package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.vernac/declaremods.ml.html
Source file declaremods.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Pp open CErrors open Util open Names open Declarations open Entries open Libnames open Libobject open Mod_subst (** {6 Inlining levels} *) (** Rigid / flexible module signature *) type 'a module_signature = | Enforce of 'a (** ... : T *) | Check of 'a list (** ... <: T1 <: T2, possibly empty *) (** Which module inline annotations should we honor, either None or the ones whose level is less or equal to the given integer *) type inline = | NoInline | DefaultInline | InlineAt of int let default_inline () = Some (Flags.get_inline_level ()) let inl2intopt = function | NoInline -> None | InlineAt i -> Some i | DefaultInline -> default_inline () (** These functions register the visibility of the module and iterates through its components. They are called by plenty of module functions *) let consistency_checks exists dir = if exists then let _ = try Nametab.locate_module (qualid_of_dirpath dir) with Not_found -> user_err (DirPath.print dir ++ str " should already exist!") in () else if Nametab.exists_module dir then user_err (DirPath.print dir ++ str " already exists.") let rec get_module_path = function | MEident mp -> mp | MEwith (me,_) -> get_module_path me | MEapply (me,_) -> get_module_path me let type_of_mod mp env = function | true -> (Environ.lookup_module mp env).mod_type | false -> (Environ.lookup_modtype mp env).mod_type (** {6 Name management} Auxiliary functions to transform full_path and kernel_name given by Lib into ModPath.t and DirPath.t needed for modules *) let mp_of_kn kn = let mp,l = KerName.repr kn in MPdot (mp,l) let dir_of_sp sp = let dir,id = repr_path sp in add_dirpath_suffix dir id (** The [ModActions] abstraction represent operations on modules that are specific to a given stage. Two instances are defined below, for Synterp and Interp. *) module type ModActions = sig type typexpr type env val stage : Summary.Stage.t val substobjs_table_name : string val modobjs_table_name : string val enter_module : ModPath.t -> DirPath.t -> int -> unit val enter_modtype : ModPath.t -> full_path -> int -> unit val open_module : open_filter -> ModPath.t -> DirPath.t -> int -> unit module Lib : Lib.StagedLibS (** Create the substitution corresponding to some functor applications *) val compute_subst : is_mod:bool -> env -> MBId.t list -> ModPath.t -> ModPath.t list -> Entries.inline -> MBId.t list * substitution end module SynterpActions : ModActions with type env = unit with type typexpr = Constrexpr.universe_decl_expr option * Constrexpr.constr_expr = struct type typexpr = Constrexpr.universe_decl_expr option * Constrexpr.constr_expr type env = unit let stage = Summary.Stage.Synterp let substobjs_table_name = "MODULE-SYNTAX-SUBSTOBJS" let modobjs_table_name = "MODULE-SYNTAX-OBJS" let enter_module obj_mp obj_dir i = consistency_checks false obj_dir; Nametab.push_module (Until i) obj_dir obj_mp let enter_modtype mp sp i = if Nametab.exists_modtype sp then anomaly (pr_path sp ++ str " already exists."); Nametab.push_modtype (Nametab.Until i) sp mp let open_module f obj_mp obj_dir i = consistency_checks true obj_dir; if in_filter ~cat:None f then Nametab.push_module (Nametab.Exactly i) obj_dir obj_mp module Lib = Lib.Synterp let rec compute_subst () mbids mp_l inl = match mbids,mp_l with | _,[] -> mbids,empty_subst | [],r -> user_err Pp.(str "Application of a functor with too few arguments.") | mbid::mbids,mp::mp_l -> let mbid_left,subst = compute_subst () mbids mp_l inl in mbid_left,join (map_mbid mbid mp empty_delta_resolver) subst let compute_subst ~is_mod () mbids mp1 mp_l inl = compute_subst () mbids mp_l inl end module InterpActions : ModActions with type env = Environ.env with type typexpr = Constr.t * Univ.AbstractContext.t option = struct type typexpr = Constr.t * Univ.AbstractContext.t option type env = Environ.env let stage = Summary.Stage.Interp let substobjs_table_name = "MODULE-SUBSTOBJS" let modobjs_table_name = "MODULE-OBJS" (** {6 Current module type information} This information is stored by each [start_modtype] for use in a later [end_modtype]. *) let enter_module obj_mp obj_dir i = () let enter_modtype mp sp i = () let open_module f obj_mp obj_dir i = () module Lib = Lib.Interp let rec compute_subst env mbids sign mp_l inl = match mbids,mp_l with | _,[] -> mbids,empty_subst | [],r -> user_err Pp.(str "Application of a functor with too few arguments.") | mbid::mbids,mp::mp_l -> let farg_id, farg_b, fbody_b = Modops.destr_functor sign in let mb = Environ.lookup_module mp env in let mbid_left,subst = compute_subst env mbids fbody_b mp_l inl in let resolver = if Modops.is_functor mb.mod_type then empty_delta_resolver else Modops.inline_delta_resolver env inl mp farg_id farg_b mb.mod_delta in mbid_left,join (map_mbid mbid mp resolver) subst let compute_subst ~is_mod env mbids mp1 mp_l inl = let typ = type_of_mod mp1 env is_mod in compute_subst env mbids typ mp_l inl end type module_objects = { module_prefix : Nametab.object_prefix; module_substituted_objects : Libobject.t list; module_keep_objects : Libobject.t list; } (** The [StagedModS] abstraction describes module operations at a given stage. *) module type StagedModS = sig type typexpr type env val get_module_sobjs : bool -> env -> Entries.inline -> typexpr module_alg_expr -> substitutive_objects val do_module : (int -> Nametab.object_prefix -> Libobject.t list -> unit) -> int -> DirPath.t -> ModPath.t -> substitutive_objects -> Libobject.t list -> unit val load_objects : int -> Nametab.object_prefix -> Libobject.t list -> unit val open_object : open_filter -> int -> Nametab.object_prefix * Libobject.t -> unit val collect_modules : (open_filter * ModPath.t) list -> open_filter MPmap.t * (open_filter * (Nametab.object_prefix * Libobject.t)) list -> open_filter MPmap.t * (open_filter * (Nametab.object_prefix * Libobject.t)) list val add_leaf : Libobject.t -> unit val add_leaves : Libobject.t list -> unit val expand_aobjs : Libobject.algebraic_objects -> Libobject.t list val get_applications : typexpr module_alg_expr -> ModPath.t * ModPath.t list val debug_print_modtab : unit -> Pp.t module ModObjs : sig val all : unit -> module_objects MPmap.t end end (** Some utilities about substitutive objects : substitution, expansion *) let sobjs_no_functor (mbids,_) = List.is_empty mbids let subst_filtered sub (f,mp as x) = let mp' = subst_mp sub mp in if mp == mp' then x else f, mp' let rec subst_aobjs sub = function | Objs o as objs -> let o' = subst_objects sub o in if o == o' then objs else Objs o' | Ref (mp, sub0) as r -> let sub0' = join sub0 sub in if sub0' == sub0 then r else Ref (mp, sub0') and subst_sobjs sub (mbids,aobjs as sobjs) = let aobjs' = subst_aobjs sub aobjs in if aobjs' == aobjs then sobjs else (mbids, aobjs') and subst_objects subst seg = let subst_one node = match node with | AtomicObject obj -> let obj' = Libobject.subst_object (subst,obj) in