package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.kernel/modops.ml.html
Source file modops.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* Created by Jacek Chrzaszcz, Aug 2002 as part of the implementation of the Coq module system *) (* Inlining and more liberal use of modules and module types by Claudio Sacerdoti, Nov 2004 *) (* New structure-based model of modules and miscellaneous bug fixes by Élie Soubiran, from Feb 2008 *) (* This file provides with various operations on modules and module types *) open Util open Names open Constr open Declarations open Declareops open Environ open Mod_subst (** {6 Errors } *) type signature_mismatch_error = | InductiveFieldExpected of mutual_inductive_body | DefinitionFieldExpected | ModuleFieldExpected | ModuleTypeFieldExpected | NotConvertibleInductiveField of Id.t | NotConvertibleConstructorField of Id.t | NotConvertibleBodyField | NotConvertibleTypeField of env * types * types | CumulativeStatusExpected of bool | PolymorphicStatusExpected of bool | NotSameConstructorNamesField | NotSameInductiveNameInBlockField | FiniteInductiveFieldExpected of bool | InductiveNumbersFieldExpected of int | InductiveParamsNumberField of int | RecordFieldExpected of bool | RecordProjectionsExpected of Name.t list | NotEqualInductiveAliases | IncompatibleUniverses of UGraph.univ_inconsistency | IncompatiblePolymorphism of env * types * types | IncompatibleConstraints of { got : Univ.AbstractContext.t; expect : Univ.AbstractContext.t } | IncompatibleVariance type subtyping_trace_elt = | Submodule of Label.t | FunctorArgument of int type module_typing_error = | SignatureMismatch of subtyping_trace_elt list * Label.t * signature_mismatch_error | LabelAlreadyDeclared of Label.t | NotAFunctor | IsAFunctor of ModPath.t | IncompatibleModuleTypes of module_type_body * module_type_body | NotEqualModulePaths of ModPath.t * ModPath.t | NoSuchLabel of Label.t * ModPath.t | NotAModuleLabel of Label.t | NotAConstant of Label.t | IncorrectWithConstraint of Label.t | GenerativeModuleExpected of Label.t | LabelMissing of Label.t * string | IncludeRestrictedFunctor of ModPath.t exception ModuleTypingError of module_typing_error let error_existing_label l = raise (ModuleTypingError (LabelAlreadyDeclared l)) let error_not_a_functor () = raise (ModuleTypingError NotAFunctor) let error_is_a_functor mp = raise (ModuleTypingError (IsAFunctor mp)) let error_incompatible_modtypes mexpr1 mexpr2 = raise (ModuleTypingError (IncompatibleModuleTypes (mexpr1,mexpr2))) let error_not_equal_modpaths mp1 mp2 = raise (ModuleTypingError (NotEqualModulePaths (mp1,mp2))) let error_signature_mismatch trace l why = raise (ModuleTypingError (SignatureMismatch (trace,l,why))) let error_no_such_label l mp = raise (ModuleTypingError (NoSuchLabel (l,mp))) let error_not_a_module_label s = raise (ModuleTypingError (NotAModuleLabel s)) let error_not_a_constant l = raise (ModuleTypingError (NotAConstant l)) let error_incorrect_with_constraint l = raise (ModuleTypingError (IncorrectWithConstraint l)) let error_generative_module_expected l = raise (ModuleTypingError (GenerativeModuleExpected l)) let error_no_such_label_sub l l1 = raise (ModuleTypingError (LabelMissing (l,l1))) let error_include_restricted_functor mp = raise (ModuleTypingError (IncludeRestrictedFunctor mp)) (** {6 Operations on functors } *) let is_functor = function | NoFunctor _ -> false | MoreFunctor _ -> true let destr_functor = function | NoFunctor _ -> error_not_a_functor () | MoreFunctor (mbid,ty,x) -> (mbid,ty,x) let destr_nofunctor mp = function | NoFunctor a -> a | MoreFunctor _ -> error_is_a_functor mp let rec functor_smart_map fty f0 funct = match funct with | MoreFunctor (mbid,ty,e) -> let ty' = fty ty in let e' = functor_smart_map fty f0 e in if ty==ty' && e==e' then funct else MoreFunctor (mbid,ty',e') | NoFunctor a -> let a' = f0 a in if a==a' then funct else NoFunctor