package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.1.tar.gz
md5=13d2793fc6413aac5168822313e4864e
sha512=ec8379df34ba6e72bcf0218c66fef248b0e4c5c436fb3f2d7dd83a2c5f349dd0874a67484fcf9c0df3e5d5937d7ae2b2a79274725595b4b0065a381f70769b42
doc/src/coq-core.tactics/generalize.ml.html
Source file generalize.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* module CVars = Vars *) open Pp open Util open Names open Constr open Context open Termops open Environ open EConstr open Vars open Find_subterm open Namegen open Locus open Proofview.Notations open Context.Named.Declaration module NamedDecl = Context.Named.Declaration (*********************************************) (* Errors *) (*********************************************) exception AlreadyUsed of Id.t let error ?loc e = Loc.raise ?loc e exception Unhandled let wrap_unhandled f e = try Some (f e) with Unhandled -> None let tactic_interp_error_handler = function | AlreadyUsed id -> Id.print id ++ str " is already used." | _ -> raise Unhandled let _ = CErrors.register_handler (wrap_unhandled tactic_interp_error_handler) let fresh_id_in_env avoid id env = let avoid' = ids_of_named_context_val (named_context_val env) in let avoid = if Id.Set.is_empty avoid then avoid' else Id.Set.union avoid' avoid in next_ident_away_in_goal (Global.env ()) id avoid (*********************************) (* Basic generalization tactics *) (*********************************) (* Given a type [T] convertible to [forall x1..xn:A1..An(x1..xn-1), G(x1..xn)] and [a1..an:A1..An(a1..an-1)] such that the goal is [G(a1..an)], this generalizes [hyps |- goal] into [hyps |- T] *) (* Given a context [hyps] with domain [x1..xn], possibly with let-ins, and well-typed in the current goal, [bring_hyps hyps] generalizes [ctxt |- G(x1..xn] into [ctxt |- forall hyps, G(x1..xn)] *) let bring_hyps hyps = if List.is_empty hyps then Tacticals.tclIDTAC else let hyps = List.rev hyps in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let concl = Tacmach.pf_concl gl in let newcl = it_mkNamedProd_or_LetIn sigma concl hyps in let args = Context.Named.instance mkVar hyps in Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, mkApp (ev, args)) end end let revert hyps = Proofview.Goal.enter begin fun gl -> let ctx = List.map (fun id -> Tacmach.pf_get_hyp id gl) hyps in (bring_hyps ctx) <*> (Tactics.clear hyps) end (***************************) (* Generalization tactics *) (***************************) (* Compute a name for a generalization *) let generalized_name env sigma c t ids cl = function | Name id as na -> if Id.List.mem id ids then error (AlreadyUsed id); na | Anonymous -> match EConstr.kind sigma c with | Var id -> (* Keep the name even if not occurring: may be used by intros later *) Name id | _ -> if noccurn sigma 1 cl then Anonymous else (* On ne s'etait pas casse la tete : on avait pris pour nom de variable la premiere lettre du type, meme si "c" avait ete une constante dont on aurait pu prendre directement le nom *) named_hd env sigma t Anonymous (* Abstract over [c] in [forall x1:A1(c)..xi:Ai(c).T(c)] producing [forall x, x1:A1(x1), .., xi:Ai(x). T(x)] with all [c] abtracted in [Ai] but only those at [occs] in [T] *) let generalize_goal_gen env sigma ids i ((occs,c,b),na) t cl = let open Context.Rel.Declaration in let decls,cl = decompose_prod_n_decls sigma i cl in let dummy_prod = it_mkProd_or_LetIn mkProp decls in let newdecls,_ = let arity = Array.length (snd (EConstr.decompose_app sigma c)) in let