package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.1.tar.gz
md5=13d2793fc6413aac5168822313e4864e
sha512=ec8379df34ba6e72bcf0218c66fef248b0e4c5c436fb3f2d7dd83a2c5f349dd0874a67484fcf9c0df3e5d5937d7ae2b2a79274725595b4b0065a381f70769b42
doc/src/coq-core.pretyping/coercionops.ml.html
Source file coercionops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open CErrors open Util open Pp open Names open Constr open Libnames open Globnames open Mod_subst (* usage qque peu general: utilise aussi dans record *) (* A class is a type constructor, its type is an arity whose number of arguments is cl_param (0 for CL_SORT and CL_FUN) *) type cl_typ = | CL_SORT | CL_FUN | CL_SECVAR of variable | CL_CONST of Constant.t | CL_IND of inductive | CL_PROJ of Projection.Repr.t let cl_typ_ord t1 t2 = match t1, t2 with | CL_SECVAR v1, CL_SECVAR v2 -> Id.compare v1 v2 | CL_CONST c1, CL_CONST c2 -> Constant.CanOrd.compare c1 c2 | CL_PROJ c1, CL_PROJ c2 -> Projection.Repr.CanOrd.compare c1 c2 | CL_IND i1, CL_IND i2 -> Ind.CanOrd.compare i1 i2 | _ -> Stdlib.compare t1 t2 (** OK *) let cl_typ_eq t1 t2 = Int.equal (cl_typ_ord t1 t2) 0 module ClTyp = struct type t = cl_typ let compare = cl_typ_ord end module ClTypSet = Set.Make(ClTyp) module ClTypMap = Map.Make(ClTyp) type cl_info_typ = { (* The number of parameters of the coercion class. *) cl_param : int; (* The sets of coercion classes respectively reachable from and to the coercion class. *) cl_reachable_from : ClTypSet.t; cl_reachable_to : ClTypSet.t; (* The representative class of the strongly connected component. *) cl_repr : cl_typ; } type coe_typ = GlobRef.t module CoeTypMap = GlobRef.Map_env type coe_info_typ = { coe_value : GlobRef.t; coe_typ : Constr.t; coe_local : bool; coe_reversible : bool; coe_is_identity : bool; coe_is_projection : Projection.Repr.t option; coe_source : cl_typ; coe_target : cl_typ; coe_param : int; } type inheritance_path = coe_info_typ list let init_class_tab = let open ClTypMap in let cl_info params cl = let cl_singleton = ClTypSet.singleton cl in { cl_param = params; cl_reachable_from = cl_singleton; cl_reachable_to = cl_singleton; cl_repr = cl } in add CL_FUN (cl_info 0 CL_FUN) (add CL_SORT (cl_info 0 CL_SORT) empty) let class_tab = Summary.ref ~name:"class_tab" (init_class_tab : cl_info_typ ClTypMap.t) let coercion_tab = Summary.ref ~name:"coercion_tab" (CoeTypMap.empty : coe_info_typ CoeTypMap.t) let reachable_from cl = try (ClTypMap.find cl !class_tab).cl_reachable_from with Not_found -> ClTypSet.empty module ClGraph : sig type t val empty : t val add : cl_typ -> cl_typ -> inheritance_path -> t -> t val find : cl_typ -> cl_typ -> t -> inheritance_path val src : cl_typ -> t -> inheritance_path ClTypMap.t val dst : cl_typ -> t -> inheritance_path ClTypMap.t val bindings : t -> ((cl_typ * cl_typ) * inheritance_path) list end = struct type map = inheritance_path ClTypMap.t ClTypMap.t type t = map * map (* Doubly-indexed map in both directions *) let empty = ClTypMap.empty, ClTypMap.empty let add0 x y p m = let n = try ClTypMap.find x m with Not_found -> ClTypMap.empty in ClTypMap.add x (ClTypMap.add y p n) m let add x y p (ml, mr) = (add0 x y p ml, add0 y x p mr) let find x y (m, _) = ClTypMap.find y (ClTypMap.find x m) let src x (m, _) = try ClTypMap.find x m with Not_found -> ClTypMap.empty let dst x (_, m) = try ClTypMap.find x m with Not_found -> ClTypMap.empty let bindings (m, _) = let fold s n accu = let fold t p accu = ((s, t), p) :: accu in ClTypMap.fold fold n accu in List.rev (ClTypMap.fold fold m []) end let inheritance_graph = Summary.ref ~name:"inheritance_graph" ClGraph.empty (* ajout de nouveaux "objets" *) let add_new_class cl s = class_tab := ClTypMap.add cl s !class_tab let add_coercion coe s = coercion_tab := CoeTypMap.add coe s !coercion_tab let