a' (** {6 Misc operations } *) let module_type_of_module mb = { mb with mod_expr = (); mod_type_alg = None; mod_retroknowledge = ModTypeRK; } let module_body_of_type mp mtb = { mtb with mod_expr = Abstract; mod_mp = mp; mod_retroknowledge = ModBodyRK []; } let check_modpath_equiv env mp1 mp2 = if ModPath.equal mp1 mp2 then () else let mp1' = mp_of_delta (lookup_module mp1 env).mod_delta mp1 in let mp2' = mp_of_delta (lookup_module mp2 env).mod_delta mp2 in if ModPath.equal mp1' mp2' then () else error_not_equal_modpaths mp1 mp2 let implem_smart_map fs fa impl = match impl with | Struct e -> let e' = fs e in if e==e' then impl else Struct e' | Algebraic a -> let a' = fa a in if a==a' then impl else Algebraic a' | Abstract | FullStruct -> impl let rec annotate_module_expression me mty = match me, mty with | MENoFunctor me, (NoFunctor _ | MoreFunctor _) -> NoFunctor me | MEMoreFunctor me, MoreFunctor (mbid, arg, mty) -> let me = annotate_module_expression me mty in MoreFunctor (mbid, arg, me) | MEMoreFunctor _, NoFunctor _ -> assert false let rec annotate_struct_body body sign = match sign with | NoFunctor _ -> NoFunctor body | MoreFunctor (mbid, mty, sign) -> MoreFunctor (mbid, mty, annotate_struct_body body sign) (** {6 Substitutions of modular structures } *) let id_delta x _y = x let subst_with_body subst = function | WithMod(id,mp) as orig -> let mp' = subst_mp subst mp in if mp==mp' then orig else WithMod(id,mp') | WithDef(id,(c,ctx)) as orig -> let c' = subst_mps subst c in if c==c' then orig else WithDef(id,(c',ctx)) let rec subst_structure subst do_delta sign = let subst_field ((l,body) as orig) = match body with | SFBconst cb -> let cb' = subst_const_body subst cb in if cb==cb' then orig else (l,SFBconst cb') | SFBmind mib -> let mib' = subst_mind_body subst mib in if mib==mib' then orig else (l,SFBmind mib') | SFBmodule mb -> let mb' = subst_module subst do_delta mb in if mb==mb' then orig else (l,SFBmodule mb') | SFBmodtype mtb -> let mtb' = subst_modtype subst do_delta mtb in if mtb==mtb' then orig else (l,SFBmodtype mtb') in List.Smart.map subst_field sign and subst_retro : type a. Mod_subst.substitution -> a module_retroknowledge -> a module_retroknowledge = fun subst retro -> match retro with | ModTypeRK as r -> r | ModBodyRK l as r -> let l' = List.Smart.map (subst_retro_action subst) l in if l == l' then r else ModBodyRK l and subst_module_body : 'a. _ -> _ -> (_ -> 'a -> 'a) -> _ -> 'a generic_module_body -> 'a generic_module_body = fun is_mod subst subst_impl do_delta mb -> let { mod_mp=mp; mod_expr=me; mod_type=ty; mod_type_alg=aty; mod_retroknowledge=retro; _ } = mb in let mp' = subst_mp subst mp in let subst = if ModPath.equal mp mp' then subst else if is_mod && not (is_functor ty) then subst else add_mp mp mp' empty_delta_resolver subst in let ty' = subst_signature subst do_delta ty in let me' = subst_impl subst me in let aty' = Option.Smart.map (subst_expression subst id_delta) aty in let retro' = subst_retro subst retro in let delta' = do_delta mb.mod_delta subst in if mp==mp' && me==me' && ty==ty' && aty==aty' && retro==retro' && delta'==mb.mod_delta then mb else { mod_mp = mp'; mod_expr = me'; mod_type = ty'; mod_type_alg = aty'; mod_retroknowledge = retro'; mod_delta = delta'; } and subst_module subst do_delta mb = subst_module_body true subst subst_impl do_delta mb and subst_impl subst me = implem_smart_map (subst_structure subst id_delta) (subst_expression subst id_delta) me and subst_modtype subst do_delta mtb = subst_module_body false subst (fun _ () -> ()) do_delta mtb and subst_expr subst do_delta seb = match seb with | MEident mp -> let mp' = subst_mp subst mp in if mp==mp' then seb else MEident mp' | MEapply (meb1,mp2) -> let meb1' = subst_expr subst do_delta meb1 in let mp2' = subst_mp subst mp2 in if meb1==meb1' && mp2==mp2' then seb else MEapply(meb1',mp2') | MEwith (meb,wdb) -> let meb' = subst_expr