package coq-core
The Coq Proof Assistant -- Core Binaries and Tools
Install
Dune Dependency
Authors
Maintainers
Sources
coq-8.17.1.tar.gz
sha512=9a35311acec2a806730b94ac7dceabc88837f235c52a14c026827d9b89433bd7fa9555a9fc6829aa49edfedb24c8bbaf1411ebf463b74a50aeb17cba47745b6b
doc/src/micromega_plugin/polynomial.ml.html
Source file polynomial.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * Copyright INRIA, CNRS and contributors *) (* <O___,, * (see version control and CREDITS file for authors & dates) *) (* \VV/ **************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (* * (see LICENSE file for the text of the license) *) (************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-20018 *) (* *) (************************************************************************) open NumCompat open Q.Notations open Mutils module Mc = Micromega let max_nb_cstr = ref max_int type var = int let debug = false let ( <+> ) = ( +/ ) let ( <*> ) = ( */ ) module Monomial : sig type t val const : t val is_const : t -> bool val var : var -> t val is_var : t -> bool val get_var : t -> var option val prod : t -> t -> t val factor : t -> var -> t option val compare : t -> t -> int val pp : out_channel -> t -> unit val fold : (var -> int -> 'a -> 'a) -> t -> 'a -> 'a val sqrt : t -> t option val variables : t -> ISet.t val degree : t -> int val subset : t -> t -> bool val output : out_channel -> t -> unit end = struct type t = int array (* Compact representation [| d; e₀; v₀; ...; eₙ; vₙ |] where d = Σi v_i is the multi-degree e_i gives the variable number as a diff, i.e. the variable at position i is Σi e_i, and e_i ≠ 0 for all i > 0 v_i is the degree of e_i, must be ≠ 0 *) let const = [|0|] let subset m1 m2 = m1.(0) <= m2.(0) && let len1 = Array.length m1 in let len2 = Array.length m2 in let get_var m c v = v+m.(c) , m.(c+1) in let rec xsubset cur1 v1 e1 cur2 v2 e2 = match Int.compare v1 v2 with | 0 -> e1 <= e2 && (if cur1 + 2 = len1 then true else if cur2 + 2 = len2 then false else let (v1,e1) = get_var m1 (cur1+2) v1 in let (v2,e2) = get_var m2 (cur2+2) v2 in xsubset (cur1+2) v1 e1 (cur2+2) v2 e2) | -1 -> false | _ -> if cur2 + 2 = len2 then false else let (v2,e2) = get_var m2 (cur2+2) v2 in xsubset cur1 v1 e1 (cur2+2) v2 e2 in if len1 <= 1 then true else if len2 <= 1 then false else xsubset 1 m1.(1) m1.(2) 1 m2.(1) m2.(2) let is_const (m : t) = match m with [|_|] -> true | _ -> false let var x = [|1; x; 1|] let is_var (m : t) = Int.equal m.(0) 1 let get_var (m : t) = match m with | [|1; x; _|] -> Some x | _ -> None let prod (m1 : t) (m2 : t) = let len1 = Array.length m1 in let len2 = Array.length m2 in (* Compute the number of variables in the monomial *) let rec nvars accu cur1 cur2 i1 i2 = if Int.equal i1 len1 && Int.equal i2 len2 then accu else if Int.equal i1 len1 then accu + (len2 - i2) else if Int.equal i2 len2 then accu + (len1 - i1) else let ncur1 = cur1 + m1.(i1) in let ncur2 = cur2 + m2.(i2) in if ncur1 < ncur2 then nvars (accu + 2) ncur1 cur2 (i1 + 2) i2 else if ncur1 > ncur2 then nvars (accu + 2) cur1 ncur2 i1 (i2 + 2) else nvars (accu + 2) ncur1 ncur2 (i1 + 2) (i2 + 2) in let n = nvars 1 0 0 1 1 in let m = Array.make n 0 in let () = m.(0) <- m1.(0) + m2.(0) in (* Set the variable exponents *) let rec set cur cur1 cur2 i i1 i2 = if Int.equal i1 len1 && Int.equal i2 len2 then () else if Int.equal i1 len1 then let ncur2 = cur2 + m2.(i2) in let () = m.(i) <- ncur2 - cur in let () = m.(i + 1) <- m2.(i2 + 1) in set ncur2 cur1 ncur2 (i + 2) i1 (i2 + 2) else if Int.equal i2 len2 then let ncur1 = cur1 + m1.