package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.tactics/elim.ml.html
Source file elim.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) open Util open Names open Termops open EConstr open Inductiveops open Hipattern open Tacmach open Tacticals open Tactics type elim_kind = Case of bool | Elim (* Find the right elimination suffix corresponding to the sort of the goal *) (* c should be of type A1->.. An->B with B an inductive definition *) let general_elim_using mk_elim (ind, u, args) id = match mk_elim with | Case dep -> Clenv.case_pf ~dep (mkVar id, mkApp (mkIndU (ind, u), args)) | Elim -> Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let sigma = Proofview.Goal.sigma gl in let sort = Retyping.get_sort_family_of env sigma (Proofview.Goal.concl gl) in let flags = Unification.elim_flags () in let gr = Indrec.lookup_eliminator env ind sort in let sigma, elim = Evd.fresh_global env sigma gr in let elimt = Retyping.get_type_of env sigma elim in (* applying elimination_scheme just a little modified *) let elimclause = Clenv.mk_clenv_from env sigma (elim, elimt) in let indmv = List.last (Clenv.clenv_arguments elimclause) in let elimclause = Clenv.clenv_instantiate indmv elimclause (mkVar id, mkApp (mkIndU (ind, u), args)) in Clenv.res_pf ~flags elimclause end (* computing the case/elim combinators *) let elim_on_ba tac nassums = Proofview.Goal.enter begin fun gl -> let branches = try List.rev (List.firstn nassums (Proofview.Goal.hyps gl)) with Failure _ -> CErrors.anomaly (Pp.str "make_elim_branch_assumptions.") in tac branches end let case_tac dep names tac (ind, u, args as spec) c = let open Proofview.Notations in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let branchsigns = Tacticals.compute_constructor_signatures env ~rec_flag:false (ind, u) in let brnames = Tacticals.compute_induction_names false branchsigns names in let after_tac i = let branchnames = brnames.(i) in let n1 = List.length branchsigns.(i) in let n2 = List.length branchnames in let (l1,l2),l3 = if n1 < n2 then List.chop n1 branchnames, [] else (branchnames, []), List.make (n1-n2) false in (intro_patterns false l1) <*> (intros_clearing l3) <*> (elim_on_ba (tac l2) n1) in let branchtacs = List.init (Array.length branchsigns) after_tac in general_elim_using (Case dep) spec c <*> (Proofview.tclEXTEND [] tclIDTAC branchtacs) end (* The following tactic Decompose repeatedly applies the elimination(s) rule(s) of the types satisfying the predicate ``recognizer'' onto a certain hypothesis. For example : Require Elim. Require Le. Goal (y:nat){x:nat | (le O x)/\(le x y)}->{x:nat | (le O x)}. Intros y H. Decompose [sig and] H;EAuto. Qed. Another example : Goal (A,B,C:Prop)(A/\B/\C \/ B/\C \/ C/\A) -> C. Intros A B C H; Decompose [and or] H; Assumption. Qed. *) let rec general_decompose_aux recognizer id = let open Declarations in let open Proofview.Notations in Proofview.Goal.enter begin fun gl -> let env = Proofview.Goal.env gl in let ((ind, u), t) = pf_apply Tacred.reduce_to_atomic_ind gl (pf_get_type_of gl (mkVar id)) in let _, args = decompose_app (Proofview.Goal.sigma gl) t in let rec_flag, mkelim = match (Environ.lookup_mind (fst ind) env).mind_record with | NotRecord -> true, Elim | FakeRecord | PrimRecord _ -> false, Case true in let branchsigns = Tacticals.compute_constructor_signatures env ~rec_flag (ind, u) in let next_tac bas = let map id = ifOnHyp recognizer (general_decompose_aux recognizer) (fun _ -> tclIDTAC) id in tclMAP map (ids_of_named_context bas) in let after_tac i = let nassums = List.length branchsigns.(i) in (tclDO nassums intro) <*> (clear [id]) <*> (elim_on_ba next_tac nassums) in let branchtacs = List.init (Array.length branchsigns) after_tac in general_elim_using mkelim (ind, u, args) id <*> (Proofview.tclEXTEND [] tclIDTAC branchtacs) end (* We should add a COMPLETE to be sure that the created hypothesis doesn't stay if no elimination is possible *) (* Best strategies but loss of compatibility *) let tmphyp_name = Id.of_string "_TmpHyp" let general_decompose recognizer c = Proofview.Goal.enter begin fun gl -> let typc = pf_get_type_of gl c in tclTHENS (cut typc) [ intro_using_then tmphyp_name (fun id -> ifOnHyp recognizer (general_decompose_aux recognizer) (fun id -> clear [id]) id); exact_no_check c ] end let head_in indl t gl = let env = Proofview.Goal.env gl in let sigma = Tacmach.project gl in try let ity,_ = extract_mrectype sigma t in List.exists (fun i -> Environ.QInd.equal env (fst i) (fst ity)) indl with Not_found -> false let decompose_these c l = Proofview.Goal.enter begin fun gl -> let indl = List.map (fun x -> x, Univ.Instance.empty) l in general_decompose (fun env sigma (_,t) -> head_in indl t gl) c end let decompose_and c = general_decompose (fun env sigma (_,t) -> is_record env sigma t) c let decompose_or c = general_decompose (fun env sigma (_,t) -> is_disjunction env sigma t) c let h_decompose l c = decompose_these c l let h_decompose_or = decompose_or let h_decompose_and = decompose_and
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>