add_path (x, y) p = inheritance_graph := ClGraph.add x y p !inheritance_graph (* class_info : cl_typ -> int * cl_info_typ *) let class_info cl = ClTypMap.find cl !class_tab let class_nparams cl = (class_info cl).cl_param let class_exists cl = ClTypMap.mem cl !class_tab let coercion_info coe = CoeTypMap.find coe !coercion_tab let coercion_exists coe = CoeTypMap.mem coe !coercion_tab (* find_class_type : evar_map -> constr -> cl_typ * universe_list * constr list *) let find_class_type env sigma t = let open EConstr in let t', args = Reductionops.whd_betaiotazeta_stack env sigma t in match EConstr.kind sigma t' with | Var id -> CL_SECVAR id, EInstance.empty, args | Const (sp,u) -> CL_CONST sp, u, args | Proj (p, _, c) when not (Projection.unfolded p) -> let revparams = let open Inductiveops in let t = Retyping.get_type_of env sigma c in let IndType (fam,_) = find_rectype env sigma t in let _, params = dest_ind_family fam in List.rev_map EConstr.of_constr params in CL_PROJ (Projection.repr p), EInstance.empty, (List.rev_append revparams (c :: args)) | Ind (ind_sp,u) -> CL_IND ind_sp, u, args | Prod _ -> CL_FUN, EInstance.empty, [] | Sort _ -> CL_SORT, EInstance.empty, [] | _ -> raise Not_found let class_of_global_reference = function | GlobRef.VarRef id -> CL_SECVAR id | GlobRef.ConstRef kn -> CL_CONST kn | GlobRef.IndRef ind -> CL_IND ind | GlobRef.ConstructRef _ -> raise Not_found let find_class_glob_type c = match DAst.get c with | Glob_term.GRef (ref,_) -> class_of_global_reference ref | Glob_term.GProd _ -> CL_FUN | Glob_term.GSort _ -> CL_SORT | _ -> raise Not_found let subst_cl_typ env subst ct = match ct with CL_SORT | CL_FUN | CL_SECVAR _ -> ct | CL_PROJ c -> let c' = subst_proj_repr subst c in if c' == c then ct else CL_PROJ c' | CL_CONST c -> let c',t = subst_con subst c in if c' == c then ct else (match t with | None -> CL_CONST c' | Some t -> pi1 (find_class_type env Evd.empty (EConstr.of_constr t.UVars.univ_abstracted_value))) | CL_IND i -> let i' = subst_ind subst i in if i' == i then ct else CL_IND i' (*CSC: here we should change the datatype for coercions: it should be possible to declare any term as a coercion *) let subst_coe_typ subst t = subst_global_reference subst t (* class_of : Term.constr -> int *) let class_of env sigma t = let (t, n1, cl, u, args) = try let (cl, u, args) = find_class_type env sigma t in let { cl_param = n1 } = class_info cl in (t, n1, cl, u, args) with Not_found -> let t = Tacred.hnf_constr env sigma t in let (cl, u, args) = find_class_type env sigma t in let { cl_param = n1 } = class_info cl in (t, n1, cl, u, args) in if Int.equal (List.length args) n1 then t, cl else raise Not_found let class_args_of env sigma c = pi3 (find_class_type env sigma c) let string_of_class = function | CL_FUN -> "Funclass" | CL_SORT -> "Sortclass" | CL_CONST sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.ConstRef sp)) | CL_PROJ sp -> let sp = Projection.Repr.constant sp in string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.ConstRef sp)) | CL_IND sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.IndRef sp)) | CL_SECVAR sp -> string_of_qualid (Nametab.shortest_qualid_of_global Id.Set.empty (GlobRef.VarRef sp)) let pr_class x = str (string_of_class x) (* lookup paths *) let lookup_path_between_class (s,t) = ClGraph.find s t !inheritance_graph let lookup_path_to_fun_from_class s = lookup_path_between_class (s, CL_FUN) let lookup_path_to_sort_from_class s = lookup_path_between_class (s, CL_SORT) (* advanced path lookup *) let apply_on_class_of env sigma t cont = try let (cl,u,args) = find_class_type env sigma t in let { cl_param = n1 } = class_info cl in if not (Int.equal (List.length args) n1) then raise Not_found; cont cl with Not_found -> (* Is it worth to be more incremental on the delta steps? *) let