package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.19.0.tar.gz
md5=64b49dbc3205477bd7517642c0b9cbb6
sha512=02fb5b4fb575af79e092492cbec6dc0d15a1d74a07f827f657a72d4e6066532630e5a6d15be4acdb73314bd40b9a321f9ea0584e0ccfe51fd3a56353bd30db9b
doc/src/ssrmatching_plugin/ssrmatching.ml.html
Source file ssrmatching.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* This file is (C) Copyright 2006-2015 Microsoft Corporation and Inria. *) open Ltac_plugin open Names open Pp open Genarg open Context module CoqConstr = Constr open CoqConstr open Libnames open Tactics open Termops open Glob_term open Util open Evd open Tacexpr open Tacinterp open Pretyping open Ppconstr open Printer open Evar_kinds open Constrexpr open Constrexpr_ops type ssrtermkind = | InParens | WithAt | NoFlag | Cpattern let errorstrm = CErrors.user_err let loc_error loc msg = CErrors.user_err ?loc (str msg) let ppnl = Feedback.msg_info (* 0 cost pp function. Active only if env variable SSRDEBUG is set *) (* or if SsrDebug is Set *) let pp_ref = ref (fun _ -> ()) let ssr_pp s = Feedback.msg_debug (str"SSR: "++Lazy.force s) let _ = try ignore(Sys.getenv "SSRMATCHINGDEBUG"); pp_ref := ssr_pp with Not_found -> () let debug b = if b then pp_ref := ssr_pp else pp_ref := fun _ -> () let _ = Goptions.declare_bool_option { Goptions.optstage = Summary.Stage.Interp; Goptions.optkey = ["Debug";"SsrMatching"]; Goptions.optdepr = None; Goptions.optread = (fun _ -> !pp_ref == ssr_pp); Goptions.optwrite = debug } let pp s = !pp_ref s (** Utils *)(* {{{ *****************************************************************) let env_size env = List.length (Environ.named_context env) let safeDestApp sigma c = match EConstr.kind sigma c with App (f, a) -> f, a | _ -> c, [| |] (* Toplevel constr must be globalized twice ! *) let glob_constr ist genv sigma t = match t, ist with | (_, Some ce), Some ist -> let vars = Id.Map.fold (fun x _ accu -> Id.Set.add x accu) ist.lfun Id.Set.empty in let ltacvars = { Constrintern.empty_ltac_sign with Constrintern.ltac_vars = vars } in Constrintern.intern_gen WithoutTypeConstraint ~ltacvars:ltacvars genv sigma ce | (rc, None), _ -> rc | (_, Some _), None -> CErrors.anomaly Pp.(str"glob_constr: term with no ist") (* Term printing utilities functions for deciding bracketing. *) let pr_paren prx x = hov 1 (str "(" ++ prx x ++ str ")") (* String lexing utilities *) let skip_wschars s = let rec loop i = match s.[i] with '\n'..' ' -> loop (i + 1) | _ -> i in loop (* We also guard characters that might interfere with the ssreflect *) (* tactic syntax. *) let guard_term kind s i = match s.[i] with | '(' -> false | '{' | '/' | '=' -> true | _ -> kind = InParens (* The call 'guard s i' should return true if the contents of s *) (* starting at i need bracketing to avoid ambiguities. *) let pr_guarded guard prc c = let s = Pp.string_of_ppcmds (prc c) ^ "$" in if guard s (skip_wschars s 0) then pr_paren prc c else prc c (* More sensible names for constr printers *) let with_global_env_evm f x = let env = Global.env () in let sigma = Evd.from_env env in f env sigma x let prl_glob_constr = with_global_env_evm pr_lglob_constr_env let pr_glob_constr = with_global_env_evm pr_glob_constr_env let prl_constr_expr = pr_lconstr_expr let pr_constr_expr = pr_constr_expr let prl_glob_constr_and_expr env sigma = function | _, Some c -> prl_constr_expr env sigma c | c, None -> prl_glob_constr c let pr_glob_constr_and_expr env sigma = function | _, Some c -> pr_constr_expr env sigma c | c, None -> pr_glob_constr c (** Adding a new uninterpreted generic argument type *) let add_genarg tag pr = let wit = Genarg.make0 tag in let tag = Geninterp.Val.create tag in let glob ist x = (ist, x) in let subst _ x = x in let interp ist x = Ftactic.return (Geninterp.Val.Dyn (tag, x)) in let gen_pr env sigma _ _ _ = pr env sigma in let () = Genintern.register_intern0 wit glob in let () = Gensubst.register_subst0 wit subst in let () = Geninterp.register_interp0 wit interp in let () = Geninterp.register_val0 wit (Some (Geninterp.Val.Base tag)) in Pptactic.declare_extra_genarg_pprule wit gen_pr gen_pr gen_pr; wit (** Constructors for constr_expr *) let isCVar = function { CAst.v = CRef (qid,_) } -> qualid_is_ident qid | _ -> false let destCVar = function | { CAst.v = CRef (qid,_) } when qualid_is_ident qid -> qualid_basename qid | _ -> CErrors.anomaly (str"not a CRef.") let isGLambda c = match DAst.get c with GLambda (Name _, _, _, _) -> true | _ -> false let destGLambda c = match DAst.get c with GLambda (Name id, _, _, c) -> (id, c) | _ -> CErrors.anomaly (str "not a GLambda") let isGHole c = match DAst.get c with GHole _ -> true | _ -> false let mkCHole ~loc = CAst.make ?loc @@ CHole (None) let mkCLambda ?loc name ty t = CAst.make ?loc @@ CLambdaN ([CLocalAssum([CAst.make ?loc name], Default Explicit, ty)], t) let mkCLetIn ?loc name bo t = CAst.make ?loc @@ CLetIn ((CAst.make ?loc name), bo, None, t) let mkCCast ?loc t ty = CAst.make ?loc @@ CCast (t, Some DEFAULTcast, ty) (** Constructors for rawconstr *) let mkRHole = DAst.make @@ GHole (GInternalHole) let mkRApp f args = if args = [] then f else DAst.make @@ GApp (f, args) let mkRCast rc rt = DAst.make @@ GCast (rc, Some DEFAULTcast, rt) let mkRLambda n s t = DAst.make @@ GLambda (n, Explicit, s, t) (* }}} *) exception NoProgress (** Unification procedures. *) (* To enforce the rigidity of the rooted match we always split *) (* top applications, so the unification procedures operate on *) (* arrays of patterns and terms. *) (* We perform three kinds of unification: *) (* EQ: exact conversion check *) (* FO: first-order unification of evars, without conversion *) (* HO: higher-order unification with conversion *) (* The subterm unification strategy is to find the first FO *) (* match, if possible, and the first HO match otherwise, then *) (* compute all the occurrences that are EQ matches for the *) (* relevant subterm. *) (* Additional twists: *) (* - If FO/HO fails then we attempt to fill evars using *) (* typeclasses before raising an outright error. We also *) (* fill typeclasses even after a successful match, since *) (* beta-reduction and canonical instances may leave *) (* undefined evars. *) (* - We do postchecks to rule out matches that are not *) (* closed or that assign to a global evar; these can be *) (* disabled for rewrite or dependent family matches. *) (* - We do a full FO scan before turning to HO, as the FO *) (* comparison can be much faster than the HO one. *) let unif_EQ env sigma p c = let env = Environ.set_universes (Evd.universes sigma) env in Reductionops.is_conv env sigma p c let unif_EQ_args env sigma pa a = let n = Array.length pa in let rec loop i = (i = n) || unif_EQ env sigma pa.(i) a.(i) && loop (i + 1) in loop 0 let unif_HO env ise p c = try Evarconv.unify_delay env ise p c with Evarconv.UnableToUnify(ise, err) -> raise Pretype_errors.