(i1) in let () = m.(i) <- ncur1 - cur in let () = m.(i + 1) <- m1.(i1 + 1) in set ncur1 ncur1 cur2 (i + 2) (i1 + 2) i2 else let ncur1 = cur1 + m1.(i1) in let ncur2 = cur2 + m2.(i2) in if ncur1 < ncur2 then let () = m.(i) <- ncur1 - cur in let () = m.(i + 1) <- m1.(i1 + 1) in set ncur1 ncur1 cur2 (i + 2) (i1 + 2) i2 else if ncur1 > ncur2 then let () = m.(i) <- ncur2 - cur in let () = m.(i + 1) <- m2.(i2 + 1) in set ncur2 cur1 ncur2 (i + 2) i1 (i2 + 2) else let () = m.(i) <- ncur1 - cur in let () = m.(i + 1) <- m1.(i1 + 1) + m2.(i2 + 1) in set ncur1 ncur1 ncur2 (i + 2) (i1 + 2) (i2 + 2) in let () = set 0 0 0 1 1 1 in m (* [factor m x] returns [None] if [x] does not appear in [m], and decreases its exponent by one otherwise *) let factor (m : t) (x : var) = let len = Array.length m in let rec factor cur i = if Int.equal i len then None else let ncur = cur + m.(i) in let k = m.(i + 1) in if ncur < x then factor ncur (i + 2) else if x < ncur then None else if Int.equal k 1 then (* Need to squeeze out the binding for x *) let ans = Array.make (len - 2) 0 in let () = ans.(0) <- m.(0) - 1 in let () = Array.blit m 1 ans 1 (i - 1) in let () = Array.blit m (i + 2) ans i (len - i - 2) in (* Correct the diff *) let () = if not (Int.equal len (i + 2)) then ans.(i) <- ans.(i) + m.(i) in Some ans else let ans = Array.copy m in let () = ans.(0) <- ans.(0) - 1 in let () = ans.(i + 1) <- ans.(i + 1) - 1 in Some ans in factor 0 1 let compare (m1 : t) (m2 : t) = CArray.compare Int.compare m1 m2 let sqrt (m : t) = match m with | [|_|] -> Some const | _ -> let m = Array.copy m in let len = Array.length m in let () = m.(0) <- m.(0) / 2 in let rec set i = if Int.equal i len then () else let v = m.(i + 1) in let () = if v mod 2 = 0 then m.(i + 1) <- v / 2 else raise_notrace Exit in set (i + 2) in try let () = set 1 in Some m with Exit -> None let degree (m : t) = m.(0) let fold f (m : t) accu = let len = Array.length m in let rec fold accu cur i = if Int.equal i len then accu else let cur = cur + m.(i) in let accu = f cur m.(i + 1) accu in fold accu cur (i + 2) in fold accu 0 1 let output o m = fold (fun v i () -> Printf.fprintf o "x%i^%i" v i) m () let variables (m : t) = fold (fun x _ accu -> ISet.add x accu) m ISet.empty let pp o m = let pp_elt o (k, v) = if v = 1 then Printf.fprintf o "x%i" k else Printf.fprintf o "x%i^%i" k v in let rec pp_list o l = match l with | [] -> () | [e] -> pp_elt o e | e :: l -> Printf.fprintf o "%a*%a" pp_elt e pp_list l in pp_list o (List.rev @@ fold (fun x v accu -> (x, v) :: accu) m []) end module MonMap = struct include Map.Make (Monomial) let union f = merge (fun x v1 v2 -> match (v1, v2) with | None, None -> None | Some v, None | None, Some v -> Some v | Some v1, Some v2 -> f x v1 v2) end let pp_mon o (m, i) = if Monomial.is_const m then if Q.zero =/ i then () else Printf.fprintf o "%s" (Q.to_string i) else if Q.one =/ i then Monomial.pp o m else if Q.minus_one =/ i then Printf.fprintf o "-%a" Monomial.pp m else if Q.zero =/ i then () else Printf.fprintf o "%s*%a" (Q.to_string i) Monomial.pp m module Poly : (* A polynomial is a map of monomials *) (* This is probably a naive implementation (expected to be fast enough - Coq is probably the bottleneck) *The new ring contribution is using a sparse Horner representation. *) sig type t val pp : out_channel -> t -> unit val get : Monomial.t -> t -> Q.t val variable : var -> t val add : Monomial.t -> Q.t -> t -> t val constant : Q.t -> t val product : t -> t -> t val addition : t -> t -> t val uminus : t -> t val fold : (Monomial.t -> Q.t -> 'a -> 'a) -> t -> 'a -> 'a val factorise : var -> t -> t * t end = struct (*normalisation bug : 0*x ... *) module P = Map.Make (Monomial) open P type t = Q.t P.t let pp o p = P.iter (fun mn i -> Printf.fprintf o "%a + " pp_mon (mn, i)) p (* Get the coefficient of monomial mn *) let get : Monomial.t -> t -> Q.t = fun mn p -> try find mn p with Not_found -> Q.zero (* The polynomial 1.x *) let variable : var -> t = fun x -> add (Monomial.var x) Q.one empty (*The constant polynomial *) let constant : Q.t -> t = fun c -> add Monomial.const c empty (* The addition of a monomial *) let add : Monomial.t -> Q.t -> t -> t = fun mn v p -> if Q.sign v = 0 then p else let vl = get mn p <+> v in if Q.sign vl = 0 then remove mn p else add mn vl p (** Design choice: empty is not a polynomial I do not remember why .... **) (* The product by a monomial *) let mult : Monomial.t -> Q.t -> t -> t = fun mn v p -> if Q.sign v = 0 then constant Q.zero else fold (fun mn' v' res -> P.add (Monomial.prod mn mn') (v <*> v') res) p empty let addition : t -> t -> t = fun p1 p2 -> fold (fun mn v p -> add mn v p) p1 p2 let product : t -> t -> t = fun p1 p2 -> fold (fun mn v res -> addition (mult mn v p2) res) p1 empty let uminus : t -> t = fun p -> map (fun v -> Q.neg v) p let fold = P.fold let factorise x p = P.fold (fun m v (px, cx) -> match Monomial.factor m x with | None -> (px, add m v cx) | Some mx -> (add mx v px, cx)) p (constant Q.zero, constant Q.zero) end type vector = Vect.t type cstr = {coeffs : vector; op : op; cst : Q.t} and op = Eq | Ge | Gt exception Strict let is_strict c = c.op = Gt let eval_op = function Eq -> ( =/ ) | Ge -> ( >=/ ) | Gt -> ( >/ ) let string_of_op = function Eq -> "=" | Ge -> ">=" | Gt -> ">" let compare_op o1 o2 = match (o1, o2) with | Eq, Eq -> 0 | Eq, _ -> -1 | _, Eq -> 1 | Ge, Ge -> 0 | Ge, _ -> -1 | _, Ge -> 1 | Gt, Gt -> 0 let output_cstr o {coeffs; op; cst} = Printf.fprintf o "%a %s %s" Vect.pp coeffs (string_of_op op) (Q.to_string cst) let opMult o1 o2 = match (o1, o2) with Eq, _ | _, Eq -> Eq | Ge, _ | _, Ge -> Ge | Gt, Gt -> Gt let opAdd o1 o2 = match (o1, o2) with Eq, x | x, Eq -> x | Gt, x | x, Gt -> Gt | Ge, Ge -> Ge module LinPoly = struct (** A linear polynomial a0 + a1.x1 + ... + an.xn By convention, the constant a0 is the coefficient of the variable 0. *) type t = Vect.t module MonT = struct module MonoMap = Map.Make (Monomial) module IntMap = Map.Make (Int) (** A hash table might be preferable but requires a hash function. *) let (index_of_monomial : int MonoMap.t ref) = ref MonoMap.empty let (monomial_of_index : Monomial.t IntMap.t ref) = ref IntMap.empty let fresh = ref 0 let reserve vr = if !fresh > vr then failwith (Printf.sprintf "Cannot reserve %i" vr) else fresh := vr + 1 let safe_reserve vr = if !fresh > vr then () else fresh := vr + 1 let get_fresh () = let vr = !fresh in incr fresh; vr let register m = try MonoMap.find m !index_of_monomial with Not_found -> let res = !fresh in index_of_monomial := MonoMap.add m res !index_of_monomial; monomial_of_index := IntMap.add res m !monomial_of_index; incr fresh; res let retrieve i = IntMap.find i !monomial_of_index let clear () = index_of_monomial := MonoMap.empty; monomial_of_index := IntMap.empty; fresh := 0; ignore (register Monomial.const) let _ = register Monomial.const end let var v = Vect.set (MonT.register (Monomial.var v)) Q.one Vect.null let of_monomial m = let v = MonT.register m in Vect.set v Q.one Vect.null let linpol_of_pol p = Poly.fold (fun mon num