t = Tacred.hnf_constr env sigma t in let (cl, u, args) = find_class_type env sigma t in let { cl_param = n1 } = class_info cl in if not (Int.equal (List.length args) n1) then raise Not_found; cont cl let lookup_path_between env sigma ~src:s ~tgt:t = apply_on_class_of env sigma s (fun i -> apply_on_class_of env sigma t (fun j -> lookup_path_between_class (i,j))) let lookup_path_to_fun_from env sigma s = apply_on_class_of env sigma s lookup_path_to_fun_from_class let lookup_path_to_sort_from env sigma s = apply_on_class_of env sigma s lookup_path_to_sort_from_class let get_coercion_constructor env coe = let evd = Evd.from_env env in let evd, c = Evd.fresh_global env evd coe.coe_value in let c = fst (Reductionops.whd_all_stack env evd c) in match EConstr.kind evd c with | Constr.Construct (c, _) -> (* we don't return the modified evd as we drop the universes *) c, Inductiveops.constructor_nrealargs env c -1 | _ -> raise Not_found let lookup_pattern_path_between env (s,t) = List.map (get_coercion_constructor env) (ClGraph.find (CL_IND s) (CL_IND t) !inheritance_graph) let path_is_reversible p = List.for_all (fun c -> c.coe_reversible) p (* rajouter une coercion dans le graphe *) let path_printer : ((cl_typ * cl_typ) * inheritance_path -> Pp.t) ref = ref (fun _ -> str "<a class path>") let install_path_printer f = path_printer := f let print_path x = !path_printer x let path_comparator : (Environ.env -> Evd.evar_map -> cl_typ -> inheritance_path -> inheritance_path -> bool) ref = ref (fun _ _ _ _ _ -> false) let install_path_comparator f = path_comparator := f let compare_path env sigma cl p q = !path_comparator env sigma cl p q let warn_ambiguous_path = CWarnings.create ~name:"ambiguous-paths" ~category:CWarnings.CoreCategories.coercions (fun l -> prlist_with_sep fnl (fun (c,p,q) -> str"New coercion path " ++ print_path (c,p) ++ if List.is_empty q then str" is not definitionally an identity function." else str" is ambiguous with existing " ++ print_path (c, q) ++ str".") l) (* add_coercion_in_graph : coe_index * cl_typ * cl_typ -> unit coercion,source,target *) let different_class_params env ci = if (class_info ci).cl_param > 0 then true else match ci with | CL_IND i -> Environ.is_polymorphic env (GlobRef.IndRef i) | CL_CONST c -> Environ.is_polymorphic env (GlobRef.ConstRef c) | _ -> false let add_coercion_in_graph env sigma ?(update=false) ic = let source = ic.coe_source in let target = ic.coe_target in let source_info = class_info source in let target_info = class_info target in let old_inheritance_graph = !inheritance_graph in let ambig_paths : ((cl_typ * cl_typ) * inheritance_path * inheritance_path) list ref = ref [] in let check_coherence (i, j as ij) p q = let i_info = class_info i in let j_info = class_info j in let between_ij = ClTypSet.inter i_info.cl_reachable_from j_info.cl_reachable_to in if cl_typ_eq i_info.cl_repr i && cl_typ_eq j_info.cl_repr j && ClTypSet.is_empty (ClTypSet.diff (ClTypSet.inter between_ij source_info.cl_reachable_to) i_info.cl_reachable_to) && ClTypSet.is_empty (ClTypSet.diff (ClTypSet.inter between_ij target_info.cl_reachable_from) j_info.cl_reachable_from) && not (compare_path env sigma i p q) then ambig_paths := (ij, p, q) :: !ambig_paths in let try_add_new_path (i,j as ij) p = if cl_typ_eq i j then check_coherence ij p []; if not (cl_typ_eq i j) || different_class_params env i then if update then let () = add_path ij p in true else match lookup_path_between_class ij with | q -> (if not (cl_typ_eq i j) then check_coherence ij p q); false | exception Not_found -> add_path ij p; true else false in if try_add_new_path (source, target) [ic] then begin let rev = ClGraph.dst source old_inheritance_graph in let dir = ClGraph.src target old_inheritance_graph in let iter s p = if not (cl_typ_eq s source) then