(PretypeError(env,ise,CannotUnify(p,c,Some err))) let unif_HO_args env ise0 pa i ca = let n = Array.length pa in let rec loop ise j = if j = n then ise else loop (unif_HO env ise pa.(j) (ca.(i + j))) (j + 1) in loop ise0 0 (* FO unification should boil down to calling w_unify with no_delta, but *) (* alas things are not so simple: w_unify does partial type-checking, *) (* which breaks down when the no-delta flag is on (as the Coq type system *) (* requires full convertibility. The workaround here is to convert all *) (* evars into metas, since 8.2 does not TC metas. This means some lossage *) (* for HO evars, though hopefully Miller patterns can pick up some of *) (* those cases, and HO matching will mop up the rest. *) let flags_FO env = let oracle = Environ.oracle env in let ts = Conv_oracle.get_transp_state oracle in let flags = { (Unification.default_no_delta_unify_flags ts).Unification.core_unify_flags with Unification.modulo_conv_on_closed_terms = None; Unification.modulo_eta = true; Unification.modulo_betaiota = true; Unification.modulo_delta_types = ts } in { Unification.core_unify_flags = flags; Unification.merge_unify_flags = flags; Unification.subterm_unify_flags = flags; Unification.allow_K_in_toplevel_higher_order_unification = false; Unification.resolve_evars = (Unification.default_no_delta_unify_flags ts).Unification.resolve_evars } let unif_FO env ise metas p c = let ise = Metamap.fold (fun mv t accu -> Evd.meta_declare mv t accu) metas ise in let _ : Evd.evar_map = Unification.w_unify env ise Conversion.CONV ~flags:(flags_FO env) p c in () (* Perform evar substitution in main term and prune substitution. *) let nf_open_term sigma0 ise c = let open EConstr in let s' = ref sigma0 in let rec nf c' = match EConstr.kind ise c' with | Evar ex -> let k, a = ex in let a' = SList.Skip.map nf a in if not (Evd.mem !s' k) then s' := Evd.add !s' k (Evarutil.nf_evar_info ise (Evd.find_undefined ise k)); mkEvar (k, a') | _ -> map ise nf c' in let copy_def k _ () = let EvarInfo evi = Evd.find ise k in match Evd.evar_body evi with | Evar_defined c' -> let c' = nf c' in s' := Evd.define k c' !s' | _ -> () in let c' = nf c in let _ = Evd.fold_undefined copy_def sigma0 () in let changed = sigma0 != !s' in changed, !s', Evd.evar_universe_context ise, c' let unif_end ?(solve_TC=true) env sigma0 ise0 pt ok = let ise = Evarconv.solve_unif_constraints_with_heuristics env ise0 in let tcs = Evd.get_typeclass_evars ise in let c, s, uc, t = nf_open_term sigma0 ise pt in let ise1 = create_evar_defs s in let ise1 = Evd.set_typeclass_evars ise1 (Evar.Set.filter (fun ev -> Evd.is_undefined ise1 ev) tcs) in let ise1 = Evd.set_universe_context ise1 uc in let ise2 = if solve_TC then Typeclasses.resolve_typeclasses ~fail:true env ise1 else ise1 in if not (ok ise) then raise NoProgress else if ise2 == ise1 then (c, s, uc, t) else let c, s, uc', t = nf_open_term sigma0 ise2 t in c, s, UState.union uc uc', t let unify_HO env sigma0 t1 t2 = let sigma = unif_HO env sigma0 t1 t2 in let _, sigma, uc, _ = unif_end ~solve_TC:false env sigma0 sigma t2 (fun _ -> true) in Evd.set_universe_context sigma uc (* This is what the definition of iter_constr should be... *) let iter_constr_LR sigma f c = match EConstr.kind sigma c with | Evar (k, a) -> SList.Skip.iter f a | Cast (cc, _, t) -> f cc; f t | Prod (_, t, b) | Lambda (_, t, b) -> f t; f b | LetIn (_, v, t, b) -> f v; f t; f b | App (cf, a) -> f cf; Array.iter f a | Case (_, _, pms, ((_, p), _), iv, v, b) -> f v; Array.iter f pms; f p; iter_invert f iv; Array.iter (fun (_, c) -> f c) b | Fix (_, (_, t, b)) | CoFix (_, (_, t, b)) -> for i = 0 to Array.length t - 1 do f t.(i); f b.(i) done | Proj(_,_,a) -> f a | Array(_u,t,def,ty) -> Array.iter f t; f def; f ty | (Rel _ | Meta _ | Var _ | Sort _ | Const _ | Ind _ | Construct _ | Int _ | Float _) -> () (* The comparison used to determine which subterms matches is KEYED *) (* CONVERSION. This looks for convertible terms that either have the same *) (* same head constant as pat if pat is an application (after beta-iota), *) (* or start with the same constr constructor (esp. for LetIn); this is *) (* disregarded if the head term is let x := ... in x, and casts are always *) (* ignored and removed). *) (* Record projections get special treatment: in addition to the projection *) (* constant itself, ssreflect also recognizes head constants of canonical *) (* projections. *) exception NoMatch type ssrdir = L2R | R2L let pr_dir_side = function L2R -> str "LHS" | R2L -> str "RHS" let inv_dir = function L2R -> R2L | R2L -> L2R type pattern_class = | KpatFixed | KpatConst | KpatEvar of Evar.t | KpatLet | KpatLam | KpatRigid | KpatFlex | KpatProj of Constant.t type tpattern = { up_k : pattern_class; up_FO : EConstr.t Metamap.t * EConstr.t; up_f : EConstr.t; up_a : EConstr.t array; up_t : EConstr.t; (* equation proof term or matched term *) up_dir : ssrdir; (* direction of the rule *) up_ok : EConstr.t -> evar_map -> bool; (* progress test for rewrite *) } type tpatterns = { tpat_sigma : Evd.evar_map; tpat_pats : tpattern list; } let empty_tpatterns sigma = { tpat_sigma = sigma; tpat_pats = [] } (* Technically we only care about the metas of [sigma] in the [tpatterns] type. Should we [create_evar_defs] here? *) let all_ok _ _ = true let proj_nparams c = try 1 + Structures.Structure.projection_nparams c with Not_found -> 0 let isRigid sigma c = match EConstr.kind sigma c with | (Prod _ | Sort _ | Lambda _ | Case _ | Fix _ | CoFix _| Int _ | Float _ | Array _) -> true | (Rel _ | Var _ | Meta _ | Evar (_, _) | Cast (_, _, _) | LetIn (_, _, _, _) | App (_, _) | Const (_, _) | Ind ((_, _), _) | Construct (((_, _), _), _) | Proj _) -> false let hole_var = mkVar (Id.of_string "_") let pr_constr_pat env sigma c0 = let rec wipe_evar c = if isEvar c then hole_var else map wipe_evar c in pr_constr_env env sigma (wipe_evar c0) let ehole_var = EConstr.mkVar (Id.of_string "_") let pr_econstr_pat env sigma c0 = let rec wipe_evar c = let open EConstr in if isEvar sigma c then ehole_var else map sigma wipe_evar c in let dummy_decl = let dummy_prod = mkProd (make_annot Anonymous Sorts.Relevant,mkProp,mkProp) in let na = make_annot (EConstr.destVar sigma ehole_var) Sorts.Relevant in Context.Named.Declaration.(LocalAssum (na, dummy_prod)) in let env = Environ.push_named dummy_decl env in pr_econstr_env env sigma (wipe_evar c0) (* Turn (new) evars into metas *) let evars_for_FO ~hack ~rigid env (ise0:evar_map) c0 = let open EConstr in let metas = ref Metamap.empty in let sigma = ref ise0 in let nenv = env_size env + if hack then 1 else 0 in let rec put c = match EConstr.kind !sigma c with | Evar (k, a) -> if rigid k then map !sigma put c else let evi = Evd.find_undefined !sigma k in let dc = List.firstn (max 0 (SList.length a - nenv)) (evar_filtered_context evi) in let abs_dc (d, c) = function | Context.Named.Declaration.LocalDef (x, b, t) -> d, mkNamedLetIn !sigma x (put b) (put t) c | Context.Named.Declaration.LocalAssum (x, t) -> mkVar x.binder_name :: d, mkNamedProd !sigma x (put t) c in let a, t = Context.Named.fold_inside abs_dc ~init:([], put (Evd.evar_concl evi)) dc in let m = Evarutil.new_meta () in let () = metas := Metamap.add m t !metas in sigma := Evd.define k (applistc (mkMeta m) a) !sigma; put c | _ -> map !sigma put c in let c1 = put c0 in !metas, c1 (* Compile a match pattern from a term; t is the term to fill. *) (* p_origin can be passed to obtain a better error message *) let mk_tpattern ?p_origin ?