package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/micromega_plugin/numCompat.ml.html
Source file numCompat.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module type ZArith = sig type t val zero : t val one : t val two : t val add : t -> t -> t val sub : t -> t -> t val mul : t -> t -> t val div : t -> t -> t val neg : t -> t val sign : t -> int val equal : t -> t -> bool val compare : t -> t -> int val power_int : t -> int -> t val quomod : t -> t -> t * t val ppcm : t -> t -> t val gcd : t -> t -> t val lcm : t -> t -> t val to_string : t -> string end module Z = struct (* Beware this only works fine in ZArith >= 1.10 due to https://github.com/ocaml/Zarith/issues/58 *) include Z (* Constants *) let two = Z.of_int 2 let ten = Z.of_int 10 let power_int = Big_int_Z.power_big_int_positive_int let quomod = Big_int_Z.quomod_big_int (* zarith fails with division by zero if x == 0 && y == 0 *) let lcm x y = if Z.equal x zero && Z.equal y zero then zero else Z.lcm x y let ppcm x y = let g = gcd x y in let x' = Z.div x g in let y' = Z.div y g in Z.mul g (Z.mul x' y') end module type QArith = sig module Z : ZArith type t val of_int : int -> t val zero : t val one : t val two : t val ten : t val minus_one : t module Notations : sig val ( // ) : t -> t -> t val ( +/ ) : t -> t -> t val ( -/ ) : t -> t -> t val ( */ ) : t -> t -> t val ( =/ ) : t -> t -> bool val ( <>/ ) : t -> t -> bool val ( >/ ) : t -> t -> bool val ( >=/ ) : t -> t -> bool val ( </ ) : t -> t -> bool val ( <=/ ) : t -> t -> bool end val compare : t -> t -> int val make : Z.t -> Z.t -> t val den : t -> Z.t val num : t -> Z.t val of_bigint : Z.t -> t val to_bigint : t -> Z.t val neg : t -> t (* val inv : t -> t *) val max : t -> t -> t val min : t -> t -> t val sign : t -> int val abs : t -> t val mod_ : t -> t -> t val floor : t -> t (* val floorZ : t -> Z.t *) val ceiling : t -> t val round : t -> t val pow2 : int -> t val pow10 : int -> t val power : int -> t -> t val to_string : t -> string val of_string : string -> t val to_float : t -> float end module Q : QArith with module Z = Z = struct module Z = Z let pow_check_exp x y = let z_res = if y = 0 then Z.one else if y > 0 then Z.pow x y else (* s < 0 *) Z.pow x (abs y) in let z_res = Q.of_bigint z_res in if 0 <= y then z_res else Q.inv z_res include Q let two = Q.(of_int 2) let ten = Q.(of_int 10) module Notations = struct let ( // ) = Q.div let ( +/ ) = Q.add let ( -/ ) = Q.sub let ( */ ) = Q.mul let ( =/ ) = Q.equal let ( <>/ ) x y = not (Q.equal x y) let ( >/ ) = Q.gt let ( >=/ ) = Q.geq let ( </ ) = Q.lt let ( <=/ ) = Q.leq end (* XXX: review / improve *) let floorZ q : Z.t = Z.fdiv (num q) (den q) let floor q : t = floorZ q |> Q.of_bigint let ceiling q : t = Z.cdiv (Q.num q) (Q.den q) |> Q.of_bigint let half = Q.make Z.one Z.two (* We imitate Num's round which is to the nearest *) let round q = floor (Q.add half q) (* XXX: review / improve *) let quo x y = let s = sign y in let res = floor (x / abs y) in if Int.equal s (-1) then neg res else res let mod_ x y = x - (y * quo x y) (* XXX: review / improve *) (* Note that Z.pow doesn't support negative exponents *) let pow2 y = pow_check_exp Z.two y let pow10 y = pow_check_exp Z.ten y let power (x : int) (y : t) : t = let y = try Q.to_int y with Z.Overflow -> (* XXX: make doesn't link Pp / CErrors for csdpcert, that could be fixed *) raise (Invalid_argument "[micromega] overflow in exponentiation") (* CErrors.user_err (Pp.str "[micromega] overflow in exponentiation") *) in pow_check_exp (Z.of_int x) y end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>