if obj' == obj then node else AtomicObject obj' | ModuleObject (id, sobjs) -> let sobjs' = subst_sobjs subst sobjs in if sobjs' == sobjs then node else ModuleObject (id, sobjs') | ModuleTypeObject (id, sobjs) -> let sobjs' = subst_sobjs subst sobjs in if sobjs' == sobjs then node else ModuleTypeObject (id, sobjs') | IncludeObject aobjs -> let aobjs' = subst_aobjs subst aobjs in if aobjs' == aobjs then node else IncludeObject aobjs' | ExportObject { mpl } -> let mpl' = List.Smart.map (subst_filtered subst) mpl in if mpl'==mpl then node else ExportObject { mpl = mpl' } | KeepObject _ -> assert false in List.Smart.map subst_one seg (** The [StagedMod] abstraction factors out the code dealing with modules that is common to all stages. *) module StagedMod(Actions : ModActions) = struct type typexpr = Actions.typexpr type env = Actions.env (** ModSubstObjs : a cache of module substitutive objects This table is common to modules and module types. - For a Module M:=N, the objects of N will be reloaded with M after substitution. - For a Module M:SIG:=..., the module M gets its objects from SIG Invariants: - A alias (i.e. a module path inside a Ref constructor) should never lead to another alias, but rather to a concrete Objs constructor. We will plug later a handler dealing with missing entries in the cache. Such missing entries may come from inner parts of module types, which aren't registered by the standard libobject machinery. *) module ModSubstObjs : sig val set : ModPath.t -> substitutive_objects -> unit val get : ModPath.t -> substitutive_objects val set_missing_handler : (ModPath.t -> substitutive_objects) -> unit end = struct let table = Summary.ref ~stage:Actions.stage (MPmap.empty : substitutive_objects MPmap.t) ~name:Actions.substobjs_table_name let missing_handler = ref (fun mp -> assert false) let set_missing_handler f = (missing_handler := f) let set mp objs = (table := MPmap.add mp objs !table) let get mp = try MPmap.find mp !table with Not_found -> !missing_handler mp end let expand_aobjs = function | Objs o -> o | Ref (mp, sub) -> match ModSubstObjs.get mp with | (_,Objs o) -> subst_objects sub o | _ -> assert false (* Invariant : any alias points to concrete objs *) let expand_sobjs (_,aobjs) = expand_aobjs aobjs (** {6 ModObjs : a cache of module objects} For each module, we also store a cache of "prefix", "substituted objects", "keep objects". This is used for instance to implement the "Import" command. substituted objects : roughly the objects above after the substitution - we need to keep them to call open_object when the module is opened (imported) keep objects : The list of non-substitutive objects - as above, for each of them we will call open_object when the module is opened (Some) Invariants: * If the module is a functor, it won't appear in this cache. * Module objects in substitutive_objects part have empty substituted objects. * Modules which where created with Module M:=mexpr or with Module M:SIG. ... End M. have the keep list empty. *) module ModObjs : sig val set : ModPath.t -> module_objects -> unit val get : ModPath.t -> module_objects (* may raise Not_found *) val all : unit -> module_objects MPmap.t end = struct let table = Summary.ref ~stage:Actions.stage (MPmap.empty : module_objects MPmap.t) ~name:Actions.modobjs_table_name let set mp objs = (table := MPmap.add mp objs !table) let get mp = MPmap.find mp !table let all () = !table end (** {6 Declaration of module substitutive objects} *) (** Iterate some function [iter_objects] on all components of a module *) let do_module iter_objects i obj_dir obj_mp sobjs kobjs = let prefix = Nametab.{ obj_dir ; obj_mp; } in Actions.enter_module obj_mp obj_dir i; ModSubstObjs.set obj_mp sobjs; (* If we're not a functor, let's iter on the internal components *) if sobjs_no_functor sobjs then begin let objs = expand_sobjs sobjs in let module_objects = { module_prefix = prefix; module_substituted_objects = objs; module_keep_objects = kobjs; } in ModObjs.set obj_mp module_objects; iter_objects (i+1) prefix objs; iter_objects (i+1) prefix kobjs end let do_module' iter_objects i ((sp,kn),sobjs) = do_module iter_objects i (dir_of_sp sp) (mp_of_kn kn) sobjs [] (** Nota: Interactive modules and module types cannot be recached! This used to be checked here via a flag along the substobjs. *) (** {6 Declaration of module type substitutive objects} *) (** Nota: Interactive modules and module types cannot be recached! This used to be checked more properly here. *) let load_modtype i sp mp sobjs = Actions.enter_modtype mp sp i; ModSubstObjs.set mp sobjs (** {6 Declaration of substitutive objects for Include} *) let rec load_object i (prefix, obj) = match obj with | AtomicObject o -> Libobject.load_object i (prefix, o) | ModuleObject (id,sobjs) -> let name = Lib.make_oname prefix id in do_module' load_objects i (name, sobjs) | ModuleTypeObject (id,sobjs) -> let name = Lib.make_oname prefix id in let (sp,kn) = name in load_modtype i sp (mp_of_kn kn) sobjs | IncludeObject aobjs -> load_include i (prefix, aobjs) | ExportObject _ -> () | KeepObject (id,objs) -> let name = Lib.make_oname prefix id in load_keep i (name, objs) and load_objects i prefix objs = List.iter (fun obj -> load_object i (prefix, obj)) objs and load_include i (prefix, aobjs) = let o = expand_aobjs aobjs in load_objects i prefix o and load_keep i ((sp,kn),kobjs) = (* Invariant : seg isn't empty *) let obj_dir = dir_of_sp sp and obj_mp = mp_of_kn kn in let prefix = Nametab.{ obj_dir ; obj_mp; } in let modobjs = try ModObjs.get obj_mp with Not_found -> assert false (* a substobjs should already be loaded *) in assert Nametab.(eq_op modobjs.module_prefix prefix); assert (List.is_empty modobjs.module_keep_objects); ModObjs.set obj_mp { modobjs with module_keep_objects = kobjs }; load_objects i prefix kobjs (** {6 Implementation of Import and Export commands} *) let mark_object f obj (exports,acc) = (exports, (f,obj)::acc) let rec collect_modules mpl acc = List.fold_left (fun acc fmp -> collect_module fmp acc) acc (List.rev mpl) and collect_module (f,mp) acc = try (* May raise Not_found for unknown module and for functors *) let modobjs = ModObjs.get mp in let prefix = modobjs.module_prefix in let acc = collect_objects f 1 prefix modobjs.module_keep_objects acc in collect_objects f 1 prefix modobjs.module_substituted_objects acc with Not_found when Actions.stage = Summary.Stage.Synterp -> acc and collect_object f i prefix obj acc = match obj with | ExportObject { mpl } -> collect_exports f i mpl acc | AtomicObject _ | IncludeObject _ | KeepObject _ | ModuleObject _ | ModuleTypeObject _ -> mark_object f (prefix,obj) acc and collect_objects f i prefix objs acc = List.fold_left (fun acc obj -> collect_object f i prefix obj acc) acc (List.rev objs) and collect_export f (f',mp) (exports,objs as acc) = match filter_and f f' with | None -> acc | Some f -> let exports' = MPmap.update mp (function | None -> Some f | Some f0 -> Some (filter_or f f0)) exports in (* If the