(hack=false) ?(ok = all_ok) ~rigid env t dir p { tpat_sigma = ise; tpat_pats = pats } = let open EConstr in let k, f, a = let f, a = Reductionops.whd_betaiota_stack env ise p in match EConstr.kind ise f with | Const (p,_) -> let np = proj_nparams p in if np = 0 || np > List.length a then KpatConst, f, a else let a1, a2 = List.chop np a in KpatProj p, (applistc f a1), a2 | Proj (p,_,arg) -> KpatProj (Projection.constant p), f, a | Var _ | Ind _ | Construct _ -> KpatFixed, f, a | Evar (k, _) -> if rigid k then KpatEvar k, f, a else if a <> [] then KpatFlex, f, a else (match p_origin with None -> CErrors.user_err Pp.(str "indeterminate pattern") | Some (dir, rule) -> errorstrm (str "indeterminate " ++ pr_dir_side dir ++ str " in " ++ pr_econstr_pat env ise rule)) | LetIn (_, v, _, b) -> if b <> mkRel 1 then KpatLet, f, a else KpatFlex, v, a | Lambda _ -> KpatLam, f, a | _ -> KpatRigid, f, a in let aa = Array.of_list a in let p' = evars_for_FO ~hack ~rigid env ise (mkApp (f, aa)) in let pat = { up_k = k; up_FO = p'; up_f = f; up_a = aa; up_ok = ok; up_dir = dir; up_t = t} in { tpat_sigma = ise; tpat_pats = pats @ [pat] } (* Specialize a pattern after a successful match: assign a precise head *) (* kind and arity for Proj and Flex patterns. *) let ungen_upat lhs (c, sigma, uc, t) u = let f, a = safeDestApp sigma lhs in let k = match kind (EConstr.Unsafe.to_constr f) with | Var _ | Ind _ | Construct _ -> KpatFixed | Const _ -> KpatConst | Evar (k, _) -> if is_defined sigma k then raise NoMatch else KpatEvar k (* FIXME: why do we observe defined evars here? *) | LetIn _ -> KpatLet | Lambda _ -> KpatLam | _ -> KpatRigid in c, sigma, uc, {u with up_k = k; up_FO = (Metamap.empty, lhs); up_f = f; up_a = a; up_t = t} let nb_cs_proj_args env ise pc f u = let open EConstr in let open Structures in let open ValuePattern in let na k = let open CanonicalSolution in let _, { cvalue_arguments } = find env ise (GlobRef.ConstRef pc, k) in List.length cvalue_arguments in let nargs_of_proj t = match EConstr.kind ise t with | App(_,args) -> Array.length args | Proj _ -> 0 (* if splay_app calls expand_projection, this has to be the number of arguments including the projected *) | _ -> assert false in try match EConstr.kind ise f with | Prod _ -> na Prod_cs | Sort s -> na (Sort_cs (Sorts.family (ESorts.kind ise s))) | Const (c',_) when Environ.QConstant.equal env c' pc -> nargs_of_proj u.up_f | Proj (c',_,_) when Environ.QConstant.equal env (Names.Projection.constant c') pc -> nargs_of_proj u.up_f | Var _ | Ind _ | Construct _ | Const _ -> na (Const_cs (fst @@ destRef ise f)) | _ -> -1 with Not_found -> -1 let isEvar_k ise k f = match EConstr.kind ise f with Evar (k', _) -> k = k' | _ -> false let nb_args sigma c = match EConstr.kind sigma c with App (_, a) -> Array.length a | _ -> 0 let mkSubArg i a = if i = Array.length a then a else Array.sub a 0 i let mkSubApp f i a = let open EConstr in if i = 0 then f else mkApp (f, mkSubArg i a) let splay_app ise = let rec loop c a = match EConstr.kind ise c with | App (f, a') -> loop f (Array.append a' a) | Cast (c', _, _) -> loop c' a | _ -> c, a in fun c -> match EConstr.kind ise c with | App (f, a) -> loop f a | Cast _ | Evar _ -> loop c [| |] | _ -> c, [| |] let filter_upat env sigma i0 f n u fpats = let open EConstr in let na = Array.length u.up_a in if n < na then fpats else let np = match u.up_k with | KpatConst when eq_constr_nounivs sigma u.up_f f -> na | KpatFixed when eq_constr_nounivs sigma u.up_f f -> na | KpatEvar k when isEvar_k sigma k f -> na | KpatLet when isLetIn sigma f -> na | KpatLam when isLambda sigma f -> na | KpatRigid when isRigid sigma f -> na | KpatFlex -> na | KpatProj pc -> let np = na + nb_cs_proj_args env sigma pc f u in if n < np then -1 else np | _ -> -1 in if np < na then fpats else let () = if !i0 < np then i0 := n in (u, np) :: fpats let eq_prim_proj env sigma c t = match EConstr.kind sigma t with | Proj(p,_,_) -> Environ.QConstant.equal env (Projection.constant p) c | _ -> false let filter_upat_FO env sigma i0 f n u fpats = let open EConstr in let np = nb_args sigma (snd u.up_FO) in if n < np then fpats else let ok = match u.up_k with | KpatConst -> eq_constr_nounivs sigma u.up_f f | KpatFixed -> eq_constr_nounivs sigma u.up_f f | KpatEvar k -> isEvar_k sigma k f | KpatLet -> isLetIn sigma f | KpatLam -> isLambda sigma f | KpatRigid -> isRigid sigma f | KpatProj pc -> isRefX env sigma (ConstRef pc) f || eq_prim_proj env sigma pc f | KpatFlex -> i0 := n; true in if ok then begin if !i0 < np then i0 := np; (u, np) :: fpats end else fpats exception FoundUnif of (bool * evar_map * UState.t * tpattern) (* Note: we don't update env as we descend into the term, as the primitive *) (* unification procedure always rejects subterms with bound variables. *) let dont_impact_evars_in sigma0 cl = let evs_in_cl = Evd.evars_of_term sigma0 cl in fun sigma -> Evar.Set.for_all (fun k -> try let _ = Evd.find_undefined sigma k in true with Not_found -> false) evs_in_cl (* We are forced to duplicate code between the FO/HO matching because we *) (* have to work around several kludges in unify.ml: *) (* - w_unify drops into second-order unification when the pattern is an *) (* application whose head is a meta. *) (* - w_unify tries to unify types without subsumption when the pattern *) (* head is an evar or meta (e.g., it fails on ?1 = nat when ?1 : Type). *) (* - w_unify expands let-in (zeta conversion) eagerly, whereas we want to *) (* match a head let rigidly. *) let match_upats_FO upats env sigma0 ise orig_c = let dont_impact_evars = dont_impact_evars_in sigma0 orig_c in let rec loop c = let f, a = splay_app ise c in let i0 = ref (-1) in let fpats = List.fold_right (filter_upat_FO env ise i0 f (Array.length a)) upats [] in while !i0 >= 0 do let i = !i0 in i0 := -1; let c' = mkSubApp f i a in let one_match (u, np) = let open EConstr in let skip = if i <= np then i < np else if u.up_k == KpatFlex then begin i0 := i - 1; false end else begin if !i0 < np then i0 := np; true end in if skip || not (EConstr.Vars.closed0 ise c') then () else try let () = match u.up_k with | KpatFlex -> let kludge v = mkLambda (make_annot Anonymous Sorts.Relevant, mkProp, v) in let (metas, p_FO) = u.up_FO in unif_FO env ise metas (kludge p_FO) (kludge c') | KpatLet -> let kludge vla = let vl, a = safeDestApp ise vla in let x, v, t, b = destLetIn ise vl in mkApp (mkLambda (x, t, b), Array.cons v a) in let (metas, p_FO) = u.up_FO in unif_FO env ise metas (kludge p_FO) (kludge c') | _ -> let (metas, p_FO) = u.up_FO in unif_FO env ise metas p_FO c' in let ise' = (* Unify again using HO to assign evars *) let p = mkApp (u.up_f, u.up_a) in try unif_HO env ise p c' with e when CErrors.noncritical e -> raise NoMatch in let lhs = mkSubApp f i a in let pt' = unif_end env sigma0 ise' u.up_t (u.up_ok lhs) in raise (FoundUnif (ungen_upat lhs pt' u)) with FoundUnif (_, s,_,_) as sig_u when dont_impact_evars s -> raise sig_u | Not_found -> CErrors.anomaly (str"incomplete ise in match_upats_FO.") | e when CErrors.noncritical e -> () in List.iter one_match fpats done; iter_constr_LR ise loop f; Array.iter loop a in try loop orig_c with Invalid_argument _ -> CErrors.anomaly (str"IN FO.") let match_upats_HO ~on_instance upats env sigma0 ise c = let dont_impact_evars = dont_impact_evars_in sigma0 c in let it_did_match = ref false in let failed_because_of_TC = ref false in let rec aux upats env sigma0 ise c = let f, a = splay_app ise c in let i0 = ref (-1) in let fpats = List.fold_right (filter_upat env ise i0 f (Array.length a)) upats [] in while !i0 >= 0 do let i = !i0 in i0 := -1; let one_match (u, np) = let skip = if i <= np then i < np else if u.up_k == KpatFlex then begin i0 := i - 1; false end else begin if !i0 < np then i0 := np; true end in if skip then () else try let ise' = match u.up_k with | KpatFixed | KpatConst -> ise | KpatEvar _ -> let open EConstr in let pka = Evd.expand_existential ise @@ destEvar ise u.up_f in let ka = Evd.expand_existential ise @@ destEvar ise f in let fold ise pk k = unif_HO env ise pk k in List.fold_left2 fold ise pka ka | KpatLet -> let open EConstr in let x, v, t, b = destLetIn ise f in let _, pv, _, pb = destLetIn ise u.up_f in let ise' = unif_HO env ise pv v in unif_HO (EConstr.push_rel (Context.Rel.Declaration.LocalAssum(x, t)) env) ise' pb b | KpatFlex | KpatProj _ -> unif_HO env ise u.up_f (mkSubApp f (i - Array.length u.up_a) a) | _ -> unif_HO env ise u.up_f f in let ise'' = unif_HO_args env ise' u.up_a (i - Array.length u.up_a) a in let lhs = mkSubApp f i a in let pt' = unif_end env sigma0 ise'' u.up_t (u.up_ok lhs) in on_instance (ungen_upat lhs pt' u) with FoundUnif (_,s,_,_) as sig_u when dont_impact_evars s -> raise sig_u | NoProgress -> it_did_match := true | Pretype_errors.PretypeError (_,_,Pretype_errors.UnsatisfiableConstraints _) -> failed_because_of_TC:=true | e when CErrors.noncritical e -> () in List.iter one_match fpats done; iter_constr_LR ise (aux upats env sigma0 ise) f; Array.iter (aux upats env sigma0 ise) a in aux upats env sigma0 ise c; if !it_did_match then raise NoProgress; !failed_because_of_TC let fixed_upat evd = function | {up_k = KpatFlex | KpatEvar _ | KpatProj _} -> false | {up_t = t} -> not (occur_existential evd t) let do_once r f = match !r with Some _ -> () | None -> r := Some (f ()) let assert_done r = match !r with Some x -> x | None -> CErrors.anomaly (str"do_once never called.") let assert_done_multires r = match !r with | None -> CErrors.anomaly (str"do_once never called.") | Some (e, n, xs) -> r := Some (e, n+1,xs); try List.nth xs n with Failure _ -> raise NoMatch type subst = Environ.env -> EConstr.t -> EConstr.t -> int -> EConstr.t type find_P = Environ.env -> EConstr.t -> int -> k:subst -> EConstr.t type conclude = unit -> EConstr.t * ssrdir * (bool * Evd.evar_map * UState.t * EConstr.t) let rec uniquize = function | [] -> [] | (_, sigma,_,{ up_f = f; up_a = a; up_t = t } as x) :: xs -> let nf_evar sigma c = EConstr.Unsafe.to_constr (Evarutil.nf_evar sigma c) in let equal sigma1 sigma2 c1 c2 = Constr.equal (nf_evar sigma1 c1) (nf_evar sigma2 c2) in let neq (_, sigma1,_,{ up_f = f1; up_a = a1; up_t = t1 }) = not (equal sigma sigma1 t t1 && equal sigma sigma1 f f1 && CArray.for_all2 (equal sigma sigma1) a a1) in x :: uniquize (List.filter neq xs) type occ_state = { max_occ : int; nocc : int ref; occ_set : bool array; use_occ : bool; skip_occ : bool ref; } let create_occ_state occ = let nocc = ref 0 and skip_occ = ref false in let use_occ, occ_list = match occ with | Some (true, ol) -> ol = [], ol | Some (false, ol) -> ol <> [], ol | None -> false, [] in let max_occ = List.fold_right max occ_list 0 in let occ_set = Array.make max_occ (not use_occ) in let _ = List.iter (fun i -> occ_set.(i - 1) <- use_occ) occ_list in let _ = if max_occ = 0 then skip_occ := use_occ in { max_occ; nocc; occ_set; skip_occ; use_occ } let subst_occ { nocc; max_occ; occ_set; use_occ; skip_occ } = incr nocc; if !nocc = max_occ then skip_occ := use_occ; if !nocc <= max_occ then occ_set.(!nocc - 1) else not use_occ let match_EQ env sigma (ise, u) = let open EConstr in match u.up_k with | KpatLet -> let x, pv, t, pb = destLetIn sigma u.up_f in let env' = EConstr.push_rel (Context.Rel.Declaration.LocalAssum(x, t)) env in let match_let f = match EConstr.kind ise f with | LetIn (_, v, _, b) -> unif_EQ env sigma pv v && unif_EQ env' sigma pb b | _ -> false in match_let | KpatFixed -> fun c -> EConstr.eq_constr_nounivs sigma u.up_f c | KpatConst -> fun c -> EConstr.eq_constr_nounivs sigma u.up_f c | KpatLam -> fun c -> (match EConstr.kind sigma c with | Lambda _ -> unif_EQ env sigma u.up_f c | _ -> false) | _ -> unif_EQ env sigma u.up_f let p2t p = EConstr.mkApp(p.up_f,p.up_a) let source env ise upats_origin upats = match upats_origin, upats with | None, [p] -> (if fixed_upat ise p then str"term " else str"partial term ") ++ pr_econstr_pat env ise (p2t p) ++ spc() | Some (dir,rule), [p] -> str"The " ++ pr_dir_side dir ++ str" of " ++ pr_econstr_pat env ise rule ++ fnl() ++ ws 4 ++ pr_econstr_pat env ise (p2t p) ++ fnl() | Some (dir,rule), _ -> str"The " ++ pr_dir_side dir ++ str" of " ++ pr_econstr_pat env ise rule ++ spc() | _, [] | None, _::_::_ -> CErrors.anomaly (str"mk_tpattern_matcher with no upats_origin.") type ssrmatching_failure = | SsrTCFail | SsrMatchFail | SsrProgressFail | SsrOccMissing of int * int * EConstr.t let pr_ssrmatching_failure env sigma upats_origin upats = function | SsrTCFail -> source env sigma upats_origin upats ++ strbrk"matches but type classes inference fails" | SsrMatchFail -> source env sigma upats_origin upats ++ str "does not match any subterm of the goal" | SsrProgressFail -> let dir = match upats_origin with Some (d,_) -> d | _ -> CErrors.anomaly (str"mk_tpattern_matcher with no upats_origin.") in str"all matches of "++ source env sigma upats_origin upats ++ str"are equal to the " ++ pr_dir_side (inv_dir dir) | SsrOccMissing (nocc, max_occ, p') -> str"Only " ++ int nocc ++ str" < " ++ int max_occ ++ str(String.plural nocc " occurrence") ++ match upats_origin with | None -> str" of" ++ spc() ++ pr_econstr_pat env sigma p' | Some (dir,rule) -> str" of the " ++ pr_dir_side dir ++ fnl() ++ ws 4 ++ pr_econstr_pat env sigma p' ++ fnl () ++ str"of " ++ pr_econstr_pat env sigma rule exception SsrMatchingFailure of Environ.env * Evd.evar_map * (ssrdir * EConstr.t) option * tpattern list * ssrmatching_failure let _ = CErrors.register_handler begin function | SsrMatchingFailure (env, sigma, upats_origin, upats, e) -> Some (pr_ssrmatching_failure env sigma upats_origin upats e) | _ -> None end let ssrfail env sigma upats_origin upats e = raise (SsrMatchingFailure (env, sigma, upats_origin, upats, e)) let has_instances = function | None -> false | Some instances -> not (List.is_empty !instances) let find_tpattern ~raise_NoMatch ~instances ~upat_that_matched ~upats_origin ~upats sigma0 ise occ_state : find_P = fun env c h ~k -> do_once upat_that_matched (fun () -> let failed_because_of_TC = ref false in try let () = match instances with | None -> match_upats_FO upats env sigma0 ise c | Some _ -> () in let on_instance = match instances with | None -> fun x -> raise (FoundUnif x) | Some r -> fun x -> r := !r @ [x] in failed_because_of_TC:=match_upats_HO ~on_instance upats env sigma0 ise c; raise NoMatch with FoundUnif sigma_u -> env,0,[sigma_u] | (NoMatch|NoProgress) when has_instances instances -> env, 0, uniquize (!(Option.get instances)) | NoMatch when (not raise_NoMatch) -> if !failed_because_of_TC then ssrfail env ise upats_origin upats SsrTCFail else ssrfail env ise upats_origin upats SsrMatchFail | NoProgress when (not raise_NoMatch) -> ssrfail env ise upats_origin upats SsrProgressFail | NoProgress -> raise NoMatch); let _, sigma, _, ({up_f = pf; up_a = pa} as u) = match instances with | Some _ -> assert_done_multires upat_that_matched | None -> List.hd (pi3(assert_done upat_that_matched)) in (* pp(lazy(str"sigma@tmatch=" ++ pr_evar_map None sigma)); *) if !(occ_state.skip_occ) then ((*ignore(k env u.up_t 0);*) c) else let match_EQ = match_EQ env sigma (ise, u) in let pn = Array.length pa in let rec subst_loop (env,h as acc) c' = if !(occ_state.skip_occ) then c' else let f, a = splay_app sigma c' in if Array.length a >= pn && match_EQ f && unif_EQ_args env sigma pa a then let open EConstr in let a1, a2 = Array.chop (Array.length pa) a in let fa1 = mkApp (f, a1) in let f' = if subst_occ occ_state then k env u.up_t fa1 h else fa1 in mkApp (f', Array.map_left (subst_loop acc) a2) else let open EConstr in (* TASSI: clear letin values to avoid unfolding *) let inc_h rd (env,h') = let ctx_item = match rd with | Context.Rel.Declaration.LocalAssum _ as x -> x | Context.Rel.Declaration.LocalDef (x,_,y) -> Context.Rel.Declaration.LocalAssum(x,y) in EConstr.push_rel ctx_item env, h' + 1 in let self acc c = subst_loop acc c in let f' = map_constr_with_binders_left_to_right env sigma inc_h self acc f in mkApp (f', Array.map_left (subst_loop acc) a) in subst_loop (env,h) c let conclude_tpattern ~raise_NoMatch ~upat_that_matched ~upats_origin ~upats { max_occ; nocc } : conclude = fun () -> let env, (c, sigma, uc, ({up_f = pf; up_a = pa} as u)) = match !upat_that_matched with | Some (env,_,x) -> env,List.hd x | None when raise_NoMatch -> raise NoMatch | None -> CErrors.anomaly (str"companion function never called.") in let p' = EConstr.mkApp (pf, pa) in if max_occ <= !nocc then p', u.up_dir, (c, sigma, uc, u.up_t) else ssrfail env sigma upats_origin upats (SsrOccMissing (!nocc, max_occ, p')) (* upats_origin makes a better error message only *) let mk_tpattern_matcher ?(all_instances=false) ?(raise_NoMatch=false) ?upats_origin sigma0 occ { tpat_sigma = ise; tpat_pats = upats } = let occ_state = create_occ_state occ in let upat_that_matched = ref None in let instances = if all_instances then Some (ref []) else None in find_tpattern ~raise_NoMatch ~instances ~upat_that_matched ~upats_origin ~upats sigma0 ise occ_state, conclude_tpattern ~raise_NoMatch ~upat_that_matched ~upats_origin ~upats occ_state type ('ident, 'term) ssrpattern = | T of 'term | In_T of 'term | X_In_T of 'ident * 'term | In_X_In_T of 'ident * 'term | E_In_X_In_T of 'term * 'ident * 'term | E_As_X_In_T of 'term * 'ident * 'term let pr_pattern pr_ident pr_term = function | T t -> pr_term t | In_T t -> str "in " ++ pr_term t | X_In_T (x,t) -> pr_ident x ++ str " in " ++ pr_term t | In_X_In_T (x,t) -> str "in " ++ pr_ident x ++ str " in " ++ pr_term t | E_In_X_In_T (e,x,t) -> pr_term e ++ str " in " ++ pr_ident x ++ str " in " ++ pr_term t | E_As_X_In_T (e,x,t) -> pr_term e ++ str " as " ++ pr_ident x ++ str " in " ++ pr_term t let pr_hole pr_constr e = pr_constr (EConstr.mkEvar e) let pr_pattern_aux pr_constr = function | T t -> pr_constr t | In_T t -> str "in " ++ pr_constr t | X_In_T (x,t) -> pr_hole pr_constr x ++ str " in " ++ pr_constr t | In_X_In_T (x,t) -> str "in " ++ pr_hole pr_constr x ++ str " in " ++ pr_constr t | E_In_X_In_T (e,x,t) -> pr_constr e ++ str " in " ++ pr_hole pr_constr x ++ str " in " ++ pr_constr t | E_As_X_In_T (e,x,t) -> pr_constr e ++ str " as " ++ pr_hole pr_constr x ++ str " in " ++ pr_constr t type pattern = { pat_sigma : Evd.evar_map; pat_pat : (EConstr.existential, EConstr.t) ssrpattern; } let pp_pattern env { pat_sigma = sigma; pat_pat = p } = pr_pattern_aux (fun t -> pr_econstr_pat env sigma t) p type cpattern = { kind : ssrtermkind ; pattern : Genintern.glob_constr_and_expr ; interpretation : Geninterp.interp_sign option } let pr_term {kind; pattern; _} = let env = Global.env () in let sigma = Evd.from_env env in pr_guarded (guard_term kind) (pr_glob_constr_and_expr env sigma) pattern let prl_term {kind; pattern; _} = let env = Global.env () in let sigma = Evd.from_env env in pr_guarded (guard_term kind) (prl_glob_constr_and_expr env sigma) pattern let pr_cpattern = pr_term let pr_pattern_w_ids = pr_pattern pr_id prl_term let mk_term k c ist = {kind=k; pattern=(mkRHole, Some c); interpretation=ist} let mk_lterm = mk_term NoFlag let glob_ssrterm gs = function | {kind; pattern=(_, Some c); interpretation=None} -> let x = Tacintern.intern_constr gs c in {kind; pattern=(fst x, Some c); interpretation=None} | ct -> ct (* ssrterm conbinators *) let combineCG t1 t2 f g = let mk_ist i1 i2 = match i1, i2 with | None, Some i -> Some i | Some i, None -> Some i | None, None -> None | Some i, Some j when i == j -> Some i | _ -> CErrors.anomaly (Pp.str "combineCG: different ist") in match t1, t2 with | {kind=x; pattern=(t1, None); interpretation=i1}, {pattern=(t2, None); interpretation=i2} -> {kind=x; pattern=(g t1 t2, None); interpretation = mk_ist i1 i2} | {kind=x; pattern=(_, Some t1); interpretation=i1}, {pattern=(_, Some t2); interpretation=i2} -> {kind=x; pattern=(mkRHole, Some (f t1 t2)); interpretation = mk_ist i1 i2} | _, {pattern=(_, None); _} -> CErrors.anomaly (str"have: mixed C-G constr.") | _ -> CErrors.anomaly (str"have: mixed G-C constr.") let loc_ofCG = function | {pattern = (s, None); _} -> Glob_ops.loc_of_glob_constr s | {pattern = (_, Some s); _} -> Constrexpr_ops.constr_loc s (* This piece of code asserts the following notations are reserved *) (* Reserved Notation "( a 'in' b )" (at level 0). *) (* Reserved Notation "( a 'as' b )" (at level 0). *) (* Reserved Notation "( a 'in' b 'in' c )" (at level 0). *) (* Reserved Notation "( a 'as' b 'in' c )" (at level 0). *) let glob_cpattern gs p = pp(lazy(str"globbing pattern: " ++ pr_term p)); let glob x = (glob_ssrterm gs (mk_lterm x None)).pattern in let encode k s l = let name = Name (Id.of_string ("_ssrpat_" ^ s)) in {kind=k; pattern=(mkRCast mkRHole (mkRLambda name mkRHole (mkRApp mkRHole l)), None); interpretation=None} in let bind_in t1 t2 = let mkCHole = mkCHole ~loc:None in let n = Name (destCVar t1) in fst (glob (mkCCast mkCHole (mkCLambda n mkCHole t2))) in let check_var t2 = if not (isCVar t2) then loc_error (constr_loc t2) "Only identifiers are allowed here" in match p with | {pattern = (_, None); _} as x -> x | {kind=k; pattern=(v, Some t); _} as orig -> if k = Cpattern then glob_ssrterm gs {kind=InParens; pattern=(v, Some t); interpretation=None} else match t.CAst.v with | CNotation(_,(InConstrEntry,"( _ in _ )"), ([t1; t2], [], [], [])) -> (try match glob t1, glob t2 with | (r1, None), (r2, None) -> encode k "In" [r1;r2] | (r1, Some _), (r2, Some _) when isCVar t1 -> encode k "In" [r1; r2; bind_in t1 t2] | (r1, Some _), (r2, Some _) -> encode k "In" [r1; r2] | _ -> CErrors.anomaly (str"where are we?.") with e when CErrors.noncritical e && isCVar t1 -> encode k "In" [bind_in t1 t2]) | CNotation(_,(InConstrEntry,"( _ in _ in _ )"), ([t1; t2; t3], [], [], [])) -> check_var t2; encode k "In" [fst (glob t1); bind_in t2 t3] | CNotation(_,(InConstrEntry,"( _ as _ )"), ([t1; t2], [], [], [])) -> encode k "As" [fst (glob t1); fst (glob t2)] | CNotation(_,(InConstrEntry,"( _ as _ in _ )"), ([t1; t2; t3], [], [], [])) -> check_var t2; encode k "As" [fst (glob t1); bind_in t2 t3] | _ -> glob_ssrterm gs orig ;; let glob_rpattern s p = match p with | T t -> T (glob_cpattern s t) | In_T t -> In_T (glob_ssrterm s t) | X_In_T(x,t) -> X_In_T (x,glob_ssrterm s t) | In_X_In_T(x,t) -> In_X_In_T (x,glob_ssrterm s t) | E_In_X_In_T(e,x,t) -> E_In_X_In_T (glob_ssrterm s e,x,glob_ssrterm s t) | E_As_X_In_T(e,x,t) -> E_As_X_In_T (glob_ssrterm s e,x,glob_ssrterm s t) let subst_ssrterm s {kind; pattern; interpretation} = {kind; pattern=Tacsubst.subst_glob_constr_and_expr s pattern; interpretation} let subst_rpattern s = function | T t -> T (subst_ssrterm s t) | In_T t -> In_T (subst_ssrterm s t) | X_In_T(x,t) -> X_In_T (x,subst_ssrterm s t) | In_X_In_T(x,t) -> In_X_In_T (x,subst_ssrterm s t) | E_In_X_In_T(e,x,t) -> E_In_X_In_T (subst_ssrterm s e,x,subst_ssrterm s t) | E_As_X_In_T(e,x,t) -> E_As_X_In_T (subst_ssrterm s e,x,subst_ssrterm s t) let interp_ssrterm ist {kind; pattern; _} = {kind; pattern; interpretation = Some ist} let interp_rpattern s = function | T t -> T (interp_ssrterm s t) | In_T t -> In_T (interp_ssrterm s t) | X_In_T(x,t) -> X_In_T (interp_ssrterm s x,interp_ssrterm s t) | In_X_In_T(x,t) -> In_X_In_T (interp_ssrterm s x,interp_ssrterm s t) | E_In_X_In_T(e,x,t) -> E_In_X_In_T (interp_ssrterm s e,interp_ssrterm s x,interp_ssrterm s t) | E_As_X_In_T(e,x,t) -> E_As_X_In_T (interp_ssrterm s e,interp_ssrterm s x,interp_ssrterm s t) let interp_rpattern0 ist _ _ t = interp_rpattern ist t let tag_of_cpattern p = p.kind let loc_of_cpattern = loc_ofCG type occ = (bool * int list) option type rpattern = (cpattern, cpattern) ssrpattern let pr_rpattern = pr_pattern pr_cpattern pr_cpattern let wit_rpatternty = add_genarg "rpatternty" (fun env sigma -> pr_pattern pr_cpattern pr_cpattern) let id_of_cpattern {pattern = (c1, c2); _} = let open CAst in match DAst.get c1, c2 with | _, Some { v = CRef (qid, _) } when qualid_is_ident qid -> Some (qualid_basename qid) | _, Some { v = CAppExpl ((qid, _), []) } when qualid_is_ident qid -> Some (qualid_basename qid) | GRef (GlobRef.VarRef x, _), None -> Some x | _ -> None let id_of_Cterm t = match id_of_cpattern t with | Some x -> x | None -> loc_error (loc_of_cpattern t) "Only identifiers are allowed here" let interp_open_constr ist env sigma gc = Tacinterp.interp_open_constr ist env sigma gc let pf_intern_term env sigma {pattern = c; interpretation = ist; _} = glob_constr ist env sigma c let interp_ssrterm ist env sigma t = interp_ssrterm ist t let interp_term env sigma = function | {pattern = c; interpretation = Some ist; _} -> interp_open_constr ist env sigma c | _ -> errorstrm (str"interpreting a term with no ist") let thin id sigma goal = let ids = Id.Set.singleton id in let evi = Evd.find_undefined sigma goal in let env = Evd.evar_filtered_env (Global.env ()) evi in let cl = Evd.evar_concl evi in let ans = try Some (Evarutil.clear_hyps_in_evi env sigma (Environ.named_context_val env) cl ids) with Evarutil.ClearDependencyError _ -> None in match ans with | None -> sigma | Some (sigma, hyps, concl) -> let (sigma, evk) = Evarutil.new_pure_evar ~src:(Loc.tag Evar_kinds.GoalEvar) ~typeclass_candidate:false hyps sigma concl in let sigma = Evd.remove_future_goal sigma evk in let id = Evd.evar_ident goal sigma in let proof = EConstr.mkEvar (evk, Evd.evar_identity_subst @@ Evd.find_undefined sigma evk) in let sigma = Evd.define goal proof sigma in match id with | None -> sigma | Some id -> Evd.rename evk id sigma (* let pr_ist { lfun= lfun } = prlist_with_sep spc (fun (id, Geninterp.Val.Dyn(ty,_)) -> pr_id id ++ str":" ++ Geninterp.Val.pr ty) (Id.Map.bindings lfun) *) let interp_pattern ?wit_ssrpatternarg env sigma0 red redty = pp(lazy(str"interpreting: " ++ pr_rpattern red)); let xInT x y = X_In_T(x,y) and inXInT x y = In_X_In_T(x,y) in let inT x = In_T x and eInXInT e x t = E_In_X_In_T(e,x,t) in let eAsXInT e x t = E_As_X_In_T(e,x,t) in let mkG ?(k=NoFlag) x ist = {kind = k; pattern = (x,None); interpretation = ist } in let ist_of x = x.interpretation in let decode ({interpretation=ist; _} as t) ?reccall f g = try match DAst.get (pf_intern_term env sigma0 t) with | GCast(t, Some DEFAULTcast, c) when isGHole t && isGLambda c-> let (x, c) = destGLambda c in f x {kind = NoFlag; pattern = (c,None); interpretation = ist} | GVar id when Option.has_some ist && let ist = Option.get ist in Id.Map.mem id ist.lfun && not(Option.is_empty reccall) && not(Option.is_empty wit_ssrpatternarg) -> let v = Id.Map.find id (Option.get ist).lfun in Option.get reccall (Value.cast (topwit (Option.get wit_ssrpatternarg)) v) | it -> g t with e when CErrors.noncritical e -> g t in let decodeG ist t f g = decode (mkG t ist) f g in let bad_enc id _ = CErrors.anomaly (str"bad encoding for pattern "++str id++str".") in let cleanup_XinE (h_k, _) x rp sigma = let to_clean, update = (* handle rename if x is already used *) let ctx = Environ.named_context env in let len = Context.Named.length ctx in let name = ref None in try ignore(Context.Named.lookup x ctx); (name, fun k -> if !name = None then let EvarInfo evi = Evd.find sigma k in let nctx = Evd.evar_context evi in let nlen = Context.Named.length nctx in if nlen > len then begin name := Some (Context.Named.Declaration.get_id (List.nth nctx (nlen - len - 1))) end) with Not_found -> ref (Some x), fun _ -> () in let new_evars = let rec aux acc t = match EConstr.kind sigma t with | Evar (k,_) -> if k = h_k || List.mem k acc || Evd.mem sigma0 k then acc else (update k; k::acc) | _ -> EConstr.fold sigma aux acc t in aux [] rp in let sigma = List.fold_left (fun sigma e -> if Evd.is_defined sigma e then sigma else (* clear may be recursive *) if Option.is_empty !to_clean then sigma else let name = Option.get !to_clean in pp(lazy(pr_id name)); thin name sigma e) sigma new_evars in sigma in let red = let rec decode_red = function | T {kind=k; pattern=(t,None); interpretation=ist} -> begin match DAst.get t with | GCast (c, Some DEFAULTcast, t) when isGHole c && let (id, t) = destGLambda t in let id = Id.to_string id in let len = String.length id in (len > 8 && String.sub id 0 8 = "_ssrpat_") -> let (id, t) = destGLambda t in let id = Id.to_string id in let len = String.length id in (match String.sub id 8 (len - 8), DAst.get t with | "In", GApp( _, [t]) -> decodeG ist t xInT (fun x -> T x) | "In", GApp( _, [e; t]) -> decodeG ist t (eInXInT (mkG e ist)) (bad_enc id) | "In", GApp( _, [e; t; e_in_t]) -> decodeG ist t (eInXInT (mkG e ist)) (fun _ -> decodeG ist e_in_t xInT (fun _ -> assert false)) | "As", GApp(_, [e; t]) -> decodeG ist t (eAsXInT (mkG e ist)) (bad_enc id) | _ -> bad_enc id ()) | _ -> decode ~reccall:decode_red (mkG ~k t ist) xInT (fun x -> T x) end | T t -> decode ~reccall:decode_red t xInT (fun x -> T x) | In_T t -> decode t inXInT inT | X_In_T (e,t) -> decode t (eInXInT e) (fun x -> xInT (id_of_Cterm e) x) | In_X_In_T (e,t) -> inXInT (id_of_Cterm e) t | E_In_X_In_T (e,x,rp) -> eInXInT e (id_of_Cterm x) rp | E_As_X_In_T (e,x,rp) -> eAsXInT e (id_of_Cterm x) rp in decode_red red in pp(lazy(str"decoded as: " ++ pr_pattern_w_ids red)); let red = match redty with | None -> red | Some (ty, ist) -> let ty = {kind=NoFlag; pattern=ty; interpretation = Some ist} in match red with | T t -> T (combineCG t ty (mkCCast ?loc:(loc_ofCG t)) mkRCast) | X_In_T (x,t) -> let gty = pf_intern_term env sigma0 ty in E_As_X_In_T (mkG (mkRCast mkRHole gty) (ist_of ty), x, t) | E_In_X_In_T (e,x,t) -> let ty = mkG (pf_intern_term env sigma0 ty) (ist_of ty) in E_In_X_In_T (combineCG e ty (mkCCast ?loc:(loc_ofCG t)) mkRCast, x, t) | E_As_X_In_T (e,x,t) -> let ty = mkG (pf_intern_term env sigma0 ty) (ist_of ty) in E_As_X_In_T (combineCG e ty (mkCCast ?loc:(loc_ofCG t)) mkRCast, x, t) | red -> red in pp(lazy(str"typed as: " ++ pr_pattern_w_ids red)); let mkXLetIn ?loc x {kind; pattern=(g,c); interpretation} = match c with | Some b -> {kind; pattern=(g,Some (mkCLetIn ?loc x (mkCHole ~loc) b)); interpretation} | None -> { kind ; pattern = DAst.make ?loc @@ GLetIn (x, DAst.make ?loc @@ GHole (GBinderType x), None, g), None ; interpretation} in match red with | T t -> let sigma, t = interp_term env sigma0 t in { pat_sigma = sigma; pat_pat = T t } | In_T t -> let sigma, t = interp_term env sigma0 t in { pat_sigma = sigma; pat_pat = In_T t } | X_In_T (x, rp) | In_X_In_T (x, rp) -> let mk x p = match red with X_In_T _ -> X_In_T(x,p) | _ -> In_X_In_T(x,p) in let rp = mkXLetIn (Name x) rp in let sigma, rp = interp_term env sigma0 rp in let _, h, _, rp = EConstr.destLetIn sigma rp in let h = EConstr.destEvar sigma h in let sigma = cleanup_XinE h x rp sigma in let rp = EConstr.Vars.subst1 (EConstr.mkEvar h) (Evarutil.nf_evar sigma rp) in { pat_sigma = sigma; pat_pat = mk h rp } | E_In_X_In_T(e, x, rp) | E_As_X_In_T (e, x, rp) -> let mk e x p = match red with E_In_X_In_T _ ->E_In_X_In_T(e,x,p)|_->E_As_X_In_T(e,x,p) in let rp = mkXLetIn (Name x) rp in let sigma, rp = interp_term env sigma0 rp in let _, h, _, rp = EConstr.destLetIn sigma rp in let h = EConstr.destEvar sigma h in let sigma = cleanup_XinE h x rp sigma in let rp = EConstr.Vars.subst1 (EConstr.mkEvar h) (Evarutil.nf_evar sigma rp) in let sigma, e = interp_term env sigma e in { pat_sigma = sigma; pat_pat = mk e h rp } let interp_cpattern env sigma red redty = interp_pattern env sigma (T red) redty;; let interp_rpattern ~wit_ssrpatternarg env sigma red = interp_pattern ~wit_ssrpatternarg env sigma red None;; let id_of_pattern sigma p = match p.pat_pat with | T t -> (match EConstr.kind sigma t with Var id -> Some id | _ -> None) | _ -> None (* The full occurrence set *) let noindex = Some(false,[]) (* calls do_subst on every sub-term identified by (pattern,occ) *) let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ (do_subst : subst) = let rigid ev = Evd.mem sigma0 ev in let fs sigma x = Reductionops.nf_evar sigma x in let pop_evar sigma e p = let EvarInfo e_def = Evd.find sigma e in let e_body = match Evd.evar_body e_def with Evar_defined c -> c | _ -> errorstrm (str "Matching the pattern " ++ pr_econstr_env env0 sigma0 p ++ str " did not instantiate ?" ++ int (Evar.repr e) ++ spc () ++ str "Does the variable bound by the \"in\" construct occur "++ str "in the pattern?") in let ty = Retyping.get_type_of (Evd.evar_filtered_env env0 e_def) sigma (EConstr.mkEvar (e, Evd.evar_identity_subst e_def)) in let sigma = Evd.undefine sigma e ty [@@ocaml.warning "-3"] in sigma, e_body in let mk_upat_for ?hack ~rigid (sigma, t) = mk_tpattern ?hack ~rigid env0 t L2R (fs sigma t) (empty_tpatterns sigma) in match pattern with | None -> do_subst env0 concl0 concl0 1, UState.empty | Some { pat_sigma = sigma; pat_pat = (T rp | In_T rp) } -> let rp = fs sigma rp in let ise = create_evar_defs sigma in let occ = match pattern with Some { pat_pat = T _ } -> occ | _ -> noindex in let rp = mk_upat_for ~rigid (ise, rp) in let find_T, end_T = mk_tpattern_matcher ?raise_NoMatch sigma0 occ rp in let concl = find_T env0 concl0 1 ~k:do_subst in let _, _, (_, _, us, _) = end_T () in concl, us | Some { pat_sigma = sigma; pat_pat = (X_In_T (hole, p) | In_X_In_T (hole, p)) } -> let p = fs sigma p in let occ = match pattern with Some { pat_pat = X_In_T _ } -> occ | _ -> noindex in let ex = fst hole in let hole = EConstr.mkEvar hole in let rp = mk_upat_for ~hack:true ~rigid (sigma, p) in let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in (* we start from sigma, so hole is considered a rigid head *) let holep = mk_upat_for ~rigid:(fun ev -> Evd.mem sigma ev) (sigma, hole) in let find_X, end_X = mk_tpattern_matcher ?raise_NoMatch sigma occ holep in let concl = find_T env0 concl0 1 ~k:(fun env c _ h -> let p_sigma = unify_HO env (create_evar_defs sigma) c p in let sigma, e_body = pop_evar p_sigma ex p in fs p_sigma (find_X env (fs sigma p) h ~k:(fun env _ -> do_subst env e_body))) in let _ = end_X () in let _, _, (_, _, us, _) = end_T () in concl, us | Some { pat_sigma = sigma; pat_pat = E_In_X_In_T (e, hole, p) } -> let p, e = fs sigma p, fs sigma e in let ex = fst hole in let hole = EConstr.mkEvar hole in let rp = mk_upat_for ~hack:true ~rigid (sigma, p) in let find_T, end_T = mk_tpattern_matcher sigma0 noindex rp in let holep = mk_upat_for ~rigid:(fun ev -> Evd.mem sigma ev) (sigma, hole) in let