let _ = try_add_new_path (s, target) (p@[ic]) in let iter v q = if not (cl_typ_eq target v) then ignore (try_add_new_path (s,v) (p@[ic]@q)) in ClTypMap.iter iter dir in let () = ClTypMap.iter iter rev in let iter t p = if not (cl_typ_eq t target) then ignore (try_add_new_path (source, t) (ic::p)) in ClTypMap.iter iter dir end; class_tab := ClTypMap.mapi (fun k k_info -> let reachable_k_source = ClTypSet.mem k source_info.cl_reachable_to in let reachable_target_k = ClTypSet.mem k target_info.cl_reachable_from in { k_info with cl_reachable_from = if reachable_k_source then ClTypSet.union k_info.cl_reachable_from target_info.cl_reachable_from else k_info.cl_reachable_from; cl_reachable_to = if reachable_target_k then ClTypSet.union k_info.cl_reachable_to source_info.cl_reachable_to else k_info.cl_reachable_to; cl_repr = if reachable_k_source && reachable_target_k then target_info.cl_repr else k_info.cl_repr }) !class_tab; match !ambig_paths with [] -> () | _ -> warn_ambiguous_path !ambig_paths let subst_coercion subst c = let env = Global.env () in let coe = subst_coe_typ subst c.coe_value in let typ = subst_mps subst c.coe_typ in let cls = subst_cl_typ env subst c.coe_source in let clt = subst_cl_typ env subst c.coe_target in let clp = Option.Smart.map (subst_proj_repr subst) c.coe_is_projection in if c.coe_value == coe && c.coe_source == cls && c.coe_target == clt && c.coe_is_projection == clp then c else { c with coe_value = coe; coe_typ = typ; coe_source = cls; coe_target = clt; coe_is_projection = clp; } (* Computation of the class arity *) let reference_arity_length env sigma ref = let t, _ = Typeops.type_of_global_in_context env ref in List.length (fst (Reductionops.splay_arity env sigma (EConstr.of_constr t))) let projection_arity_length env sigma p = reference_arity_length env sigma (GlobRef.ConstRef (Projection.Repr.constant p)) let class_params env sigma = function | CL_FUN | CL_SORT -> 0 | CL_CONST sp -> reference_arity_length env sigma (GlobRef.ConstRef sp) | CL_PROJ sp -> projection_arity_length env sigma sp | CL_SECVAR sp -> reference_arity_length env sigma (GlobRef.VarRef sp) | CL_IND sp -> reference_arity_length env sigma (GlobRef.IndRef sp) (* add_class : cl_typ -> locality_flag option -> bool -> unit *) let add_class env sigma cl = if not (class_exists cl) then let cl_singleton = ClTypSet.singleton cl in add_new_class cl { cl_param = class_params env sigma cl; cl_reachable_from = cl_singleton; cl_reachable_to = cl_singleton; cl_repr = cl } let declare_coercion env sigma ?update c = let () = add_class env sigma c.coe_source in let () = add_class env sigma c.coe_target in let () = add_coercion c.coe_value c in add_coercion_in_graph env sigma ?update c (* For printing purpose *) let classes () = List.rev (ClTypMap.fold (fun x _ acc -> x :: acc) !class_tab []) let coercions () = List.rev (CoeTypMap.fold (fun _ y acc -> y::acc) !coercion_tab []) let inheritance_graph () = ClGraph.bindings !inheritance_graph let coercion_of_reference r = let ref = Nametab.global r in if not (coercion_exists ref) then user_err (Nametab.pr_global_env Id.Set.empty ref ++ str" is not a coercion."); ref module CoercionPrinting = struct type t = coe_typ module Set = GlobRef.Set let encode _env = coercion_of_reference let subst = subst_coe_typ let printer x = Nametab.pr_global_env Id.Set.empty x let key = ["Printing";"Coercion"] let title = "Explicitly printed coercions: " let member_message x b = str "Explicit printing of coercion " ++ printer x ++ str (if b then " is set" else " is unset") end module PrintingCoercion = Goptions.MakeRefTable(CoercionPrinting) let hide_coercion coe = if not (PrintingCoercion.active coe) then let coe_info = coercion_info coe in Some coe_info.coe_param else None
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>