package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.2.tar.gz
md5=5d1187d5e44ed0163f76fb12dabf012e
sha512=91bc81530fa4f6498961583ad51eac5001f139881788b88e360a866ad8e2a6e2c5bce86d1a580ab4cd4782bf49d48318767df82471ce33ba3ac143e5569ad33c
doc/src/coq-core.library/libobject.ml.html
Source file libobject.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module Dyn = Dyn.Make () type substitutivity = Dispose | Substitute | Keep | Anticipate type object_name = Libnames.full_path * Names.KerName.t type open_filter = | Unfiltered | Filtered of CString.Pred.t type category = string let known_cats = ref CString.Set.empty let create_category s = let cats' = CString.Set.add s !known_cats in if !known_cats == cats' then CErrors.anomaly Pp.(str "create_category called twice on " ++ str s); known_cats := cats'; s let unfiltered = Unfiltered let make_filter ~finite cats = if CList.is_empty cats then CErrors.anomaly Pp.(str "Libobject.make_filter got an empty list."); let cats = List.fold_left (fun cats CAst.{v=cat;loc} -> if not (CString.Set.mem cat !known_cats) then CErrors.user_err ?loc Pp.(str "Unknown import category " ++ str cat ++ str"."); CString.Pred.add cat cats) CString.Pred.empty cats in let cats = if finite then cats else CString.Pred.complement cats in Filtered cats let in_filter ~cat f = match cat, f with | _, Unfiltered -> true | None, Filtered f -> not (CString.Pred.is_finite f) | Some cat, Filtered f -> CString.Pred.mem cat f let simple_open ?cat f filter i o = if in_filter ~cat filter then f i o let filter_and f1 f2 = match f1, f2 with | Unfiltered, f | f, Unfiltered -> Some f | Filtered f1, Filtered f2 -> let f = CString.Pred.inter f1 f2 in if CString.Pred.is_empty f then None else Some (Filtered f) let filter_or f1 f2 = match f1, f2 with | Unfiltered, f | f, Unfiltered -> Unfiltered | Filtered f1, Filtered f2 -> Filtered (CString.Pred.union f1 f2) type ('a,'b) object_declaration = { object_name : string; object_stage : Summary.Stage.t; cache_function : 'b -> unit; load_function : int -> 'b -> unit; open_function : open_filter -> int -> 'b -> unit; classify_function : 'a -> substitutivity; subst_function : Mod_subst.substitution * 'a -> 'a; discharge_function : 'a -> 'a option; rebuild_function : 'a -> 'a; } let default_object ?(stage=Summary.Stage.Interp) s = { object_name = s; object_stage = stage; cache_function = (fun _ -> ()); load_function = (fun _ _ -> ()); open_function = (fun _ _ _ -> ()); subst_function = (fun _ -> CErrors.anomaly Pp.(str "The object " ++ str s ++ str " does not know how to substitute!")); classify_function = (fun _ -> Keep); discharge_function = (fun _ -> None); rebuild_function = (fun x -> x); } (* The suggested object declaration is the following: declare_object { (default_object "MY OBJECT") with cache_function = fun (sp,a) -> Mytbl.add sp a} and the listed functions are only those which definitions actually differ from the default. This helps introducing new functions in objects. *) let ident_subst_function (_,a) = a type obj = Dyn.t (* persistent dynamic objects *) (** {6 Substitutive objects} - The list of bound identifiers is nonempty only if the objects are owned by a functor - Then comes either the object segment itself (for interactive modules), or a compact way to store derived objects (path to a earlier module + substitution). *) type algebraic_objects = | Objs of t list | Ref of Names.ModPath.t * Mod_subst.substitution and t = | ModuleObject of Names.Id.t * substitutive_objects | ModuleTypeObject of Names.Id.t * substitutive_objects | IncludeObject of algebraic_objects | KeepObject of Names.Id.t * t list | ExportObject of { mpl : (open_filter * Names.ModPath.t) list } | AtomicObject of obj and substitutive_objects = Names.MBId.t list * algebraic_objects module DynMap = Dyn.Map (struct type 'a t = ('a, Nametab.object_prefix * 'a) object_declaration end) let cache_tab = ref DynMap.empty let declare_object_full odecl = let na = odecl.object_name in let tag = Dyn.create na in let () = cache_tab := DynMap.add tag odecl !cache_tab in tag let make_oname Nametab.