map doesn't change there is nothing new to export. It's possible that [filter_and] or [filter_or] mangled precise filters such that we repeat uselessly, but the important [Unfiltered] case is handled correctly. *) if exports == exports' then acc else collect_module (f,mp) (exports', objs) and collect_exports f i mpl acc = if Int.equal i 1 then List.fold_left (fun acc fmp -> collect_export f fmp acc) acc (List.rev mpl) else acc let open_modtype i ((sp,kn),_) = let mp = mp_of_kn kn in let mp' = try Nametab.locate_modtype (qualid_of_path sp) with Not_found -> anomaly (pr_path sp ++ str " should already exist!"); in assert (ModPath.equal mp mp'); Nametab.push_modtype (Nametab.Exactly i) sp mp let rec open_object f i (prefix, obj) = match obj with | AtomicObject o -> Libobject.open_object f i (prefix, o) | ModuleObject (id,sobjs) -> let name = Lib.make_oname prefix id in let dir = dir_of_sp (fst name) in let mp = mp_of_kn (snd name) in open_module f i dir mp sobjs | ModuleTypeObject (id,sobjs) -> let name = Lib.make_oname prefix id in open_modtype i (name, sobjs) | IncludeObject aobjs -> open_include f i (prefix, aobjs) | ExportObject { mpl } -> open_export f i mpl | KeepObject (id,objs) -> let name = Lib.make_oname prefix id in open_keep f i (name, objs) and open_module f i obj_dir obj_mp sobjs = Actions.open_module f obj_mp obj_dir i; (* If we're not a functor, let's iter on the internal components *) if sobjs_no_functor sobjs then begin let modobjs = ModObjs.get obj_mp in open_objects f (i+1) modobjs.module_prefix modobjs.module_substituted_objects end and open_objects f i prefix objs = List.iter (fun obj -> open_object f i (prefix, obj)) objs and open_include f i (prefix, aobjs) = let o = expand_aobjs aobjs in open_objects f i prefix o and open_export f i mpl = let _,objs = collect_exports f i mpl (MPmap.empty, []) in List.iter (fun (f,o) -> open_object f 1 o) objs and open_keep f i ((sp,kn),kobjs) = let obj_dir = dir_of_sp sp and obj_mp = mp_of_kn kn in let prefix = Nametab.{ obj_dir; obj_mp; } in open_objects f i prefix kobjs let cache_include (prefix, aobjs) = let o = expand_aobjs aobjs in load_objects 1 prefix o; open_objects unfiltered 1 prefix o and cache_keep ((sp,kn),kobjs) = anomaly (Pp.str "This module should not be cached!") let cache_object (prefix, obj) = match obj with | AtomicObject o -> Libobject.cache_object (prefix, o) | ModuleObject (id,sobjs) -> let name = Lib.make_oname prefix id in do_module' load_objects 1 (name, sobjs) | ModuleTypeObject (id,sobjs) -> let name = Lib.make_oname prefix id in let (sp,kn) = name in load_modtype 0 sp (mp_of_kn kn) sobjs | IncludeObject aobjs -> cache_include (prefix, aobjs) | ExportObject { mpl } -> anomaly Pp.(str "Export should not be cached") | KeepObject (id,objs) -> let name = Lib.make_oname prefix id in cache_keep (name, objs) (* Adding operations with containers *) let add_leaf obj = cache_object (Lib.prefix (),obj); match Actions.stage with | Summary.Stage.Synterp -> Lib.Synterp.add_leaf_entry obj | Summary.Stage.Interp -> Lib.Interp.add_leaf_entry obj let add_leaves objs = let add_obj obj = begin match Actions.stage with | Summary.Stage.Synterp -> Lib.Synterp.add_leaf_entry obj | Summary.Stage.Interp -> Lib.Interp.add_leaf_entry obj end; load_object 1 (Lib.prefix (),obj) in List.iter add_obj objs (** {6 Handler for missing entries in ModSubstObjs} *) (** Since the inner of Module Types are not added by default to the ModSubstObjs table, we compensate this by explicit traversal of Module Types inner objects when needed. Quite a hack... *) let mp_id mp id = MPdot (mp, Label.of_id id) let rec register_mod_objs mp obj = match obj with | ModuleObject (id,sobjs) -> ModSubstObjs.set (mp_id mp id) sobjs | ModuleTypeObject (id,sobjs) -> ModSubstObjs.set (mp_id mp id) sobjs | IncludeObject aobjs -> List.iter (register_mod_objs mp) (expand_aobjs aobjs) | _ -> () let handle_missing_substobjs mp = match mp with | MPdot (mp',l) -> let objs = expand_sobjs (ModSubstObjs.get mp') in List.iter (register_mod_objs mp') objs; ModSubstObjs.get mp | _ -> assert false (* Only inner parts of module types should be missing *) let () = ModSubstObjs.set_missing_handler handle_missing_substobjs (** {6 From module expression to substitutive objects} *) (** Turn a chain of [MSEapply] into the head ModPath.t and the list of ModPath.t parameters (deepest param coming first). The left part of a [MSEapply] must be either [MSEident] or another [MSEapply]. *) let get_applications mexpr = let rec get params = function | MEident mp -> mp, params | MEapply (fexpr, mp) -> get (mp::params) fexpr | MEwith _ -> user_err Pp.(str "Non-atomic functor application.") in get [] mexpr (** Create the objects of a "with Module" structure. *) let rec replace_module_object idl mp0 objs0 mp1 objs1 = match idl, objs0 with | _,[] -> [] | id::idl,(ModuleObject (id', sobjs))::tail when Id.equal id id' -> begin let mp_id = MPdot(mp0, Label.of_id id) in let objs = match idl with | [] -> subst_objects (map_mp mp1 mp_id empty_delta_resolver) objs1 | _ -> let objs_id = expand_sobjs sobjs in replace_module_object idl mp_id objs_id mp1 objs1 in (ModuleObject (id, ([], Objs objs)))::tail end | idl,lobj::tail -> lobj::replace_module_object idl mp0 tail mp1 objs1 (** Substitutive objects of a module expression (or module type) *) let rec get_module_sobjs is_mod env inl = function | MEident mp -> begin match ModSubstObjs.get mp with | (mbids,Objs _) when not (ModPath.is_bound mp) -> (mbids,Ref (mp, empty_subst)) (* we create an alias *) | sobjs -> sobjs end | MEwith (mty, WithDef _) -> get_module_sobjs is_mod env inl mty | MEwith (mty, WithMod (idl,mp1)) -> assert (not is_mod); let sobjs0 = get_module_sobjs is_mod env inl mty in if not (sobjs_no_functor sobjs0) then user_err Pp.(str "Illegal use of a functor."); (* For now, we expand everything, to be safe *) let mp0 = get_module_path mty in let objs0 = expand_sobjs sobjs0 in let objs1 = expand_sobjs (ModSubstObjs.get mp1) in ([], Objs (replace_module_object idl mp0 objs0 mp1 objs1)) | MEapply _ as me -> let mp1, mp_l = get_applications me in let mbids, aobjs = get_module_sobjs is_mod env inl (MEident mp1) in let mbids_left,subst = Actions.compute_subst ~is_mod env mbids mp1 mp_l inl in (mbids_left, subst_aobjs subst aobjs) let debug_print_modtab () = let pr_seg = function | [] -> str "[]" | l -> str "[." ++ int (List.length l) ++ str ".]" in let pr_modinfo mp modobjs s = let objs = modobjs.module_substituted_objects @ modobjs.module_keep_objects in s ++ str (ModPath.to_string mp) ++ spc () ++ pr_seg objs in let modules = MPmap.fold pr_modinfo (ModObjs.all ()) (mt ()) in hov 0 modules end module SynterpVisitor : StagedModS with type env = SynterpActions.env with type typexpr = Constrexpr.universe_decl_expr option * Constrexpr.constr_expr = StagedMod(SynterpActions) module InterpVisitor : StagedModS with type env = InterpActions.env with type typexpr = Constr.t * Univ.AbstractContext.t option = StagedMod(InterpActions) (** {6 Modules : start, end, declare} *) type current_module_syntax_info = { cur_mp : ModPath.t; cur_typ : ((Constrexpr.universe_decl_expr option * Constrexpr.constr_expr) module_alg_expr * int option) option; cur_mbids : MBId.t list; } let default_module_syntax_info mp = { cur_mp = mp; cur_typ = None; cur_mbids = [] } let openmod_syntax_info = Summary.ref None ~stage:Summary.Stage.Synterp ~name:"MODULE-SYNTAX-INFO" (** {6 Current module information} This information is stored by each [start_module] for use in a later [end_module]. *) type current_module_info = { cur_typ : (module_struct_entry * int option) option; (** type via ":" *) cur_typs : module_type_body list (** types via "<:" *) } let default_module_info = { cur_typ = None; cur_typs = [] } let openmod_info = Summary.ref default_module_info ~name:"MODULE-INFO" let start_library dir = let mp = Global.start_library dir in openmod_info := default_module_info; openmod_syntax_info := Some (default_module_syntax_info mp); Lib.start_compilation dir mp let set_openmod_syntax_info info = match !openmod_syntax_info with | None -> anomaly Pp.(str "bad init of openmod_syntax_info") | Some _ -> openmod_syntax_info := Some info let openmod_syntax_info () = match !openmod_syntax_info with | None -> anomaly Pp.(str "missing init of openmod_syntax_info") | Some v -> v module RawModOps = struct module Synterp = struct let build_subtypes mtys = List.map (fun (m,ann) -> let inl = inl2intopt ann in let mte, base, kind = Modintern.intern_module_ast Modintern.ModType m in (mte, base, kind, inl)) mtys let intern_arg (idl,(typ,ann)) = let inl = inl2intopt ann in let lib_dir = Lib.library_dp() in let (mty, base, kind) = Modintern.intern_module_ast Modintern.ModType typ in let sobjs = SynterpVisitor.get_module_sobjs false () inl mty in let mp0 = get_module_path mty in let map {CAst.v=id} = let dir = DirPath.make [id] in let mbid = MBId.make lib_dir id in let mp = MPbound mbid in (* We can use an empty delta resolver because we load only syntax objects *) let sobjs = subst_sobjs (map_mp mp0 mp empty_delta_resolver) sobjs in SynterpVisitor.do_module SynterpVisitor.load_objects 1 dir mp sobjs []; mbid in List.map map idl, (mty, base, kind, inl) let intern_args params = List.map intern_arg params let start_module_core id args res = (* Loads the parsing objects in arguments *) let args = intern_args args in let mbids = List.flatten @@ List.map (fun (mbidl,_) -> mbidl) args in let res_entry_o, sign = match res with | Enforce (res,ann) -> let inl = inl2intopt ann in let (mte, base, kind) = Modintern.intern_module_ast Modintern.ModType res in Some (mte, inl), Enforce (mte, base, kind, inl) | Check resl -> None, Check (build_subtypes resl) in let mp = ModPath.MPdot((openmod_syntax_info ()).cur_mp, Label.of_id id) in mp, res_entry_o, mbids, sign, args let start_module export id args res = let fs = Summary.Synterp.freeze_summaries () in let mp, res_entry_o, mbids, sign, args = start_module_core id args res in set_openmod_syntax_info { cur_mp = mp; cur_typ = res_entry_o; cur_mbids = mbids }; let prefix = Lib.Synterp.start_module export id mp fs in Nametab.(push_dir (Until 1) (prefix.obj_dir) (GlobDirRef.DirOpenModule prefix.obj_mp)); mp, args, sign let end_module_core id (m_info : current_module_syntax_info) objects fs = let {Lib.Synterp.substobjs = substitute; keepobjs = keep; anticipateobjs = special; } = objects in (* For sealed modules, we use the substitutive objects of their signatures *) let sobjs0, keep, special = match m_info.cur_typ with | None -> ([], Objs substitute), keep, special | Some (mty, inline) -> SynterpVisitor.get_module_sobjs false () inline mty, [], special in Summary.Synterp.unfreeze_summaries fs; let sobjs = let (ms,objs) = sobjs0 in (m_info.cur_mbids@ms,objs) in (* We substitute objects if the module is sealed by a signature *) let sobjs = match m_info.cur_typ with | None -> sobjs | Some (mty, _) -> subst_sobjs (map_mp (get_module_path mty) m_info.cur_mp empty_delta_resolver) sobjs in let node = ModuleObject (id,sobjs) in (* We add the keep objects, if any, and if this isn't a functor *) let objects = match keep, m_info.cur_mbids with | [], _ | _, _ :: _ -> special@[node] | _ -> special@[node;KeepObject (id,keep)] in (* Name consistency check : start_ vs. end_module *) (* Printf.eprintf "newoname=%s, oldoname=%s\n" (string_of_path (fst newoname)) (string_of_path (fst oldoname)); assert (DirPath.equal (Lib.prefix()).Nametab.obj_dir olddp); assert (ModPath.equal oldprefix.Nametab.obj_mp mp); *) (* Printf.eprintf "newoname=%s, oldoname=%s\n" (string_of_path (fst newoname)) (string_of_path (fst oldoname)); *) (* Printf.eprintf "newoname=%s, cur_mp=%s\n" (ModPath.debug_to_string (mp_of_kn (snd newoname))) (ModPath.debug_to_string m_info.cur_mp); *) m_info.cur_mp, objects let end_module () = let oldprefix,fs,objects = Lib.Synterp.end_module () in let m_info = openmod_syntax_info () in let olddp, id = split_dirpath oldprefix.Nametab.obj_dir in let mp,objects = end_module_core id m_info objects fs in let () = SynterpVisitor.add_leaves objects in (* Name consistency check : kernel vs. library *) (* CDebug.debug_synterp (fun () -> Pp.(str"prefix=" ++ DirPath.print ((Lib.prefix()).Nametab.obj_dir) ++ str", olddp=" ++ DirPath.print olddp)); *) assert (DirPath.equal (Lib.prefix()).Nametab.obj_dir olddp); mp let get_functor_sobjs is_mod inl (mbids,mexpr) = let (mbids0, aobjs) = SynterpVisitor.get_module_sobjs is_mod () inl mexpr in (mbids @ mbids0, aobjs) let declare_module id args res mexpr_o = let fs = Summary.Synterp.freeze_summaries () in (* We simulate the beginning of an interactive module, then we adds the module parameters to the global env. *) let mp = ModPath.MPdot((openmod_syntax_info ()).cur_mp, Label.of_id id) in let args = intern_args args in let mbids = List.flatten @@ List.map fst args in let mty_entry_o = match res with | Enforce (mty,ann) -> let inl = inl2intopt ann in let (mte, base, kind) = Modintern.intern_module_ast Modintern.ModType mty in Enforce (mte, base, kind, inl) | Check mtys -> Check (build_subtypes mtys) in let mexpr_entry_o = match mexpr_o with | None -> None | Some (mexpr,ann) -> let (mte, base, kind) = Modintern.intern_module_ast Modintern.Module mexpr in Some (mte, base, kind, inl2intopt ann) in let sobjs, mp0 = match mexpr_entry_o, mty_entry_o with | None, Check _ -> assert false (* No body, no type ... *) | _, Enforce (typ,_,_,inl_res) -> get_functor_sobjs false inl_res (mbids,typ), get_module_path typ | Some (body, _, _, inl_expr), Check _ -> get_functor_sobjs true inl_expr (mbids,body), get_module_path body in (* Undo the simulated interactive building of the module and declare the module as a whole *) Summary.Synterp.unfreeze_summaries fs; (* We can use an empty delta resolver on syntax objects *) let sobjs = subst_sobjs (map_mp mp0 mp empty_delta_resolver) sobjs in ignore (SynterpVisitor.add_leaf (ModuleObject (id,sobjs))); mp, args, mexpr_entry_o, mty_entry_o end module Interp = struct (** {6 Auxiliary functions concerning