cache = ref Int.Map.empty in let eq sigma k t = let c = try Int.Map.find k !cache with Not_found -> let c = EConstr.Vars.lift k c in let () = cache := Int.Map.add k c !cache in c in (* We use a nounivs equality because generalize morally takes a pattern as argument, so we have to ignore freshly generated sorts. *) EConstr.eq_constr_nounivs sigma c t in decompose_prod_n_decls sigma i (replace_term_gen sigma eq arity (mkRel 1) dummy_prod) in let cl',sigma' = subst_closed_term_occ env sigma (AtOccs occs) c (it_mkProd_or_LetIn cl newdecls) in let na = generalized_name env sigma c t ids cl' na in let r = Retyping.relevance_of_type env sigma t in let decl = match b with | None -> LocalAssum (make_annot na r,t) | Some b -> LocalDef (make_annot na r,b,t) in mkProd_or_LetIn decl cl', sigma' let generalize_goal gl i ((occs,c,b),na as o) (cl,sigma) = let open Tacmach in let env = pf_env gl in let ids = pf_ids_of_hyps gl in let sigma, t = Typing.type_of env sigma c in generalize_goal_gen env sigma ids i o t cl let generalize_dep ?(with_let=false) c = let open Tacmach in let open Tacticals in Proofview.Goal.enter begin fun gl -> let env = pf_env gl in let sign = named_context_val env in let sigma = project gl in let init_ids = ids_of_named_context (Global.named_context()) in let seek (d:named_declaration) (toquant:named_context) = if List.exists (fun d' -> occur_var_in_decl env sigma (NamedDecl.get_id d') d) toquant || dependent_in_decl sigma c d then d::toquant else toquant in let to_quantify = Context.Named.fold_outside seek (named_context_of_val sign) ~init:[] in let qhyps = List.map NamedDecl.get_id to_quantify in let tothin = List.filter (fun id -> not (Id.List.mem id init_ids)) qhyps in let tothin' = match EConstr.kind sigma c with | Var id when mem_named_context_val id sign && not (Id.List.mem id init_ids) -> tothin@[id] | _ -> tothin in let cl' = it_mkNamedProd_or_LetIn sigma (pf_concl gl) to_quantify in let is_var, body = match EConstr.kind sigma c with | Var id -> let body = NamedDecl.get_value (pf_get_hyp id gl) in let is_var = Option.is_empty body && not (List.mem id init_ids) in if with_let then is_var, body else is_var, None | _ -> false, None in let cl'',evd = generalize_goal gl 0 ((AllOccurrences,c,body),Anonymous) (cl',project gl) in (* Check that the generalization is indeed well-typed *) let evd = (* No need to retype for variables, term is statically well-typed *) if is_var then evd else fst (Typing.type_of env evd cl'') in let args = Array.to_list (Context.Named.instance mkVar to_quantify) in tclTHENLIST [ Proofview.Unsafe.tclEVARS evd; Tactics.apply_type ~typecheck:false cl'' (if Option.is_empty body then c::args else args); Tactics.clear tothin'] end (** *) let generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let newcl, evd = List.fold_right_i (generalize_goal gl) 0 lconstr (Tacmach.pf_concl gl,Tacmach.project gl) in let (evd, _) = Typing.type_of env evd newcl in let map ((_, c, b),_) = if Option.is_empty b then Some c else None in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS evd) (Tactics.apply_type ~typecheck:false newcl (List.map_filter map lconstr)) end let new_generalize_gen_let lconstr = Proofview.Goal.enter begin fun gl -> let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let ids = Tacmach.pf_ids_of_hyps gl in let newcl, sigma, args = List.fold_right_i (fun i ((_,c,b),_ as o) (cl, sigma, args) -> let sigma, t = Typing.type_of env sigma c in let args = if Option.is_empty b then c :: args else args in let cl, sigma = generalize_goal_gen env sigma ids i o t cl in (cl, sigma, args)) 0 lconstr (concl, sigma, []) in Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma) (Refine.refine ~typecheck:false begin fun sigma -> let (sigma, ev) = Evarutil.new_evar env sigma ~principal:true newcl in (sigma, applist (ev, args)) end) end let generalize_gen lconstr = generalize_gen_let (List.map (fun (occs_c,na) -> let (occs,c) = Redexpr.out_with_occurrences occs_c in (occs,c,None),na) lconstr) let new_generalize_gen lconstr = new_generalize_gen_let (List.map (fun ((occs,c),na) -> (occs,c,None),na) lconstr) let generalize l = new_generalize_gen_let (List.map (fun c -> ((AllOccurrences,c,None),Anonymous)) l) (* Faudra-t-il une version avec plusieurs args de generalize_dep ? Cela peut-être troublant de faire "Generalize Dependent H n" dans "n:nat; H:n=n |- P(n)" et d'échouer parce que H a disparu après la généralisation dépendante par n. let quantify lconstr = List.fold_right (fun com tac -> tclTHEN tac (tactic_com generalize_dep c)) lconstr tclIDTAC *) let coq_eq env sigma = Evd.fresh_global env sigma Coqlib.(lib_ref "core.eq.type") let coq_eq_refl env sigma = Evd.fresh_global env sigma Coqlib.(lib_ref "core.eq.refl") let coq_heq_ref = lazy (Coqlib.lib_ref "core.JMeq.type") let coq_heq env sigma = Evd.fresh_global env sigma (Lazy.force coq_heq_ref) let coq_heq_refl env sigma = Evd.fresh_global env sigma (Coqlib.lib_ref "core.JMeq.refl") (* let coq_heq_refl = lazy (glob (lib_ref "core.JMeq.refl")) *) let mkEq env sigma t x y = let sigma, eq = coq_eq env sigma in sigma, mkApp (eq, [| t; x; y |]) let mkRefl env sigma t x = let sigma, refl = coq_eq_refl env sigma in sigma, mkApp (refl, [| t; x |]) let mkHEq env sigma t x u y = let sigma, c = coq_heq env sigma in sigma, mkApp (c,[| t; x; u; y |]) let mkHRefl env sigma t x = let sigma, c = coq_heq_refl env sigma in sigma, mkApp (c, [| t; x |]) let lift_togethern n l = let l', _ = List.fold_right (fun x (acc, n) -> (lift n x :: acc, succ n)) l ([], n) in l' let lift_list l = List.map (lift 1) l let ids_of_constr env sigma ?(all=false) vars c = let rec aux vars c = match EConstr.kind sigma c with | Var id -> Id.Set.add id vars | App (f, args) -> (match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Inductive.lookup_mind_specif env ind in Array.fold_left_from (if all then 0 else mib.Declarations.mind_nparams) aux vars args | _ -> EConstr.fold sigma aux vars c) | _ -> EConstr.fold sigma aux vars c in aux vars c let decompose_indapp env sigma f args = match EConstr.kind sigma f with | Construct ((ind,_),_) | Ind (ind,_) -> let (mib,mip) = Inductive.lookup_mind_specif env ind in let first = mib.Declarations.mind_nparams_rec in let pars, args = Array.chop first args in mkApp (f, pars), args | _ -> f, args let mk_term_eq homogeneous env sigma ty t ty' t' = if homogeneous then let sigma, eq = mkEq env sigma ty t t' in let sigma, refl = mkRefl env sigma ty' t' in sigma, (eq, refl) else let sigma, heq = mkHEq env sigma ty t ty' t' in let sigma, hrefl = mkHRefl env sigma ty' t' in sigma, (heq, hrefl) let make_abstract_generalize env id typ concl dep ctx body c eqs args refls = let open Context.Rel.Declaration in Refine.refine ~typecheck:true begin fun sigma -> let eqslen = List.length eqs in (* Abstract by the "generalized" hypothesis equality proof if necessary. *) let sigma, abshypeq, abshypt = if dep then let ty = lift 1 c in let homogeneous = Reductionops.is_conv env sigma ty