package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.18.0.tar.gz
md5=8d852367b54f095d9fbabd000304d450
sha512=46922d5f2eb6802a148a52fd3e7f0be8370c93e7bc33cee05cf4a2044290845b10ccddbaa306f29c808e7c5019700763e37e45ff6deb507b874a4348010fed50
doc/src/coq-core.clib/cMap.ml.html
Source file cMap.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) module type OrderedType = sig type t val compare : t -> t -> int end module type MonadS = sig type +'a t val return : 'a -> 'a t val (>>=) : 'a t -> ('a -> 'b t) -> 'b t end module type S = Map.S module type ExtS = sig include CSig.MapS module Set : CSig.SetS with type elt = key val get : key -> 'a t -> 'a val set : key -> 'a -> 'a t -> 'a t val modify : key -> (key -> 'a -> 'a) -> 'a t -> 'a t val domain : 'a t -> Set.t val bind : (key -> 'a) -> Set.t -> 'a t val fold_left : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val fold_right : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b val height : 'a t -> int val filter_range : (key -> int) -> 'a t -> 'a t val of_list : (key * 'a) list -> 'a t val symmetric_diff_fold : (key -> 'a option -> 'a option -> 'b -> 'b) -> 'a t -> 'a t -> 'b -> 'b module Smart : sig val map : ('a -> 'a) -> 'a t -> 'a t val mapi : (key -> 'a -> 'a) -> 'a t -> 'a t end module Monad(M : MonadS) : sig val fold : (key -> 'a -> 'b -> 'b M.t) -> 'a t -> 'b -> 'b M.t val fold_left : (key -> 'a -> 'b -> 'b M.t) -> 'a t -> 'b -> 'b M.t val fold_right : (key -> 'a -> 'b -> 'b M.t) -> 'a t -> 'b -> 'b M.t val mapi : (key -> 'a -> 'b M.t) -> 'a t -> 'b t M.t end end module MapExt (M : Map.OrderedType) : sig type 'a map = 'a Map.Make(M).t val set : M.t -> 'a -> 'a map -> 'a map val get : M.t -> 'a map -> 'a val modify : M.t -> (M.t -> 'a -> 'a) -> 'a map -> 'a map val domain : 'a map -> Set.Make(M).t val bind : (M.t -> 'a) -> Set.Make(M).t -> 'a map val fold_left : (M.t -> 'a -> 'b -> 'b) -> 'a map -> 'b -> 'b val fold_right : (M.t -> 'a -> 'b -> 'b) -> 'a map -> 'b -> 'b val height : 'a map -> int val filter_range : (M.t -> int) -> 'a map -> 'a map val symmetric_diff_fold : (M.t -> 'a option -> 'a option -> 'b -> 'b) -> 'a map -> 'a map -> 'b -> 'b val of_list : (M.t * 'a) list -> 'a map module Smart : sig val map : ('a -> 'a) -> 'a map -> 'a map val mapi : (M.t -> 'a -> 'a) -> 'a map -> 'a map end module Monad(MS : MonadS) : sig val fold : (M.t -> 'a -> 'b -> 'b MS.t) -> 'a map -> 'b -> 'b MS.t val fold_left : (M.t -> 'a -> 'b -> 'b MS.t) -> 'a map -> 'b -> 'b MS.t val fold_right : (M.t -> 'a -> 'b -> 'b MS.t) -> 'a map -> 'b -> 'b MS.t val mapi : (M.t -> 'a -> 'b MS.t) -> 'a map -> 'b map MS.t end end = struct (** This unsafe module is a way to access to the actual implementations of OCaml sets and maps without reimplementing them ourselves. It is quite dubious that these implementations will ever be changed... Nonetheless, if this happens, we can still implement a less clever version of [domain]. *) module F = Map.Make(M) type 'a map = 'a F.t module S = Set.Make(M) type set = S.t type 'a _map = | MEmpty | MNode of {l:'a map; v:F.key; d:'a; r:'a map; h:int} type _set = | SEmpty | SNode of set * M.t * set * int let map_prj : 'a map -> 'a _map = Obj.magic let map_inj : 'a _map -> 'a map = Obj.magic let set_prj : set -> _set = Obj.magic let set_inj : _set -> set = Obj.magic let rec set k v (s : 'a map) : 'a map = match map_prj s with | MEmpty -> raise Not_found | MNode {l; v=k'; d=v'; r; h} -> let c = M.compare k k' in if c < 0 then let l' = set k v l in if l == l' then s else map_inj (MNode {l=l'; v=k'; d=v'; r; h}) else if c = 0 then if v' == v then s else map_inj (MNode {l; v=k'; d=v; r; h}) else let r' = set k v r in if r == r' then s else map_inj (MNode {l; v=k'; d=v'; r=r'; h}) let rec get k (s:'a map) : 'a = match map_prj s with | MEmpty -> assert false | MNode {l; v=k'; d=v; r; h} -> let c = M.compare k k' in if c < 0 then get k l else if c = 0 then v else get k r let rec modify k f (s : 'a map) : 'a map = match map_prj s with | MEmpty -> raise Not_found | MNode {l; v; d; r; h} -> let c = M.compare k v in if c < 0 then let l' = modify k f l in if l == l' then s else map_inj (MNode {l=l'; v; d; r; h}) else if c = 0 then let d' = f v d in if d' == d then s else map_inj (MNode {l; v; d=d'; r; h}) else let r' = modify k f r in if r == r' then s else map_inj (MNode {l; v; d; r=r'; h}) let rec domain (s : 'a map) : set = match map_prj s with | MEmpty -> set_inj SEmpty | MNode {l; v; r; h; _} -> set_inj (SNode (domain l, v, domain r, h)) (** This function is essentially identity, but OCaml current stdlib does not take advantage of the similarity of the two structures, so we introduce this unsafe loophole. *) let rec bind f (s : set) : 'a map = match set_prj s with | SEmpty -> map_inj MEmpty | SNode (l, k, r, h) -> map_inj (MNode { l=bind f l; v=k; d=f k; r=bind f r; h}) (** Dual operation of [domain]. *) let rec fold_left f (s : 'a map) accu = match map_prj s with | MEmpty -> accu | MNode {l; v=k; d=v; r; h} -> let accu = f k v (fold_left f l accu) in fold_left f r accu let rec fold_right f (s : 'a map) accu = match map_prj s with | MEmpty -> accu | MNode {l; v=k; d=v; r; h} -> let accu = f k v (fold_right f r accu) in fold_right f l accu let height s = match map_prj s with | MEmpty -> 0 | MNode {h;_} -> h (* Filter based on a range *) let filter_range in_range m = let rec aux m = function | MEmpty -> m | MNode {l; v; d; r; _} -> let vr = in_range v in (* the range is below the current value *) if vr < 0 then aux m (map_prj l) (* the range is above the current value *) else if vr > 0 then aux m (map_prj r) (* The current value is in the range *) else let m = aux m (map_prj l) in let m = aux m (map_prj r) in F.add v d m in aux F.empty (map_prj m) let of_list l = let fold accu (x, v) = F.add x v accu in List.fold_left fold F.empty l type 'a sequenced = | End | More of M.t * 'a * 'a F.t * 'a sequenced let rec seq_cons m rest = match map_prj m with | MEmpty -> rest | MNode {l; v; d; r; _ } -> seq_cons l (More (v, d, r, rest)) let rec fold_seq f acc = function | End -> acc | More (k, v, m, r) -> f k v @@ fold_seq f (F.fold f m acc) r let move_to_acc (m, acc) = match map_prj m with | MEmpty -> assert false | MNode {l; v; d; r; _ } -> l, More (v, d, r, acc) let rec symmetric_cons ((lm, la) as l) ((rm, ra) as r) = if lm == rm then la, ra else let lh = height lm in let rh = height rm in if lh == rh then symmetric_cons (move_to_acc l) (move_to_acc r) else if lh < rh then symmetric_cons l (move_to_acc r) else symmetric_cons (move_to_acc l) r let symmetric_diff_fold f lm rm acc = let rec aux s acc = match s with | End, rs -> fold_seq (fun k v -> f k None (Some v)) acc rs | ls, End -> fold_seq (fun k v -> f k (Some v) None) acc ls | (More (kl, vl, tl, rl) as ls), (More (kr, vr, tr, rr) as rs) -> let cmp = M.compare kl kr in if cmp == 0 then let rem = aux (symmetric_cons (tl, rl) (tr, rr)) acc in if vl == vr then rem else f kl (Some vl) (Some vr) rem else if cmp < 0 then f kl (Some vl) None @@ aux (seq_cons tl rl, rs) acc else f kr None (Some vr) @@ aux (ls, seq_cons tr rr) acc in aux (symmetric_cons (lm, End) (rm, End)) acc module Smart = struct let rec map f (s : 'a map) = match map_prj s with | MEmpty -> map_inj MEmpty | MNode {l; v=k; d=v; r; h} -> let l' = map f l in let r' = map f r in let v' = f v in if l == l' && r == r' && v == v' then s else map_inj (MNode {l=l'; v=k; d=v'; r=r'; h}) let rec mapi f (s : 'a map) = match map_prj s with | MEmpty -> map_inj MEmpty | MNode {l; v=k; d=v; r; h} -> let l' = mapi f l in let r' = mapi f r in let v' = f k v in if l == l' && r == r' && v == v' then s else map_inj (MNode {l=l'; v=k; d=v'; r=r'; h}) end module Monad(M : MonadS) = struct open M let rec fold_left f s accu = match map_prj s with | MEmpty -> return accu | MNode {l; v=k; d=v; r; h} -> fold_left f l accu >>= fun accu -> f k v accu >>= fun accu -> fold_left f r accu let rec fold_right f s accu = match map_prj s with | MEmpty -> return accu | MNode {l; v=k; d=v; r; h} -> fold_right f r accu >>= fun accu -> f k v accu >>= fun accu -> fold_right f l accu let fold = fold_left let rec mapi f s = match map_prj s with | MEmpty -> return (map_inj MEmpty) | MNode {l; v=k; d=v; r; h} -> mapi f l >>= fun l -> mapi f r >>= fun r -> f k v >>= fun v -> return (map_inj (MNode {l; v=k; d=v; r; h})) end end module Make(M : Map.OrderedType) = struct include Map.Make(M) include MapExt(M) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>