subst do_delta meb in let wdb' = subst_with_body subst wdb in if meb==meb' && wdb==wdb' then seb else MEwith(meb',wdb') and subst_expression subst do_delta me = match me with | MENoFunctor malg -> let malg' = subst_expr subst do_delta malg in if malg == malg' then me else MENoFunctor malg' | MEMoreFunctor mf -> let mf' = subst_expression subst do_delta mf in if mf == mf' then me else MEMoreFunctor mf' and subst_signature subst do_delta = functor_smart_map (subst_modtype subst do_delta) (subst_structure subst do_delta) let do_delta_dom reso subst = subst_dom_delta_resolver subst reso let do_delta_codom reso subst = subst_codom_delta_resolver subst reso let do_delta_dom_codom reso subst = subst_dom_codom_delta_resolver subst reso let subst_dom_codom_signature subst = subst_signature subst do_delta_dom_codom let subst_signature subst = subst_signature subst do_delta_codom let subst_structure subst = subst_structure subst do_delta_codom (** {6 Adding a module in the environment } *) let add_retroknowledge r env = match r with | ModBodyRK l -> List.fold_left Primred.add_retroknowledge env l let rec add_structure mp sign resolver linkinfo env = let add_field env (l,elem) = match elem with | SFBconst cb -> let c = constant_of_delta_kn resolver (KerName.make mp l) in Environ.add_constant_key c cb linkinfo env | SFBmind mib -> let mind = mind_of_delta_kn resolver (KerName.make mp l) in let mib = if mib.mind_private != None then { mib with mind_private = Some true } else mib in Environ.add_mind_key mind (mib,ref linkinfo) env | SFBmodule mb -> add_module mb linkinfo env (* adds components as well *) | SFBmodtype mtb -> Environ.add_modtype mtb env in List.fold_left add_field env sign and add_module mb linkinfo env = let mp = mb.mod_mp in let env = Environ.shallow_add_module mb env in match mb.mod_type with | NoFunctor struc -> add_retroknowledge mb.mod_retroknowledge (add_structure mp struc mb.mod_delta linkinfo env) | MoreFunctor _ -> env let add_linked_module mb linkinfo env = add_module mb linkinfo env let add_structure mp sign resolver env = add_structure mp sign resolver no_link_info env let add_module mb env = add_module mb no_link_info env let add_module_type mp mtb env = add_module (module_body_of_type mp mtb) env (** {6 Strengthening a signature for subtyping } *) let strengthen_const mp_from l cb resolver = match cb.const_body with | Def _ -> cb | _ -> let kn = KerName.make mp_from l in let con = constant_of_delta_kn resolver kn in let u = Univ.make_abstract_instance (Declareops.constant_polymorphic_context cb) in { cb with const_body = Def (mkConstU (con,u)); const_body_code = Some (Vmbytegen.compile_alias con) } let rec strengthen_module mp_from mp_to mb = if mp_in_delta mb.mod_mp mb.mod_delta then mb else match mb.mod_type with | NoFunctor struc -> let reso,struc' = strengthen_signature mp_from struc mp_to mb.mod_delta in { mb with mod_expr = Algebraic (MENoFunctor (MEident mp_to)); mod_type = NoFunctor struc'; mod_delta = add_mp_delta_resolver mp_from mp_to (add_delta_resolver mb.mod_delta reso) } | MoreFunctor _ -> mb and strengthen_signature mp_from struc mp_to reso = match struc with | [] -> empty_delta_resolver,[] | (l,SFBconst cb) :: rest -> let item' = l,SFBconst (strengthen_const mp_from l cb reso) in let reso',rest' = strengthen_signature mp_from rest mp_to reso in reso',item'::rest' | (_,SFBmind _ as item):: rest -> let reso',rest' = strengthen_signature mp_from rest mp_to reso in reso',item::rest' | (l,SFBmodule mb) :: rest -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let mb' = strengthen_module mp_from' mp_to' mb in let item' = l,SFBmodule mb' in let reso',rest' = strengthen_signature mp_from rest mp_to reso in add_delta_resolver reso' mb.mod_delta, item':: rest' | (_l,SFBmodtype _mty as item) :: rest -> let reso',rest' = strengthen_signature mp_from rest mp_to reso in reso',item::rest' let strengthen mtb