{ obj_dir; obj_mp } id = Libnames.make_path obj_dir id, Names.KerName.make obj_mp (Names.Label.of_id id) let declare_named_object_full odecl = let odecl = let oname = make_oname in { object_name = odecl.object_name; object_stage = odecl.object_stage; cache_function = (fun (p, (id, o)) -> odecl.cache_function (oname p id, o)); load_function = (fun i (p, (id, o)) -> odecl.load_function i (oname p id, o)); open_function = (fun f i (p, (id, o)) -> odecl.open_function f i (oname p id, o)); classify_function = (fun (id, o) -> odecl.classify_function o); subst_function = (fun (subst, (id, o)) -> id, odecl.subst_function (subst, o)); discharge_function = (fun (id, o) -> Option.map (fun x -> id, x) (odecl.discharge_function o)); rebuild_function = Util.on_snd odecl.rebuild_function; } in declare_object_full odecl let declare_named_object odecl = let tag = declare_named_object_full odecl in let infun id v = Dyn.Dyn (tag, (id, v)) in infun let declare_named_object_gen odecl = let tag = declare_object_full odecl in let infun v = Dyn.Dyn (tag, v) in infun let declare_object odecl = let odecl = { odecl with cache_function = (fun (_,o) -> odecl.cache_function o); load_function = (fun i (_,o) -> odecl.load_function i o); open_function = (fun f i (_,o) -> odecl.open_function f i o); } in let tag = declare_object_full odecl in let infun v = Dyn.Dyn (tag, v) in infun let cache_object (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.cache_function (sp, v) let load_object i (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.load_function i (sp, v) let open_object f i (sp, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.open_function f i (sp, v) let subst_object (subs, Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in Dyn.Dyn (tag, decl.subst_function (subs, v)) let classify_object (Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in match decl.classify_function v with | Dispose -> Dispose | Substitute -> Substitute | Keep -> Keep | Anticipate -> Anticipate let discharge_object (Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in match decl.discharge_function v with | None -> None | Some v -> Some (Dyn.Dyn (tag, v)) let rebuild_object (Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in Dyn.Dyn (tag, decl.rebuild_function v) let object_stage (Dyn.Dyn (tag, v)) = let decl = DynMap.find tag !cache_tab in decl.object_stage let dump = Dyn.dump let local_object_nodischarge ?stage s ~cache = { (default_object ?stage s) with cache_function = cache; classify_function = (fun _ -> Dispose); } let local_object ?stage s ~cache ~discharge = { (local_object_nodischarge ?stage s ~cache) with discharge_function = discharge; } let global_object_nodischarge ?cat ?stage s ~cache ~subst = let import i o = if Int.equal i 1 then cache o in { (default_object ?stage s) with cache_function = cache; open_function = simple_open ?cat import; subst_function = (match subst with | None -> fun _ -> CErrors.anomaly Pp.(str "The object " ++ str s ++ str " does not know how to substitute!") | Some subst -> subst; ); classify_function = if Option.has_some subst then (fun _ -> Substitute) else (fun _ -> Keep); } let global_object ?cat ?stage s ~cache ~subst ~discharge = { (global_object_nodischarge ?cat s ~cache ~subst) with discharge_function = discharge } let superglobal_object_nodischarge ?stage s ~cache ~subst = { (default_object ?stage s) with load_function = (fun _ x -> cache x); cache_function = cache; subst_function = (match subst with | None -> fun _ -> CErrors.anomaly Pp.(str "The object " ++ str s ++ str " does not know how to substitute!") | Some subst -> subst; ); classify_function = if Option.has_some subst then (fun _ -> Substitute) else (fun _ -> Keep); } let superglobal_object ?stage s ~cache ~subst ~discharge = { (superglobal_object_nodischarge ?stage s ~cache ~subst) with discharge_function = discharge }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>