vct -> let vr = MonT.register mon in Vect.set vr num vct) p Vect.null let pol_of_linpol v = Vect.fold (fun p vr n -> Poly.add (MonT.retrieve vr) n p) (Poly.constant Q.zero) v let coq_poly_of_linpol cst p = let pol_of_mon m = Monomial.fold (fun x v p -> Mc.PEmul (Mc.PEpow (Mc.PEX (CamlToCoq.positive x), CamlToCoq.n v), p)) m (Mc.PEc (cst Q.one)) in Vect.fold (fun acc x v -> let mn = MonT.retrieve x in Mc.PEadd (Mc.PEmul (Mc.PEc (cst v), pol_of_mon mn), acc)) (Mc.PEc (cst Q.zero)) p let pp_var o vr = try Monomial.pp o (MonT.retrieve vr) (* this is a non-linear variable *) with Not_found -> Printf.fprintf o "v%i" vr let pp o p = Vect.pp_gen pp_var o p let constant c = if Q.sign c = 0 then Vect.null else Vect.set 0 c Vect.null let is_linear p = Vect.for_all (fun v _ -> let mn = MonT.retrieve v in Monomial.is_var mn || Monomial.is_const mn) p let is_variable p = let (x, v), r = Vect.decomp_fst p in if Vect.is_null r && v >/ Q.zero then Monomial.get_var (MonT.retrieve x) else None let factorise x p = let px, cx = Poly.factorise x (pol_of_linpol p) in (linpol_of_pol px, linpol_of_pol cx) let is_linear_for x p = let a, b = factorise x p in Vect.is_constant a let search_all_linear p l = Vect.fold (fun acc x v -> if p v then let x' = MonT.retrieve x in match Monomial.get_var x' with | None -> acc | Some x -> if is_linear_for x l then x :: acc else acc else acc) [] l let min_list (l : int list) = match l with [] -> None | e :: l -> Some (List.fold_left min e l) let search_linear p l = min_list (search_all_linear p l) let product p1 p2 = linpol_of_pol (Poly.product (pol_of_linpol p1) (pol_of_linpol p2)) let addition p1 p2 = Vect.add p1 p2 let of_vect v = Vect.fold (fun acc v vl -> addition (product (var v) (constant vl)) acc) Vect.null v let variables p = Vect.fold (fun acc v _ -> ISet.union (Monomial.variables (MonT.retrieve v)) acc) ISet.empty p let monomials p = Vect.fold (fun acc v _ -> ISet.add v acc) ISet.empty p let degree v = Vect.fold (fun acc v vl -> max acc (Monomial.degree (MonT.retrieve v))) 0 v let pp_goal typ o l = let vars = List.fold_left (fun acc p -> ISet.union acc (variables (fst p))) ISet.empty l in let pp_vars o i = ISet.iter (fun v -> Printf.fprintf o "(x%i : %s) " v typ) vars in Printf.fprintf o "forall %a\n" pp_vars vars; List.iteri (fun i (p, op) -> Printf.fprintf o "(H%i : %a %s 0)\n" i pp p (string_of_op op)) l; Printf.fprintf o ", False\n" let collect_square p = Vect.fold (fun acc v _ -> let m = MonT.retrieve v in match Monomial.sqrt m with None -> acc | Some s -> MonMap.add s m acc) MonMap.empty p end module ProofFormat = struct type prf_rule = | Annot of string * prf_rule | Hyp of int | Def of int | Ref of int | Cst of Q.t | Zero | Square of Vect.t | MulC of Vect.t * prf_rule | Gcd of Z.t * prf_rule | MulPrf of prf_rule * prf_rule | AddPrf of prf_rule * prf_rule | CutPrf of prf_rule | LetPrf of prf_rule * prf_rule type proof = | Done | Step of int * prf_rule * proof | Split of int * Vect.t * proof * proof | Enum of int * prf_rule * Vect.t * prf_rule * proof list | ExProof of int * int * int * var * var * var * proof (* x = z - t, z >= 0, t >= 0 *) let rec output_prf_rule o = function | Annot (s, p) -> Printf.fprintf o "(%a)@%s" output_prf_rule p s | Hyp i -> Printf.fprintf o "Hyp %i" i | Def i -> Printf.fprintf o "Def %i" i | Ref i -> Printf.fprintf o "Ref %i" i | LetPrf (p1, p2) -> Printf.fprintf o "Let (%a) in %a" output_prf_rule p1 output_prf_rule p2 | Cst c -> Printf.fprintf o "Cst %s" (Q.to_string c) | Zero -> Printf.fprintf o "Zero" | Square s -> Printf.fprintf