mp = (* Has mtb already been strengthened ? *) if mp_in_delta mtb.mod_mp mtb.mod_delta then mtb else match mtb.mod_type with | NoFunctor struc -> let reso',struc' = strengthen_signature mtb.mod_mp struc mp mtb.mod_delta in { mtb with mod_type = NoFunctor struc'; mod_delta = add_delta_resolver mtb.mod_delta (add_mp_delta_resolver mtb.mod_mp mp reso') } | MoreFunctor _ -> mtb (** {6 Strengthening a module for [Module M := M'] or [Include M] } *) let rec strengthen_and_subst_module mb subst mp_from mp_to = match mb.mod_type with | NoFunctor struc -> let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in if mb_is_an_alias then subst_module subst do_delta_dom mb else let reso',struc' = strengthen_and_subst_struct struc subst mp_from mp_to false false mb.mod_delta in { mb with mod_mp = mp_to; mod_expr = Algebraic (MENoFunctor (MEident mp_from)); mod_type = NoFunctor struc'; mod_delta = add_mp_delta_resolver mp_to mp_from reso' } | MoreFunctor _ -> let subst = add_mp mb.mod_mp mp_to empty_delta_resolver subst in subst_module subst do_delta_dom mb and strengthen_and_subst_struct struc subst mp_from mp_to alias incl reso = let strengthen_and_subst_field reso' item = match item with | (l,SFBconst cb) -> let cb' = subst_const_body subst cb in let cb' = if alias then (* optimization *) cb' else strengthen_const mp_from l cb' reso in let item' = if cb' == cb then item else (l, SFBconst cb') in if incl then (* If we are performing an inclusion we need to add the fact that the constant mp_to.l is \Delta-equivalent to reso(mp_from.l) *) let kn_from = KerName.make mp_from l in let kn_to = KerName.make mp_to l in let kn_canonical = kn_of_delta reso kn_from in add_kn_delta_resolver kn_to kn_canonical reso', item' else (* In this case the fact that the constant mp_to.l is \Delta-equivalent to resolver(mp_from.l) is already known because reso' contains mp_to maps to reso(mp_from) *) reso', item' | (l,SFBmind mib) -> let mib' = subst_mind_body subst mib in let item' = if mib' == mib then item else (l, SFBmind mib') in (* Same as constant *) if incl then let kn_from = KerName.make mp_from l in let kn_to = KerName.make mp_to l in let kn_canonical = kn_of_delta reso kn_from in add_kn_delta_resolver kn_to kn_canonical reso', item' else reso', item' | (l,SFBmodule mb) -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot (mp_to,l) in let mb' = if alias then subst_module subst do_delta_dom mb else strengthen_and_subst_module mb subst mp_from' mp_to' in let item' = if mb' == mb then item else (l, SFBmodule mb') in (* if mb is a functor we should not derive new equivalences on names, hence we add the fact that the functor can only be equivalent to itself. If we adopt an applicative semantic for functor this should be changed.*) if is_functor mb'.mod_type then add_mp_delta_resolver mp_to' mp_to' reso', item' else add_delta_resolver reso' mb'.mod_delta, item' | (l,SFBmodtype mty) -> let mp_from' = MPdot (mp_from,l) in let mp_to' = MPdot(mp_to,l) in let subst' = add_mp mp_from' mp_to' empty_delta_resolver subst in let mty' = subst_modtype subst' (fun resolver _ -> subst_dom_codom_delta_resolver subst' resolver) mty in let item' = if mty' == mty then item else (l, SFBmodtype mty') in add_mp_delta_resolver mp_to' mp_to' reso', item' in List.Smart.fold_left_map strengthen_and_subst_field empty_delta_resolver struc (** Let P be a module path when we write: "Module M:=P." or "Module M. Include P. End M." We need to perform two operations to compute the body of M. - The first one is applying the substitution {P <- M} on the type of P, i.e. to replace any expression in P referring to P itself by the same expression referring instead to M - The second one is strengthening, i.e. associating to each abstract/opaque field t in P a defined field t := Q.t where Q is the Delta-normal form of P (possibly P itself): - in the alias case "Module M:=P." where "P" is already an