subtyping checks} *) let check_sub mtb sub_mtb_l = let fold sub_mtb (cst, env) = let state = ((Environ.universes env, cst), Reductionops.inferred_universes) in let graph, cst = Subtyping.check_subtypes state env mtb sub_mtb in (cst, Environ.set_universes graph env) in let cst, _ = List.fold_right fold sub_mtb_l (Univ.Constraints.empty, Global.env ()) in Global.add_constraints cst (** This function checks if the type calculated for the module [mp] is a "<:"-like subtype of all signatures in [sub_mtb_l]. Uses only the global environment. *) let check_subtypes mp sub_mtb_l = let mb = try Global.lookup_module mp with Not_found -> assert false in let mtb = Modops.module_type_of_module mb in check_sub mtb sub_mtb_l (** Same for module type [mp] *) let check_subtypes_mt mp sub_mtb_l = let mtb = try Global.lookup_modtype mp with Not_found -> assert false in check_sub mtb sub_mtb_l let current_modresolver () = fst @@ Safe_typing.delta_of_senv @@ Global.safe_env () let current_struct () = let struc = Safe_typing.structure_body_of_safe_env @@ Global.safe_env () in NoFunctor (List.rev struc) (** Prepare the module type list for check of subtypes *) let build_subtypes env mp args mtys = let (ctx, ans) = List.fold_left_map (fun ctx (mte,base,kind,inl) -> let mte, ctx' = Modintern.interp_module_ast env Modintern.ModType base mte in let env = Environ.push_context_set ~strict:true ctx' env in let ctx = Univ.ContextSet.union ctx ctx' in let state = ((Environ.universes env, Univ.Constraints.empty), Reductionops.inferred_universes) in let mtb, (_, cst) = Mod_typing.translate_modtype state env mp inl (args,mte) in let ctx = Univ.ContextSet.add_constraints cst ctx in ctx, mtb) Univ.ContextSet.empty mtys in (ans, ctx) (** Process a declaration of functor parameter(s) (Id1 .. Idn : Typ) i.e. possibly multiple names with the same module type. Global environment is updated on the fly. Objects in these parameters are also loaded. Output is accumulated on top of [acc] (in reverse order). *) let intern_arg (acc, cst) (mbidl,(mty, base, kind, inl)) = let env = Global.env() in let (mty, cst') = Modintern.interp_module_ast env kind base mty in let () = Global.push_context_set ~strict:true cst' in let () = let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in let _, (_, cst) = Mod_typing.translate_modtype state (Global.env ()) base inl ([], mty) in Global.add_constraints cst in let env = Global.env () in let sobjs = InterpVisitor.get_module_sobjs false env inl mty in let mp0 = get_module_path mty in let fold acc mbid = let id = MBId.to_id mbid in let dir = DirPath.make [id] in let mp = MPbound mbid in let resolver = Global.add_module_parameter mbid mty inl in let sobjs = subst_sobjs (map_mp mp0 mp resolver) sobjs in InterpVisitor.do_module InterpVisitor.load_objects 1 dir mp sobjs []; (mbid,mty,inl)::acc in let acc = List.fold_left fold acc mbidl in (acc, Univ.ContextSet.union cst cst') (** Process a list of declarations of functor parameters (Id11 .. Id1n : Typ1)..(Idk1 .. Idkm : Typk) Global environment is updated on the fly. The calls to [interp_modast] should be interleaved with these env updates, otherwise some "with Definition" could be rejected. Returns a list of mbids and entries (in reversed order). This used to be a [List.concat (List.map ...)], but this should be more efficient and independent of [List.map] eval order. *) let intern_args params = let args, ctx = List.fold_left intern_arg ([], Univ.ContextSet.empty) params in List.rev args, ctx let start_module_core id args res = let mp = Global.start_module id in let params, ctx = intern_args args in let () = Global.push_context_set ~strict:true ctx in let env = Global.env () in let res_entry_o, subtyps, ctx' = match res with | Enforce (mte, base, kind, inl) -> let (mte, ctx) = Modintern.interp_module_ast env kind base mte in let env = Environ.push_context_set ~strict:true ctx env in (* We check immediately that mte is well-formed *) let state = ((Environ.universes env, Univ.Constraints.empty), Reductionops.inferred_universes) in let _, (_, cst) = Mod_typing.translate_modtype state env mp inl ([], mte) in let ctx = Univ.ContextSet.add_constraints cst ctx in Some (mte, inl), [], ctx | Check resl -> let typs, ctx = build_subtypes env mp params resl in None, typs, ctx in let () = Global.push_context_set ~strict:true ctx' in mp, res_entry_o, subtyps, params, Univ.ContextSet.union ctx ctx' let start_module export id args res = let fs = Summary.Interp.freeze_summaries () in let mp, res_entry_o, subtyps, _, _ = start_module_core id args res in openmod_info := { cur_typ = res_entry_o; cur_typs = subtyps }; let _ : Nametab.object_prefix = Lib.Interp.start_module export id mp fs in mp let end_module_core id m_info objects fs = let {Lib.Interp.substobjs = substitute; keepobjs = keep; anticipateobjs = special; } = objects in (* For sealed modules, we use the substitutive objects of their signatures *) let sobjs0, keep = match m_info.cur_typ with | None -> ([], Objs substitute), keep | Some (mty, inline) -> InterpVisitor.get_module_sobjs false (Global.env()) inline mty, [] in let struc = current_struct () in let restype' = Option.map (fun (ty,inl) -> (([],ty),inl)) m_info.cur_typ in let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in let _, (_, cst) = Mod_typing.finalize_module state (Global.env ()) (Global.current_modpath ()) (struc, current_modresolver ()) restype' in let () = Global.add_constraints cst in let mp,mbids,resolver = Global.end_module fs id m_info.cur_typ in let sobjs = let (ms,objs) = sobjs0 in (mbids@ms,objs) in let () = check_subtypes mp m_info.cur_typs in (* We substitute objects if the module is sealed by a signature *) let sobjs = match m_info.cur_typ with | None -> sobjs | Some (mty, _) -> subst_sobjs (map_mp (get_module_path mty) mp resolver) sobjs in let node = ModuleObject (id,sobjs) in (* We add the keep objects, if any, and if this isn't a functor *) let objects = match keep, mbids with | [], _ | _, _ :: _ -> special@[node] | _ -> special@[node;KeepObject (id,keep)] in mp, objects let end_module () = let oldprefix,fs,objects = Lib.Interp.end_module () in let m_info = !openmod_info in let olddp, id = split_dirpath oldprefix.Nametab.obj_dir in let mp,objects = end_module_core id m_info objects fs in let () = InterpVisitor.add_leaves objects in (* Name consistency check : kernel vs. library *) assert (ModPath.equal oldprefix.Nametab.obj_mp mp); mp let get_functor_sobjs is_mod env inl (params,mexpr) = let (mbids, aobjs) = InterpVisitor.get_module_sobjs is_mod env inl mexpr in (List.map pi1 params @ mbids, aobjs) (* TODO cleanup push universes directly to global env *) let declare_module id args res mexpr_o = let fs = Summary.Interp.freeze_summaries () in (* We simulate the beginning of an interactive module, then we adds the module parameters to the global env. *) let mp, mty_entry_o, subs, params, ctx = start_module_core id args res in let env = Global.env () in let mexpr_entry_o, inl_expr, ctx' = match mexpr_o with | None -> None, default_inline (), Univ.ContextSet.empty | Some (mte, base, kind, inl) -> let (mte, ctx) = Modintern.interp_module_ast env kind base mte in Some mte, inl, ctx in let env = Environ.push_context_set ~strict:true ctx' env in let ctx = Univ.ContextSet.union ctx ctx' in let entry, inl_res = match mexpr_entry_o, mty_entry_o with | None, None -> assert false (* No body, no type ... *) | None, Some (typ, inl) -> MType (params, typ), inl | Some body, otyp -> MExpr (params, body, Option.map fst otyp), Option.cata snd (default_inline ()) otyp in let sobjs, mp0 = match entry with | MType (_,mte) | MExpr (_,_,Some mte) -> get_functor_sobjs false env inl_res (params,mte), get_module_path mte | MExpr (_,me,None) -> get_functor_sobjs true env inl_expr (params,me), get_module_path me in (* Undo the simulated interactive building of the module and declare the module as a whole *) Summary.Interp.unfreeze_summaries fs; let inl = match inl_expr with | None -> None | _ -> inl_res in let () = Global.push_context_set ~strict:true ctx in let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in let _, (_, cst) = Mod_typing.translate_module state (Global.env ()) mp inl entry in let () = Global.add_constraints cst in let mp_env,resolver = Global.add_module id entry inl in (* Name consistency check : kernel vs. library *) assert (ModPath.equal mp (mp_of_kn (Lib.make_kn id))); assert (ModPath.equal mp mp_env); let () = check_subtypes mp subs in let sobjs = subst_sobjs (map_mp mp0 mp resolver) sobjs in InterpVisitor.add_leaf (ModuleObject (id,sobjs)); mp end end (** {6 Module types : start, end, declare} *) module RawModTypeOps = struct module Synterp = struct let start_modtype_core id cur_mp args mtys = let mp = ModPath.MPdot(cur_mp, Label.of_id id) in let args = RawModOps.Synterp.intern_args args in let mbids = List.flatten @@ List.map (fun (mbidl,_) -> mbidl) args in let sub_mty_l = RawModOps.Synterp.build_subtypes mtys in mp, mbids, args, sub_mty_l let start_modtype id args mtys = let fs = Summary.Synterp.freeze_summaries () in let mp, mbids, args, sub_mty_l = start_modtype_core id (openmod_syntax_info ()).cur_mp args mtys in set_openmod_syntax_info { cur_mp = mp; cur_typ = None; cur_mbids = mbids }; let prefix = Lib.Synterp.start_modtype id mp fs in Nametab.(push_dir (Until 1) (prefix.obj_dir) (GlobDirRef.DirOpenModtype prefix.obj_mp)); mp, args, sub_mty_l let end_modtype_core id mbids objects fs = let {Lib.Synterp.substobjs = substitute; keepobjs = _; anticipateobjs = special; } = objects in Summary.Synterp.unfreeze_summaries fs; let modtypeobjs = (mbids, Objs substitute) in (special@[ModuleTypeObject (id,modtypeobjs)]) let end_modtype () = let oldprefix,fs,objects = Lib.Synterp.end_modtype () in let olddp, id = split_dirpath oldprefix.Nametab.obj_dir in let objects = end_modtype_core id (openmod_syntax_info ()).cur_mbids objects fs in SynterpVisitor.add_leaves objects; (openmod_syntax_info ()).cur_mp let declare_modtype id args mtys (mty,ann) = let fs = Summary.Synterp.freeze_summaries () in let inl = inl2intopt ann in (* We simulate the beginning of an interactive module, then we adds the module parameters to the global env. *) let mp, mbids, args, sub_mty_l = start_modtype_core id (openmod_syntax_info ()).cur_mp args mtys in let mte, base, kind = Modintern.intern_module_ast Modintern.ModType mty in let entry = mbids, mte in let sobjs = RawModOps.Synterp.get_functor_sobjs false inl entry in let subst = map_mp (get_module_path (snd entry)) mp empty_delta_resolver in let sobjs = subst_sobjs subst sobjs in (* Undo the simulated interactive building of the module type and declare the module type as a whole *) Summary.Synterp.unfreeze_summaries fs; ignore (SynterpVisitor.add_leaf (ModuleTypeObject (id,sobjs))); mp, args, (mte, base, kind, inl), sub_mty_l end module Interp = struct let openmodtype_info = Summary.ref ([] : module_type_body list) ~name:"MODTYPE-INFO" let start_modtype_core id args mtys = let mp = Global.start_modtype id in let params, params_ctx = RawModOps.Interp.intern_args args in let () = Global.push_context_set ~strict:true params_ctx in let env = Global.env () in let sub_mty_l, sub_mty_ctx = RawModOps.Interp.build_subtypes env mp params mtys in let () = Global.push_context_set ~strict:true sub_mty_ctx in mp, params, sub_mty_l, Univ.ContextSet.union params_ctx sub_mty_ctx let start_modtype id args mtys = let fs = Summary.Interp.freeze_summaries () in let mp, _, sub_mty_l, _ = start_modtype_core id args mtys in openmodtype_info := sub_mty_l; let prefix = Lib.Interp.start_modtype id mp fs in Nametab.(push_dir (Until 1) (prefix.obj_dir) (GlobDirRef.DirOpenModtype mp)); mp let end_modtype_core id sub_mty_l objects fs = let {Lib.Interp.substobjs = substitute; keepobjs = _; anticipateobjs = special; } = objects in let mp, mbids = Global.end_modtype fs id in let () = RawModOps.Interp.check_subtypes_mt mp sub_mty_l in let modtypeobjs = (mbids, Objs substitute) in let objects = special@[ModuleTypeObject (id,modtypeobjs)] in mp, objects let end_modtype () = let oldprefix,fs,objects = Lib.Interp.end_modtype () in let olddp, id = split_dirpath oldprefix.Nametab.obj_dir in let sub_mty_l = !openmodtype_info in let mp, objects = end_modtype_core id sub_mty_l objects fs in let () = InterpVisitor.add_leaves objects in (* Check name consistence : start_ vs. end_modtype, kernel vs. library *) assert (DirPath.equal (Lib.prefix()).Nametab.obj_dir olddp); assert (ModPath.equal oldprefix.Nametab.obj_mp mp); mp let declare_modtype id args mtys (mte,base,kind,inl) = let fs = Summary.Interp.freeze_summaries () in (* We simulate the beginning of an interactive module, then we adds the module parameters to the global env. *) let mp, params, sub_mty_l, ctx = start_modtype_core id args mtys in let env = Global.env () in let mte, mte_ctx = Modintern.interp_module_ast env kind base mte in let () = Global.push_context_set ~strict:true mte_ctx in let env = Global.env () in (* We check immediately that mte is well-formed *) let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in let _, (_, mte_cst) = Mod_typing.translate_modtype state env mp inl ([], mte) in let () = Global.push_context_set ~strict:true (Univ.Level.Set.empty,mte_cst) in let entry = params, mte in let env = Global.env () in let sobjs = RawModOps.Interp.get_functor_sobjs false env inl entry in let subst = map_mp (get_module_path (snd entry)) mp empty_delta_resolver in let sobjs = subst_sobjs subst sobjs in (* Undo the simulated interactive building of the module type and declare the module type as a whole *) Summary.Interp.unfreeze_summaries fs; (* We enrich the global environment *) let () = Global.push_context_set ~strict:true ctx in let () = Global.push_context_set ~strict:true mte_ctx in let () = Global.push_context_set ~strict:true (Univ.Level.Set.empty,mte_cst) in let mp_env = Global.add_modtype id entry inl in (* Name consistency check : kernel vs. library *) assert (ModPath.equal mp_env mp); (* Subtyping checks *) let () = RawModOps.Interp.check_subtypes_mt mp sub_mty_l in InterpVisitor.add_leaf (ModuleTypeObject (id, sobjs)); mp end end (** {6 Include} *) module RawIncludeOps = struct exception NoIncludeSelf module Synterp = struct let rec include_subst mp mbids = match mbids with | [] -> empty_subst | mbid::mbids -> let subst = include_subst mp mbids in join (map_mbid mbid mp empty_delta_resolver) subst let declare_one_include_core cur_mp (me_ast,annot) = let me, base, kind = Modintern.intern_module_ast Modintern.ModAny me_ast in let is_mod = (kind == Modintern.Module) in let inl = inl2intopt annot in let mbids,aobjs = SynterpVisitor.get_module_sobjs is_mod () inl me in let subst_self = try if List.is_empty mbids then raise NoIncludeSelf; include_subst cur_mp mbids with NoIncludeSelf -> empty_subst in let base_mp = get_module_path me in (* We can use an empty delta resolver on syntax objects *) let subst = join subst_self (map_mp base_mp cur_mp empty_delta_resolver) in let aobjs = subst_aobjs subst aobjs in (me, base, kind, inl), aobjs let declare_one_include (me_ast,annot) = let res, aobjs = declare_one_include_core (openmod_syntax_info ()).cur_mp (me_ast,annot) in SynterpVisitor.add_leaf (IncludeObject aobjs); res let declare_include me_asts = List.map declare_one_include me_asts end module Interp = struct let rec include_subst env mp reso mbids sign inline = match mbids with | [] -> empty_subst | mbid::mbids -> let farg_id, farg_b, fbody_b = Modops.destr_functor sign in let subst = include_subst env mp reso mbids fbody_b inline in let mp_delta = Modops.inline_delta_resolver env inline mp farg_id farg_b reso in join (map_mbid mbid mp mp_delta) subst let rec decompose_functor mpl typ = match mpl, typ with | [], _ -> typ | _::mpl, MoreFunctor(_,_,str) -> decompose_functor mpl str | _ -> user_err Pp.(str "Application of a functor with too much arguments.") let type_of_incl env is_mod = function | MEident mp -> type_of_mod mp env is_mod | MEapply _ as me -> let mp0, mp_l = InterpVisitor.get_applications me in decompose_functor mp_l (type_of_mod mp0 env is_mod) | MEwith _ -> raise NoIncludeSelf (** Implements [Include F] where [F] has parameters [mbids] to be instantiated by fields of the current "self" module, i.e. using subtyping, by the current module itself. *) let declare_one_include_core (me,base,kind,inl) = let env = Global.env() in let me, cst = Modintern.interp_module_ast env kind base me in let () = Global.push_context_set ~strict:true cst in let env = Global.env () in let is_mod = (kind == Modintern.Module) in let cur_mp = Global.current_modpath () in let mbids,aobjs = InterpVisitor.get_module_sobjs is_mod env inl me in let subst_self = try if List.is_empty mbids then raise NoIncludeSelf; let typ = type_of_incl env is_mod me in let reso = RawModOps.Interp.current_modresolver () in include_subst env cur_mp reso mbids typ inl with NoIncludeSelf -> empty_subst in let base_mp = get_module_path me in let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in let sign, (), resolver, (_, cst) = Mod_typing.translate_mse_include is_mod state (Global.env ()) (Global.current_modpath ()) inl me in let () = Global.add_constraints cst in let () = assert (ModPath.equal cur_mp (Global.current_modpath ())) in (* Include Self support *) let mb = { mod_mp = cur_mp; mod_expr = (); mod_type = RawModOps.Interp.current_struct (); mod_type_alg = None; mod_delta = RawModOps.Interp.current_modresolver (); mod_retroknowledge = ModTypeRK } in let rec compute_sign sign = match sign with | MoreFunctor(mbid,mtb,str) -> let state = ((Global.universes (), Univ.Constraints.empty), Reductionops.inferred_universes) in let (_, cst) = Subtyping.check_subtypes state (Global.env ()) mb mtb in let () = Global.add_constraints cst in let mpsup_delta = Modops.inline_delta_resolver (Global.env ()) inl cur_mp mbid mtb mb.mod_delta in let subst = Mod_subst.map_mbid mbid cur_mp mpsup_delta in compute_sign (Modops.subst_signature subst str) | NoFunctor str -> () in let () = compute_sign sign in let resolver = Global.add_include me is_mod inl in let subst = join subst_self (map_mp base_mp cur_mp resolver) in subst_aobjs subst aobjs let declare_one_include (me,base,kind,inl) = let aobjs = declare_one_include_core (me,base,kind,inl) in InterpVisitor.add_leaf (IncludeObject aobjs) let declare_include me_asts = List.iter declare_one_include me_asts end end (** {6 Libraries} *) type library_name = DirPath.t (** A library object is made of some substitutive objects and some "keep" objects. *) type library_objects = Libobject.t list * Libobject.t list module Synterp = struct let start_module export id args res = RawModOps.Synterp.start_module export id args res let end_module = RawModOps.Synterp.end_module (** Declare a module in terms of a list of module bodies, by including them. Typically used for `Module M := N <+ P`. *) let declare_module_includes id args res mexpr_l = let fs = Summary.Synterp.freeze_summaries () in let mp, res_entry_o, mbids, sign, args = RawModOps.Synterp.start_module_core id args res in let mod_info = { cur_mp = mp; cur_typ = res_entry_o; cur_mbids = mbids } in let includes = List.map_left (RawIncludeOps.Synterp.declare_one_include_core mp) mexpr_l in let bodies, incl_objs = List.split includes in let incl_objs = List.map (fun x -> IncludeObject x) incl_objs in let objects = Lib.Synterp.{ substobjs = incl_objs; keepobjs = []; anticipateobjs = []; } in let mp, objects = RawModOps.Synterp.end_module_core id mod_info objects fs in SynterpVisitor.add_leaves objects; mp, args, bodies, sign (** Declare a module type in terms of a list of module bodies, by including them. Typically used for `Module Type M := N <+ P`. *) let declare_modtype_includes id args res mexpr_l = let fs = Summary.Synterp.freeze_summaries () in let mp, mbids, args, subtyps = RawModTypeOps.Synterp.start_modtype_core id (openmod_syntax_info ()).cur_mp args res in let includes = List.map_left (RawIncludeOps.Synterp.declare_one_include_core mp) mexpr_l in let bodies, incl_objs = List.split includes in let incl_objs = List.map (fun x -> IncludeObject x) incl_objs in let objects = Lib.Synterp.