o "(%a)^2" Poly.pp (LinPoly.pol_of_linpol s) | MulC (p, pr) -> Printf.fprintf o "(%a) * (%a)" Poly.pp (LinPoly.pol_of_linpol p) output_prf_rule pr | MulPrf (p1, p2) -> Printf.fprintf o "(%a) * (%a)" output_prf_rule p1 output_prf_rule p2 | AddPrf (p1, p2) -> Printf.fprintf o "%a + %a" output_prf_rule p1 output_prf_rule p2 | CutPrf p -> Printf.fprintf o "[%a]" output_prf_rule p | Gcd (c, p) -> Printf.fprintf o "(%a)/%s" output_prf_rule p (Z.to_string c) let rec output_proof o = function | Done -> Printf.fprintf o "." | Step (i, p, pf) -> Printf.fprintf o "%i:= %a\n ; %a" i output_prf_rule p output_proof pf | Split (i, v, p1, p2) -> Printf.fprintf o "%i:=%a ; { %a } { %a }" i Vect.pp v output_proof p1 output_proof p2 | Enum (i, p1, v, p2, pl) -> Printf.fprintf o "%i{%a<=%a<=%a}%a" i output_prf_rule p1 Vect.pp v output_prf_rule p2 (pp_list ";" output_proof) pl | ExProof (i, j, k, x, z, t, pr) -> Printf.fprintf o "%i := %i = %i - %i ; %i := %i >= 0 ; %i := %i >= 0 ; %a" i x z t j z k t output_proof pr module OrdPrfRule = struct type t = prf_rule let id_of_constr = function | Annot _ -> 0 | Hyp _ -> 1 | Def _ -> 2 | Ref _ -> 3 | Cst _ -> 4 | Zero -> 5 | Square _ -> 6 | MulC _ -> 7 | Gcd _ -> 8 | MulPrf _ -> 9 | AddPrf _ -> 10 | CutPrf _ -> 11 | LetPrf _ -> 12 let cmp_pair c1 c2 (x1, x2) (y1, y2) = match c1 x1 y1 with 0 -> c2 x2 y2 | i -> i let rec compare p1 p2 = match (p1, p2) with | Annot (s1, p1), Annot (s2, p2) -> if s1 = s2 then compare p1 p2 else String.compare s1 s2 | Hyp i, Hyp j -> Int.compare i j | Def i, Def j -> Int.compare i j | Ref i, Ref j -> Int.compare i j | Cst n, Cst m -> Q.compare n m | Zero, Zero -> 0 | Square v1, Square v2 -> Vect.compare v1 v2 | MulC (v1, p1), MulC (v2, p2) -> cmp_pair Vect.compare compare (v1, p1) (v2, p2) | Gcd (b1, p1), Gcd (b2, p2) -> cmp_pair Z.compare compare (b1, p1) (b2, p2) | MulPrf (p1, q1), MulPrf (p2, q2) -> cmp_pair compare compare (p1, q1) (p2, q2) | AddPrf (p1, q1), AddPrf (p2, q2) -> cmp_pair compare compare (p1, q1) (p2, q2) | CutPrf p, CutPrf p' -> compare p p' | LetPrf(p1,q1) , LetPrf(p2,q2) -> cmp_pair compare compare (p1, q1) (p2, q2) | _, _ -> Int.compare (id_of_constr p1) (id_of_constr p2) end module PrfRuleMap = Map.Make (OrdPrfRule) let rec pr_size = function | Annot (_, p) -> pr_size p | Zero | Square _ -> Q.zero | Hyp _ -> Q.one | Def _ -> Q.one | Ref _ -> Q.one | Cst n -> n | Gcd (i, p) -> pr_size p // Q.of_bigint i | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) -> pr_size p1 +/ pr_size p2 | CutPrf p -> pr_size p | MulC (v, p) -> pr_size p let rec pr_unit = function | Annot (_, p) -> pr_unit p | Zero | Square _ -> true | Hyp _ -> true | Def _ -> true | Cst n -> true | _ -> false let rec pr_rule_max_hyp = function | Annot (_, p) -> pr_rule_max_hyp p | Hyp i -> i | Def i -> -1 | Ref i -> -1 | Cst _ | Zero | Square _ -> -1 | MulC (_, p) | CutPrf p | Gcd (_, p) -> pr_rule_max_hyp p | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) -> max (pr_rule_max_hyp p1) (pr_rule_max_hyp p2) let rec pr_rule_max_def = function | Annot (_, p) -> pr_rule_max_hyp p | Hyp i -> -1 | Def i -> i | Ref _ -> -1 | Cst _ | Zero | Square _ -> -1 | MulC (_, p) | CutPrf p | Gcd (_, p) -> pr_rule_max_def p | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) -> max (pr_rule_max_def p1) (pr_rule_max_def p2) let rec proof_max_def = function | Done -> -1 | Step (i, pr, prf) -> max i (max (pr_rule_max_def pr) (proof_max_def prf)) | Split (i, _, p1, p2) -> max i (max (proof_max_def p1) (proof_max_def p2)) | Enum (i, p1, _, p2, l) -> let m = max (pr_rule_max_def p1) (pr_rule_max_def p2) in List.fold_left (fun i prf -> max i (proof_max_def prf)) (max i m) l | ExProof (i, j, k, _, _, _, prf) -> max (max (max i j) k) (proof_max_def prf) (** [pr_rule_def_cut id pr] gives an explicit [id] to cut rules. This is because the Coq proof format only accept they as a proof-step *) let pr_rule_def_cut m id p = let rec pr_rule_def_cut m id = function | Annot (_, p) -> pr_rule_def_cut m id p | MulC (p, prf) -> let bds, m, id', prf' = pr_rule_def_cut m id prf in (bds, m, id', MulC (p, prf')) | MulPrf (p1, p2) -> let bds1, m, id, p1 = pr_rule_def_cut m id p1 in let bds2, m, id, p2 = pr_rule_def_cut m id p2 in (bds2 @ bds1, m, id, MulPrf (p1, p2)) | AddPrf (p1, p2) -> let bds1, m, id, p1 = pr_rule_def_cut m id p1 in let bds2, m, id, p2 = pr_rule_def_cut m id p2 in (bds2 @ bds1, m, id, AddPrf (p1, p2)) | LetPrf (p1, p2) -> let bds1, m, id, p1 = pr_rule_def_cut m id p1 in let bds2, m, id, p2 = pr_rule_def_cut m id p2 in (bds2 @ bds1, m, id, LetPrf (p1, p2)) | CutPrf p | Gcd (_, p) -> ( let bds, m, id, p = pr_rule_def_cut m id p in try let id' = PrfRuleMap.find p m in (bds, m, id, Def id') with Not_found -> let m = PrfRuleMap.add p id m in ((id, p) :: bds, m, id + 1, Def id) ) | (Square _ | Cst _ | Def _ | Hyp _ | Ref _ | Zero) as x -> ([], m, id, x) in pr_rule_def_cut m id p (* Do not define top-level cuts *) let pr_rule_def_cut m id = function | CutPrf p -> let bds, m, ids, p' = pr_rule_def_cut m id p in (bds, m, ids, CutPrf p') | p -> pr_rule_def_cut m id p let rec implicit_cut p = match p with CutPrf p -> implicit_cut p | _ -> p let rec pr_rule_collect_defs pr = match pr with | Annot (_, pr) -> pr_rule_collect_defs pr | Def i -> ISet.add i ISet.empty | Hyp i -> ISet.empty | Ref i -> ISet.empty | Cst _ | Zero | Square _ -> ISet.empty | MulC (_, pr) | Gcd (_, pr) | CutPrf pr -> pr_rule_collect_defs pr | MulPrf (p1, p2) | AddPrf (p1, p2) | LetPrf (p1, p2) -> ISet.union (pr_rule_collect_defs p1) (pr_rule_collect_defs p2) let add_proof x y = match (x, y) with Zero, p | p, Zero -> p | _ -> AddPrf (x, y) let rec mul_cst_proof c p = match p with | Annot (s, p) -> Annot (s, mul_cst_proof c p) | MulC (v, p') -> MulC (Vect.mul c v, p') | _ -> ( match Q.sign c with | 0 -> Zero (* This is likely to be a bug *) | -1 -> MulC (LinPoly.constant c, p) (* [p] should represent an equality *) | 1 -> if Q.one =/ c then p else MulPrf (Cst c, p) | _ -> assert false ) let sMulC v p = let c, v' = Vect.decomp_cst v in if Vect.is_null v' then mul_cst_proof c p else MulC (v, p) let mul_proof p1 p2 = match (p1, p2) with | Zero, _ | _, Zero -> Zero | Cst c, p | p, Cst c -> mul_cst_proof c p | _, _ -> MulPrf (p1, p2) let prf_rule_of_map m = PrfRuleMap.fold (fun k v acc -> add_proof (sMulC v k) acc) m Zero let rec dev_prf_rule p = match p with | Annot (s, p) -> dev_prf_rule p | Hyp _ | Def _ | Ref _ | Cst _ | Zero | Square _ -> PrfRuleMap.singleton p (LinPoly.constant Q.one) | MulC (v, p) -> PrfRuleMap.map (fun v1 -> LinPoly.product v v1) (dev_prf_rule p) | AddPrf (p1, p2) -> PrfRuleMap.merge (fun k o1 o2 -> match (o1, o2) with | None, None -> None | None, Some v | Some v, None -> Some v | Some v1, Some v2 -> Some (LinPoly.addition v1 v2)) (dev_prf_rule p1) (dev_prf_rule p2) | MulPrf (p1, p2) -> ( let p1' = dev_prf_rule p1 in let p2' = dev_prf_rule p2 in let p1'' = prf_rule_of_map p1' in let p2'' = prf_rule_of_map p2' in match p1'' with | Cst c -> PrfRuleMap.map (fun v1 -> Vect.mul c v1) p2' | _ -> PrfRuleMap.singleton (MulPrf (p1'', p2'')) (LinPoly.constant Q.one) ) | Gcd (c, p) -> PrfRuleMap.singleton (Gcd (c, prf_rule_of_map (dev_prf_rule p))) (LinPoly.constant Q.one) | CutPrf p -> PrfRuleMap.singleton (CutPrf (prf_rule_of_map (dev_prf_rule p))) (LinPoly.constant Q.one) | LetPrf (p1, p2) -> let p1' = dev_prf_rule p1 in let p2' = dev_prf_rule p2 in let p1'' = prf_rule_of_map p1' in let p2'' = prf_rule_of_map p2' in PrfRuleMap.singleton (LetPrf (p1'', p2'')) (LinPoly.constant Q.one) let simplify_prf_rule p = prf_rule_of_map (dev_prf_rule p) (** [simplify_proof p] removes proof steps that are never re-used. *) let rec simplify_proof p = match p with | Done -> (Done, ISet.empty) | Step (i, pr, Done) -> (p, ISet.add i (pr_rule_collect_defs pr)) | Step (i, pr, prf) -> let prf', hyps = simplify_proof prf in if not (ISet.mem i hyps) then (prf', hyps) else ( Step (i, pr, prf') , ISet.add i (ISet.union (pr_rule_collect_defs pr) hyps) ) | Split (i, v, p1, p2) -> let p1, h1 = simplify_proof p1 in let p2, h2 = simplify_proof p2 in if not (ISet.mem i h1) then (p1, h1) (* Should not have computed p2 *) else if not (ISet.mem i h2) then (p2, h2) else (Split (i, v, p1, p2), ISet.add i (ISet.union h1 h2)) | Enum (i, p1, v, p2, pl) -> let pl, hl = List.split (List.map simplify_proof pl) in let hyps = List.fold_left ISet.union ISet.empty hl in ( Enum (i, p1, v, p2, pl) , ISet.add i (ISet.union (ISet.union (pr_rule_collect_defs p1) (pr_rule_collect_defs p2)) hyps) ) | ExProof (i, j, k, x, z, t, prf) -> let prf', hyps = simplify_proof prf in if (not (ISet.mem i hyps)) && (not (ISet.mem j hyps)) && not (ISet.mem k hyps) then (prf', hyps) else ( ExProof (i, j, k, x, z, t, prf') , ISet.add i (ISet.add j (ISet.add k hyps)) ) let rec normalise_proof id prf = match prf with | Done -> (id, Done) | Step (i, Gcd (c, p), Done) -> normalise_proof id (Step (i, p, Done)) | Step (i, p, prf) -> let bds, m, id, p' = pr_rule_def_cut PrfRuleMap.empty id (simplify_prf_rule p) in let id, prf = normalise_proof id prf in let prf = List.fold_left (fun acc (i, p) -> Step (i, CutPrf p, acc)) (Step (i, p', prf)) bds in (id, prf) | Split (i, v, p1, p2) -> let id, p1 = normalise_proof id p1 in let id, p2 = normalise_proof id p2 in (id, Split (i, v, p1, p2)) | ExProof (i, j, k, x, z, t, prf) -> let id, prf = normalise_proof id prf in (id, ExProof (i, j, k, x, z, t, prf)) | Enum (i, p1, v, p2, pl) -> (* Why do I have top-level cuts ? *) (* let p1 = implicit_cut p1 in let p2 = implicit_cut p2 in let (ids,prfs) = List.split (List.map (normalise_proof id) pl) in (List.fold_left max 0 ids , Enum(i,p1,v,p2,prfs)) *) let bds1, m, id, p1' = pr_rule_def_cut PrfRuleMap.empty id (implicit_cut p1) in let bds2, m, id, p2' = pr_rule_def_cut m id (implicit_cut p2) in let ids, prfs = List.split (List.map (normalise_proof id) pl) in ( List.fold_left max 0 ids , List.fold_left (fun acc (i, p) -> Step (i, CutPrf p, acc)) (Enum (i, p1', v, p2', prfs)) (bds2 @ bds1) ) let normalise_proof id prf = let prf = fst (simplify_proof prf) in let res = normalise_proof id prf in if debug then Printf.printf "normalise_proof %a -> %a" output_proof prf output_proof (snd res); res (* let mul_proof p1 p2 = let res = mul_proof p1 p2 in Printf.printf "mul_proof %a %a = %a\n" output_prf_rule p1 output_prf_rule p2 output_prf_rule res; res let add_proof p1 p2 = let res = add_proof p1 p2 in Printf.printf "add_proof %a %a = %a\n" output_prf_rule p1 output_prf_rule p2 output_prf_rule res; res let sMulC v p = let res = sMulC v p in Printf.printf "sMulC %a %a = %a\n" Vect.pp v output_prf_rule p output_prf_rule res ; res let mul_cst_proof