alias with canonical form "Q": add the module Delta-equivalence "M := Q" - in the alias case where P is not itself an alias: add the module Delta-equivalence "M := Q" - in the "Include" case: add a Delta-equivalence "t := t'" where "t'" is the canonical form of "P.t" on each field *) let strengthen_and_subst_module_body mb mp include_b = match mb.mod_type with | NoFunctor struc -> let mb_is_an_alias = mp_in_delta mb.mod_mp mb.mod_delta in (* if mb.mod_mp is an alias then the strengthening is useless (i.e. it is already done)*) let mp_alias = mp_of_delta mb.mod_delta mb.mod_mp in let subst_resolver = map_mp mb.mod_mp mp empty_delta_resolver in let new_resolver = add_mp_delta_resolver mp mp_alias (subst_dom_delta_resolver subst_resolver mb.mod_delta) in let subst = map_mp mb.mod_mp mp new_resolver in let reso',struc' = strengthen_and_subst_struct struc subst mb.mod_mp mp mb_is_an_alias include_b mb.mod_delta in { mb with mod_mp = mp; mod_type = NoFunctor struc'; mod_expr = Algebraic (MENoFunctor (MEident mb.mod_mp)); mod_delta = if include_b then reso' else add_delta_resolver new_resolver reso' } | MoreFunctor _ -> let subst = map_mp mb.mod_mp mp empty_delta_resolver in subst_module subst do_delta_dom_codom mb let subst_modtype_signature_and_resolver mp_from mp_to sign reso = let subst = map_mp mp_from mp_to empty_delta_resolver in subst_dom_codom_signature subst sign, subst_dom_codom_delta_resolver subst reso (** {6 Cleaning a module expression from bounded parts } For instance: functor(X:T)->struct module M:=X end) becomes: functor(X:T)->struct module M:=<content of T> end) *) let rec is_bounded_expr l = function | MEident (MPbound mbid) -> MBIset.mem mbid l | MEapply (fexpr,mp) -> is_bounded_expr l (MEident mp) || is_bounded_expr l fexpr | _ -> false let rec clean_module_body l mb = let impl, typ = mb.mod_expr, mb.mod_type in let typ' = clean_signature l typ in let impl' = match impl with | Algebraic (MENoFunctor m) when is_bounded_expr l m -> FullStruct | _ -> implem_smart_map (clean_structure l) (clean_expression l) impl in if typ==typ' && impl==impl' then mb else { mb with mod_type=typ'; mod_expr=impl' } and clean_module_type l mb = let (), typ = mb.mod_expr, mb.mod_type in let typ' = clean_signature l typ in if typ==typ' then mb else { mb with mod_type=typ' } and clean_field l field = match field with | (lab,SFBmodule mb) -> let mb' = clean_module_body l mb in if mb==mb' then field else (lab,SFBmodule mb') | _ -> field and clean_structure l = List.Smart.map (clean_field l) and clean_signature l = functor_smart_map (clean_module_type l) (clean_structure l) and clean_expression _ me = me let rec collect_mbid l sign = match sign with | MoreFunctor (mbid,ty,m) -> let m' = collect_mbid (MBIset.add mbid l) m in if m==m' then sign else MoreFunctor (mbid,ty,m') | NoFunctor struc -> let struc' = clean_structure l struc in if struc==struc' then sign else NoFunctor struc' let clean_bounded_mod_expr sign = if is_functor sign then collect_mbid MBIset.empty sign else sign (** {6 Building map of constants to inline } *) let inline_delta_resolver env inl mp mbid mtb delta = let constants = inline_of_delta inl mtb.mod_delta in let rec make_inline delta = function | [] -> delta | (lev,kn)::r -> let kn = replace_mp_in_kn (MPbound mbid) mp kn in let con = constant_of_delta_kn delta kn in if not (Environ.mem_constant con env) then error_no_such_label_sub (Constant.label con) (ModPath.to_string (Constant.modpath con)) else let constant = lookup_constant con env in let l = make_inline delta r in match constant.const_body with | Undef _ | OpaqueDef _ | Primitive _ -> l | Def constr -> let ctx = Declareops.constant_polymorphic_context constant in let constr = Univ.{univ_abstracted_value=constr; univ_abstracted_binder=ctx} in add_inline_delta_resolver kn (lev, Some constr) l in make_inline delta constants
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>