{ substobjs = incl_objs; keepobjs = []; anticipateobjs = []; } in let objects = RawModTypeOps.Synterp.end_modtype_core id mbids objects fs in SynterpVisitor.add_leaves objects; mp, args, bodies, subtyps let declare_module id args mtys me_l = match me_l with | [] -> let mp, args, body, sign = RawModOps.Synterp.declare_module id args mtys None in assert (Option.is_empty body); mp, args, [], sign | [me] -> let mp, args, body, sign = RawModOps.Synterp.declare_module id args mtys (Some me) in mp, args, [Option.get body], sign | me_l -> declare_module_includes id args mtys me_l let start_modtype id args mtys = RawModTypeOps.Synterp.start_modtype id args mtys let end_modtype = RawModTypeOps.Synterp.end_modtype let declare_modtype id args mtys mty_l = match mty_l with | [] -> assert false | [mty] -> let mp, args, body, sign = RawModTypeOps.Synterp.declare_modtype id args mtys mty in mp, args, [body], sign | mty_l -> declare_modtype_includes id args mtys mty_l let declare_include = RawIncludeOps.Synterp.declare_include let register_library dir (objs:library_objects) = let mp = MPfile dir in let sobjs,keepobjs = objs in SynterpVisitor.do_module SynterpVisitor.load_objects 1 dir mp ([],Objs sobjs) keepobjs let import_modules ~export mpl = let _,objs = SynterpVisitor.collect_modules mpl (MPmap.empty, []) in List.iter (fun (f,o) -> SynterpVisitor.open_object f 1 o) objs; match export with | Lib.Import -> () | Lib.Export -> let entry = ExportObject { mpl } in Lib.Synterp.add_leaf_entry entry let import_module f ~export mp = import_modules ~export [f,mp] end module Interp = struct let start_module = RawModOps.Interp.start_module let end_module = RawModOps.Interp.end_module (** Declare a module in terms of a list of module bodies, by including them. Typically used for `Module M := N <+ P`. *) let declare_module_includes id args res mexpr_l = let fs = Summary.Interp.freeze_summaries () in let mp, res_entry_o, subtyps, _, _ = RawModOps.Interp.start_module_core id args res in let mod_info = { cur_typ = res_entry_o; cur_typs = subtyps } in let incl_objs = List.map_left (fun x -> IncludeObject (RawIncludeOps.Interp.declare_one_include_core x)) mexpr_l in let objects = Lib.Interp.{ substobjs = incl_objs; keepobjs = []; anticipateobjs = []; } in let mp, objects = RawModOps.Interp.end_module_core id mod_info objects fs in InterpVisitor.add_leaves objects; mp (** Declare a module type in terms of a list of module bodies, by including them. Typically used for `Module Type M := N <+ P`. *) let declare_modtype_includes id args res mexpr_l = let fs = Summary.Interp.freeze_summaries () in let mp, _, subtyps, _ = RawModTypeOps.Interp.start_modtype_core id args res in let incl_objs = List.map_left (fun x -> IncludeObject (RawIncludeOps.Interp.declare_one_include_core x)) mexpr_l in let objects = Lib.Interp.{ substobjs = incl_objs; keepobjs = []; anticipateobjs = []; } in let mp, objects = RawModTypeOps.Interp.end_modtype_core id subtyps objects fs in InterpVisitor.add_leaves objects; mp let declare_module id args mtys me_l = match me_l with | [] -> RawModOps.Interp.declare_module id args mtys None | [me] -> RawModOps.Interp.declare_module id args mtys (Some me) | me_l -> declare_module_includes id args mtys me_l let start_modtype = RawModTypeOps.Interp.start_modtype let end_modtype = RawModTypeOps.Interp.end_modtype let declare_modtype id args mtys mty_l = match mty_l with | [] -> assert false | [mty] -> RawModTypeOps.Interp.declare_modtype id args mtys mty | mty_l -> declare_modtype_includes id args mtys mty_l let declare_include me_asts = if Lib.sections_are_opened () then user_err Pp.(str "Include is not allowed inside sections."); RawIncludeOps.Interp.declare_include me_asts (** For the native compiler, we cache the library values *) let register_library dir cenv (objs:library_objects) digest univ = let mp = MPfile dir in let () = try (* Is this library already loaded ? *) ignore(Global.lookup_module mp); with Not_found -> begin (* If not, let's do it now ... *) let mp' = Global.import cenv univ digest in if not (ModPath.equal mp mp') then anomaly (Pp.str "Unexpected disk module name.") end in let sobjs,keepobjs = objs in InterpVisitor.do_module InterpVisitor.load_objects 1 dir mp ([],Objs sobjs) keepobjs let import_modules ~export mpl = let _,objs = InterpVisitor.collect_modules mpl (MPmap.empty, []) in List.iter (fun (f,o) -> InterpVisitor.open_object f 1 o) objs; match export with | Lib.Import -> () | Lib.Export -> let entry = ExportObject { mpl } in Lib.Interp.add_leaf_entry entry let import_module f ~export mp = import_modules ~export [f,mp] end let end_library_hook = ref [] let append_end_library_hook f = end_library_hook := f :: !end_library_hook let end_library_hook () = List.iter (fun f -> f ()) (List.rev !end_library_hook) let end_library ~output_native_objects dir = end_library_hook(); let prefix, lib_stack, lib_stack_syntax = Lib.end_compilation dir in let mp,cenv,ast = Global.export ~output_native_objects dir in assert (ModPath.equal mp (MPfile dir)); let {Lib.Interp.substobjs = substitute; keepobjs = keep; anticipateobjs = _; } = lib_stack in let {Lib.Synterp.substobjs = substitute_syntax; keepobjs = keep_syntax; anticipateobjs = _; } = lib_stack_syntax in cenv,(substitute,keep),(substitute_syntax,keep_syntax),ast (** {6 Iterators} *) let iter_all_interp_segments f = let rec apply_obj prefix obj = match obj with | IncludeObject aobjs -> let objs = InterpVisitor.expand_aobjs aobjs in List.iter (apply_obj prefix) objs | _ -> f prefix obj in let apply_mod_obj _ modobjs = let prefix = modobjs.module_prefix in List.iter (apply_obj prefix) modobjs.module_substituted_objects; List.iter (apply_obj prefix) modobjs.module_keep_objects in let apply_nodes (node, os) = List.iter (fun o -> f (Lib.node_prefix node) o) os in MPmap.iter apply_mod_obj (InterpVisitor.ModObjs.all ()); List.iter apply_nodes (Lib.contents ()) (** {6 Some types used to shorten declaremods.mli} *) type module_params = (lident list * (Constrexpr.module_ast * inline)) list type module_expr = (Modintern.module_struct_expr * ModPath.t * Modintern.module_kind * Entries.inline) type module_params_expr = (MBId.t list * module_expr) list (** {6 Debug} *) let debug_print_modtab () = InterpVisitor.debug_print_modtab () (** For printing modules, [process_module_binding] adds names of bound module (and its components) to Nametab. It also loads objects associated to it. *) let process_module_binding mbid me = let dir = DirPath.make [MBId.to_id mbid] in let mp = MPbound mbid in let sobjs = InterpVisitor.get_module_sobjs false (Global.env()) (default_inline ()) me in let subst = map_mp (get_module_path me) mp empty_delta_resolver in let sobjs = subst_sobjs subst sobjs in SynterpVisitor.do_module SynterpVisitor.load_objects 1 dir mp sobjs []; InterpVisitor.do_module InterpVisitor.load_objects 1 dir mp sobjs [] (** Compatibility layer *) let import_module f ~export mp = Synterp.import_module f ~export mp; Interp.import_module f ~export mp let declare_module id args mtys me_l = let mp, args, bodies, sign = Synterp.declare_module id args mtys me_l in Interp.declare_module id args sign bodies let start_module export id args res = let mp, args, sign = Synterp.start_module export id args res in Interp.start_module export id args sign let end_module () = let _mp = Synterp.end_module () in Interp.end_module () let declare_modtype id args mtys mty_l = let mp, args, bodies, subtyps = Synterp.declare_modtype id args mtys mty_l in Interp.declare_modtype id args subtyps bodies let start_modtype id args mtys = let mp, args, sub_mty_l = Synterp.start_modtype id args mtys in Interp.start_modtype id args sub_mty_l let end_modtype () = let _mp = Synterp.end_modtype () in Interp.end_modtype () let declare_include me_asts = let l = Synterp.declare_include me_asts in Interp.declare_include l
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>