typ in let sigma, (eq, refl) = mk_term_eq homogeneous (push_rel_context ctx env) sigma ty (mkRel 1) typ (mkVar id) in sigma, mkProd (make_annot Anonymous Sorts.Relevant, eq, lift 1 concl), [| refl |] else sigma, concl, [||] in (* Abstract by equalities *) let eqs = lift_togethern 1 eqs in (* lift together and past genarg *) let abseqs = it_mkProd_or_LetIn (lift eqslen abshypeq) (List.map (fun x -> LocalAssum (make_annot Anonymous Sorts.Relevant, x)) eqs) in let r = Sorts.Relevant in (* TODO relevance *) let decl = match body with | None -> LocalAssum (make_annot (Name id) r, c) | Some body -> LocalDef (make_annot (Name id) r, body, c) in (* Abstract by the "generalized" hypothesis. *) let genarg = mkProd_or_LetIn decl abseqs in (* Abstract by the extension of the context *) let genctyp = it_mkProd_or_LetIn genarg ctx in (* The goal will become this product. *) let (sigma, genc) = Evarutil.new_evar env sigma ~principal:true genctyp in (* Apply the old arguments giving the proper instantiation of the hyp *) let instc = mkApp (genc, Array.of_list args) in (* Then apply to the original instantiated hyp. *) let instc = Option.cata (fun _ -> instc) (mkApp (instc, [| mkVar id |])) body in (* Apply the reflexivity proofs on the indices. *) let appeqs = mkApp (instc, Array.of_list refls) in (* Finally, apply the reflexivity proof for the original hyp, to get a term of type gl again. *) (sigma, mkApp (appeqs, abshypt)) end let hyps_of_vars env sigma sign nogen hyps = if Id.Set.is_empty hyps then [] else let (_,lh) = Context.Named.fold_inside (fun (hs,hl) d -> let x = NamedDecl.get_id d in if Id.Set.mem x nogen then (hs,hl) else if Id.Set.mem x hs then (hs,x::hl) else let xvars = global_vars_set_of_decl env sigma d in if not (Id.Set.is_empty (Id.Set.diff xvars hs)) then (Id.Set.add x hs, x :: hl) else (hs, hl)) ~init:(hyps,[]) sign in lh exception Seen let linear env sigma vars args = let seen = ref vars in try Array.iter (fun i -> let rels = ids_of_constr env sigma ~all:true Id.Set.empty i in let seen' = Id.Set.fold (fun id acc -> if Id.Set.mem id acc then raise Seen else Id.Set.add id acc) rels !seen in seen := seen') args; true with Seen -> false let is_defined_variable env id = env |> lookup_named id |> is_local_def let abstract_args gl generalize_vars dep id defined f args = let open Context.Rel.Declaration in let sigma = Tacmach.project gl in let env = Tacmach.pf_env gl in let concl = Tacmach.pf_concl gl in let hyps = Proofview.Goal.hyps gl in let dep = dep || local_occur_var sigma id concl in let avoid = ref Id.Set.empty in let get_id name = let id = fresh_id_in_env !avoid (match name with Name n -> n | Anonymous -> Id.of_string "gen_x") env in avoid := Id.Set.add id !avoid; id in (* Build application generalized w.r.t. the argument plus the necessary eqs. From env |- c : forall G, T and args : G we build (T[G'], G' : ctx, env ; G' |- args' : G, eqs := G'_i = G_i, refls : G' = G, vars to generalize) eqs are not lifted w.r.t. each other yet. (* will be needed when going to dependent indexes *) *) let aux (sigma, prod, ctx, ctxenv, c, args, eqs, refls, nongenvars, vars) arg = let name, ty_relevance, ty, arity = let rel, c = Reductionops.whd_decompose_prod_n env sigma 1 prod in let ({binder_name=na;binder_relevance=r},t) = List.hd rel in na, r, t, c in let argty = Retyping.get_type_of env sigma arg in let sigma, ty = Evarsolve.refresh_universes (Some true) env sigma ty in let lenctx = List.length ctx in let liftargty = lift lenctx