryExt (_, tag, g) -> ignore (extend_entry_command tag g) (** Registering extra grammar *) let grammar_names : Entry.any_t list String.Map.t ref = ref String.Map.empty let register_grammars_by_name name grams = grammar_names := String.Map.add name grams !grammar_names let find_grammars_by_name name = try String.Map.find name !grammar_names with Not_found -> let fold (EntryDataMap.Any (tag, EntryData.Ex map)) accu = try Entry.Any (String.Map.find name map) :: accu with Not_found -> accu in EntryDataMap.fold fold !camlp5_entries [] (** Summary functions: the state of the lexer is included in that of the parser. Because the grammar affects the set of keywords when adding or removing grammar rules. *) type frozen_t = (grammar_entry * GramState.t) list * CLexer.keyword_state let freeze () : frozen_t = (!grammar_stack, !keyword_state) let eq_grams (g1, _) (g2, _) = match g1, g2 with | GramExt (_, GrammarCommand.Dyn (t1, v1)), GramExt (_, GrammarCommand.Dyn (t2, v2)) -> begin match GrammarCommand.eq t1 t2 with | None -> false | Some Refl -> let data = GrammarInterpMap.find t1 !grammar_interp in data.gext_eq v1 v2 end | EntryExt (_, t1, v1), EntryExt (_, t2, v2) -> begin match EntryCommand.eq t1 t2 with | None -> false | Some Refl -> let EntryInterp.Ex data = EntryInterpMap.find t1 !entry_interp in data.eext_eq v1 v2 end | (GramExt _, EntryExt _) | (EntryExt _, GramExt _) -> false (* We compare the current state of the grammar and the state to unfreeze, by computing the longest common suffixes *) let factorize_grams l1 l2 = if l1 == l2 then ([], [], l1) else List.share_tails eq_grams l1 l2 let rec number_of_entries accu = function | [] -> accu | ((GramExt (p, _) | EntryExt (p, _, _)), _) :: rem -> number_of_entries (p + accu) rem let unfreeze (grams, lex) = let (undo, redo, common) = factorize_grams !grammar_stack grams in let n = number_of_entries 0 undo in remove_grammars n; grammar_stack := common; keyword_state := lex; List.iter extend_dyn_grammar (List.rev redo) (** No need to provide an init function : the grammar state is statically available, and already empty initially, while the lexer state should not be reset, since it contains keywords declared in g_*.mlg *) let parser_summary_tag = Summary.declare_summary_tag "GRAMMAR_LEXER" { stage = Summary.Stage.Synterp; Summary.freeze_function = freeze; Summary.unfreeze_function = unfreeze; Summary.init_function = Summary.nop } let with_grammar_rule_protection f x = let fs = freeze () in try let a = f x in unfreeze fs; a with reraise -> let reraise = Exninfo.capture reraise in let () = unfreeze fs in Exninfo.iraise reraise (** Registering grammar of generic arguments *) let () = let open Stdarg in Grammar.register0 wit_nat (Prim.natural); Grammar.register0 wit_int (Prim.integer); Grammar.register0 wit_string (Prim.string); Grammar.register0 wit_pre_ident (Prim.preident); Grammar.register0 wit_identref (Prim.identref); Grammar.register0 wit_ident (Prim.ident); Grammar.register0 wit_hyp (Prim.hyp); Grammar.register0 wit_ref (Prim.reference); Grammar.register0 wit_smart_global (Prim.smart_global); Grammar.register0 wit_sort_family (Constr.sort_family); Grammar.register0 wit_constr (Constr.constr); ()
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>