find_X, end_X = mk_tpattern_matcher sigma noindex holep in let re = mk_upat_for ~rigid (sigma, e) in let find_E, end_E = mk_tpattern_matcher ?raise_NoMatch sigma0 occ re in let concl = find_T env0 concl0 1 ~k:(fun env c _ h -> let p_sigma = unify_HO env (create_evar_defs sigma) c p in let sigma, e_body = pop_evar p_sigma ex p in fs p_sigma (find_X env (fs sigma p) h ~k:(fun env c _ h -> find_E env e_body h ~k:do_subst))) in let _, _, (_, _, us, _) = end_E () in let _ = end_X () in let _ = end_T () in concl, us | Some { pat_sigma = sigma; pat_pat = E_As_X_In_T (e, hole, p) } -> let p, e = fs sigma p, fs sigma e in let ex = fst hole in let hole = EConstr.mkEvar hole in let rp = let e_sigma = unify_HO env0 sigma hole e in e_sigma, fs e_sigma p in let rp = mk_upat_for ~hack:true ~rigid rp in let find_TE, end_TE = mk_tpattern_matcher sigma0 noindex rp in let holep = mk_upat_for ~rigid:(fun ev -> Evd.mem sigma ev) (sigma, hole) in let find_X, end_X = mk_tpattern_matcher sigma occ holep in let concl = find_TE env0 concl0 1 ~k:(fun env c _ h -> let p_sigma = unify_HO env (create_evar_defs sigma) c p in let sigma, e_body = pop_evar p_sigma ex p in fs p_sigma (find_X env (fs sigma p) h ~k:(fun env c _ h -> let e_sigma = unify_HO env sigma e_body e in let e_body = fs e_sigma e in do_subst env e_body e_body h))) in let _ = end_X () in let _, _ , (_, _, us, _) = end_TE () in concl, us let redex_of_pattern { pat_sigma = sigma; pat_pat = p } = match p with | In_T _ | In_X_In_T _ -> None | X_In_T (e, _) -> Some (sigma, EConstr.mkEvar e) | T e | E_As_X_In_T (e, _, _) | E_In_X_In_T (e, _, _) -> Some (sigma, e) let redex_of_pattern_nf env p = let sigma, e = match redex_of_pattern p with | None -> CErrors.anomaly (str"pattern without redex.") | Some (sigma, e) -> sigma, e in Evarutil.nf_evar sigma e, Evd.evar_universe_context sigma let fill_occ_pattern ?raise_NoMatch env sigma cl pat occ h = let do_make_rel, occ = if occ = Some(true,[]) then false, Some(false,[1]) else true, occ in let r = ref None in let find_R env c _ h' = let () = do_once r (fun () -> c) in if do_make_rel then EConstr.mkRel (h'+h-1) else c in let cl, us = eval_pattern ?raise_NoMatch env sigma cl (Some pat) occ find_R in let e = match !r with None -> fst(redex_of_pattern_nf env pat) | Some x -> x in (e, us), cl let fill_rel_occ_pattern env sigma cl pat occ = let (e, us), cl = try fill_occ_pattern ~raise_NoMatch:true env sigma cl pat occ 1 with NoMatch -> redex_of_pattern_nf env pat, cl in let sigma = Evd.merge_universe_context sigma us in sigma, e, cl (* clenup interface for external use *) let mk_tpattern ?p_origin ?ok ~rigid env sigma_t dir c = mk_tpattern ?p_origin ?ok ~rigid env sigma_t dir c let eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst = fst (eval_pattern ?raise_NoMatch env0 sigma0 concl0 pattern occ do_subst) let pf_fill_occ env concl occ sigma0 p (sigma, t) h = let rigid ev = Evd.mem sigma0 ev in let u = mk_tpattern ~rigid env t L2R p (empty_tpatterns (create_evar_defs sigma)) in let find_U, end_U = mk_tpattern_matcher ~raise_NoMatch:true sigma0 occ u in let concl = find_U env concl h ~k:(fun _ _ _ n -> EConstr.mkRel n) in let rdx, _, (c, sigma, uc, p) = end_U () in c, sigma, uc, p, concl, rdx let fill_occ_term env sigma0 cl occ (sigma, t) = try let changed, sigma', uc, t', cl, _= pf_fill_occ env cl occ sigma0 t (sigma, t) 1 in if changed then CErrors.user_err Pp.(str "matching impacts evars") else cl, t' with NoMatch -> try let changed, sigma', uc, t' = unif_end env sigma0 (create_evar_defs sigma) t (fun _ -> true) in if changed then raise NoMatch else cl, t' with e when CErrors.noncritical e -> errorstrm (str "partial term " ++ pr_econstr_pat env sigma t ++ str " does not match any subterm of the goal") let cpattern_of_id id = { kind= NoFlag ; pattern = DAst.make @@ GRef (GlobRef.VarRef id, None), None ; interpretation = Some Geninterp.({ lfun = Id.Map.empty; poly = false; extra = Tacinterp.TacStore.empty })} let is_wildcard ({pattern = (l, r); _} : cpattern) : bool = match DAst.get l, r with | _, Some { CAst.v = CHole _ } | GHole _, None -> true | _ -> false (* "ssrpattern" *) (** All the pattern types reuse the same dynamic toplevel tag *) let wit_ssrpatternarg = wit_rpatternty let interp_rpattern = interp_rpattern ~wit_ssrpatternarg let ssrpatterntac _ist arg = let open Proofview.Notations in Proofview.Goal.enter begin fun gl -> let sigma0 = Proofview.Goal.sigma gl in let concl0 = Proofview.Goal.concl gl in let env = Proofview.Goal.env gl in let pat = interp_rpattern env sigma0 arg in let (t, uc), concl_x = fill_occ_pattern env sigma0 concl0 pat noindex 1 in let sigma = Evd.set_universe_context sigma0 uc in let sigma, tty = Typing.type_of env sigma t in let concl = EConstr.mkLetIn (make_annot (Name (Id.of_string "selected")) Sorts.Relevant, t, tty, concl_x) in Proofview.Unsafe.tclEVARS sigma <*> convert_concl ~cast:false ~check:true concl DEFAULTcast end (* Register "ssrpattern" tactic *) let () = let mltac _ ist = let arg = let v = Id.Map.find (Names.Id.of_string "pattern") ist.lfun in Value.cast (topwit wit_ssrpatternarg) v in ssrpatterntac ist arg in let name = { mltac_plugin = "coq-core.plugins.ssrmatching"; mltac_tactic = "ssrpattern"; } in let () = Tacenv.register_ml_tactic name [|mltac|] in let tac = CAst.make (TacFun ([Name (Id.of_string "pattern")], CAst.make (TacML ({ mltac_name = name; mltac_index = 0 }, [])))) in let obj () = Tacenv.register_ltac true false (Id.of_string "ssrpattern") tac in Mltop.declare_cache_obj obj "coq-core.plugins.ssrmatching" let ssrinstancesof arg = Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let concl = Proofview.Goal.concl gl in let concl = Reductionops.nf_evar sigma concl in let { pat_sigma = sigma0; pat_pat = cpat } = interp_cpattern env sigma arg None in let pat = match cpat with T x -> x | _ -> errorstrm (str"Not supported") in let rigid ev = Evd.mem sigma ev in let tpat = mk_tpattern ~rigid env pat L2R pat (empty_tpatterns sigma0) in let find, conclude = mk_tpattern_matcher ~all_instances:true ~raise_NoMatch:true sigma None tpat in let print env p c _ = ppnl (hov 1 (str"instance:" ++ spc() ++ pr_econstr_env env (Proofview.Goal.sigma gl) p ++ spc() ++ str "matches:" ++ spc() ++ pr_econstr_env env (Proofview.Goal.sigma gl) c)); c in ppnl (str"BEGIN INSTANCES"); try while true do ignore(find env concl 1 ~k:print) done; raise NoMatch with NoMatch -> ppnl (str"END INSTANCES"); Tacticals.tclIDTAC end module Internal = struct let wit_rpatternty = wit_rpatternty let glob_rpattern = glob_rpattern let subst_rpattern = subst_rpattern let interp_rpattern = interp_rpattern0 let pr_rpattern = pr_rpattern let mk_rpattern x = x let mk_lterm = mk_lterm let mk_term = mk_term let glob_cpattern = glob_cpattern let subst_ssrterm = subst_ssrterm let interp_ssrterm = interp_ssrterm let pr_ssrterm = pr_term end (* vim: set filetype=ocaml foldmethod=marker: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>