argty in let leq = constr_cmp ctxenv sigma Conversion.CUMUL liftargty ty in match EConstr.kind sigma arg with | Var id when not (is_defined_variable env id) && leq && not (Id.Set.mem id nongenvars) -> (sigma, subst1 arg arity, ctx, ctxenv, mkApp (c, [|arg|]), args, eqs, refls, Id.Set.add id nongenvars, Id.Set.remove id vars) | _ -> let name = get_id name in let decl = LocalAssum (make_annot (Name name) ty_relevance, ty) in let ctx = decl :: ctx in let c' = mkApp (lift 1 c, [|mkRel 1|]) in let args = arg :: args in let liftarg = lift (List.length ctx) arg in let sigma, eq, refl = if leq then let sigma, eq = mkEq env sigma (lift 1 ty) (mkRel 1) liftarg in let sigma, refl = mkRefl env sigma (lift (-lenctx) ty) arg in sigma, eq, refl else let sigma, eq = mkHEq env sigma (lift 1 ty) (mkRel 1) liftargty liftarg in let sigma, refl = mkHRefl env sigma argty arg in sigma, eq, refl in let eqs = eq :: lift_list eqs in let refls = refl :: refls in let argvars = ids_of_constr env sigma vars arg in (sigma, arity, ctx, push_rel decl ctxenv, c', args, eqs, refls, nongenvars, Id.Set.union argvars vars) in let f', args' = decompose_indapp env sigma f args in let dogen, f', args' = let parvars = ids_of_constr env sigma ~all:true Id.Set.empty f' in if not (linear env sigma parvars args') then true, f, args else match Array.findi (fun i x -> not (isVar sigma x) || is_defined_variable env (destVar sigma x)) args' with | None -> false, f', args' | Some nonvar -> let before, after = Array.chop nonvar args' in true, mkApp (f', before), after in if dogen then let tyf' = Retyping.get_type_of env sigma f' in let sigma, arity, ctx, ctxenv, c', args, eqs, refls, nogen, vars = Array.fold_left aux (sigma, tyf',[],env,f',[],[],[],Id.Set.empty,Id.Set.empty) args' in let args, refls = List.rev args, List.rev refls in let vars = if generalize_vars then let nogen = Id.Set.add id nogen in hyps_of_vars env sigma hyps nogen vars else [] in let body, c' = if defined then Some c', Retyping.get_type_of ctxenv sigma c' else None, c' in let typ = Tacmach.pf_get_hyp_typ id gl in let tac = make_abstract_generalize env id typ concl dep ctx body c' eqs args refls in let tac = Proofview.Unsafe.tclEVARS sigma <*> tac in Some (tac, dep, succ (List.length ctx), vars) else None let abstract_generalize ?(generalize_vars=true) ?(force_dep=false) id = let open Context.Named.Declaration in Proofview.Goal.enter begin fun gl -> Coqlib.(check_required_library jmeq_module_name); let sigma = Tacmach.project gl in let (f, args, def, id, oldid) = let oldid = Tacmach.pf_get_new_id id gl in match Tacmach.pf_get_hyp id gl with | LocalAssum (_,t) -> let f, args = decompose_app sigma t in (f, args, false, id, oldid) | LocalDef (_,t,_) -> let f, args = decompose_app sigma t in (f, args, true, id, oldid) in if Array.is_empty args then Proofview.tclUNIT () else let newc = abstract_args gl generalize_vars force_dep id def f args in match newc with | None -> Proofview.tclUNIT () | Some (tac, dep, n, vars) -> let tac = if dep then Tacticals.tclTHENLIST [ tac; Tactics.rename_hyp [(id, oldid)]; Tacticals.tclDO n Tactics.intro; generalize_dep ~with_let:true (mkVar oldid)] else Tacticals.tclTHENLIST [ tac; Tactics.clear [id]; Tacticals.tclDO n Tactics.intro] in if List.is_empty vars then tac else Tacticals.tclTHEN tac (Tacticals.tclFIRST [revert vars ; Tacticals.tclMAP (fun id -> Tacticals.tclTRY (generalize_dep ~with_let:true (mkVar id))) vars]) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>