c p = let res = mul_cst_proof c p in Printf.printf "mul_cst_proof %s %a = %a\n" (Num.string_of_num c) output_prf_rule p output_prf_rule res ; res *) let proof_of_farkas env vect = Vect.fold (fun prf x n -> add_proof (mul_cst_proof n (IMap.find x env)) prf) Zero vect module Env = struct type t = { lref : int; lhyps : prf_rule list } let output_hyp_or_def o = function | Hyp i -> Printf.fprintf o "Hyp %i" i | Def i -> Printf.fprintf o "Def %i" i | _ -> () let output_hyps o l = pp_list "," output_hyp_or_def o l let push_ref {lref;lhyps} = {lref = lref +1 ; lhyps} let push_def i {lref;lhyps} = if lref <> 0 then failwith "Cannot push def"; {lref=lref;lhyps = Def i :: lhyps} let of_list l = {lref = 0 ;lhyps = List.map (fun i -> Hyp i) l} let of_listi l = {lref = 0 ;lhyps = List.mapi (fun i _ -> Hyp i) l} let id_of_hyp hyp {lref;lhyps} = let rec xid_of_hyp i l' = match l' with | [] -> Printf.fprintf stdout "\nid_of_hyp: %a notin [%a]\n" output_hyp_or_def hyp output_hyps lhyps; flush stdout; failwith "Cannot find hyp or def" | hyp' :: l' -> if hyp = hyp' then i else xid_of_hyp (i + 1) l' in match hyp with | Ref i -> i | _ -> xid_of_hyp lref lhyps end let cmpl_prf_rule norm (cst : Q.t -> 'a) env prf = let rec cmpl env = function | Annot (s, p) -> cmpl env p | (Hyp _ | Def _| Ref _) as h -> Mc.PsatzIn (CamlToCoq.nat (Env.id_of_hyp h env)) | Cst i -> Mc.PsatzC (cst i) | Zero -> Mc.PsatzZ | MulPrf (p1, p2) -> Mc.PsatzMulE (cmpl env p1, cmpl env p2) | AddPrf (p1, p2) -> Mc.PsatzAdd (cmpl env p1, cmpl env p2) | LetPrf (p1, p2) -> Mc.PsatzLet (cmpl env p1, cmpl (Env.push_ref env) p2) | MulC (lp, p) -> let lp = norm (LinPoly.coq_poly_of_linpol cst lp) in Mc.PsatzMulC (lp, cmpl env p) | Square lp -> Mc.PsatzSquare (norm (LinPoly.coq_poly_of_linpol cst lp)) | _ -> failwith "Cuts should already be compiled" in cmpl env prf let cmpl_prf_rule_z env r = cmpl_prf_rule Mc.normZ (fun x -> CamlToCoq.bigint (Q.num x)) env r let cmpl_pol_z lp = try let cst x = CamlToCoq.bigint (Q.num x) in Mc.normZ (LinPoly.coq_poly_of_linpol cst lp) with x -> Printf.printf "cmpl_pol_z %s %a\n" (Printexc.to_string x) LinPoly.pp lp; raise x let rec cmpl_proof env prf = match prf with | Done -> Mc.DoneProof | Step (i, p, prf) -> ( match p with | CutPrf p' -> Mc.CutProof (cmpl_prf_rule_z env p', cmpl_proof (Env.push_def i env) prf) | _ -> Mc.RatProof (cmpl_prf_rule_z env p, cmpl_proof (Env.push_def i env) prf) ) | Split (i, v, p1, p2) -> Mc.SplitProof ( cmpl_pol_z v , cmpl_proof (Env.push_def i env) p1 , cmpl_proof (Env.push_def i env) p2 ) | Enum (i, p1, _, p2, l) -> Mc.EnumProof ( cmpl_prf_rule_z env p1 , cmpl_prf_rule_z env p2 , List.map (cmpl_proof (Env.push_def i env)) l ) | ExProof (i, j, k, x, _, _, prf) -> Mc.ExProof (CamlToCoq.positive x, cmpl_proof (Env.push_def i (Env.push_def j (Env.push_def k env))) prf) let compile_proof env prf = let id = 1 + proof_max_def prf in let _, prf = normalise_proof id prf in cmpl_proof (Env.of_list env) prf let rec eval_prf_rule env = function | Annot (s, p) -> eval_prf_rule env p | Hyp i | Def i | Ref i -> env i | Cst n -> ( ( Vect.set 0 n Vect.null , match Q.compare n Q.zero with | 0 -> Ge | 1 -> Gt | _ -> failwith "eval_prf_rule : negative constant" ) ) | Zero -> (Vect.null, Ge) | Square v -> (LinPoly.product v v, Ge) | MulC (v, p) -> ( let p1, o = eval_prf_rule env p in match o with | Eq -> (LinPoly.product v p1, Eq) | _ -> Printf.fprintf stdout "MulC(%a,%a) invalid 2d arg %a %s" Vect.pp v output_prf_rule p Vect.pp p1 (string_of_op o); failwith "eval_prf_rule : not an equality" ) | Gcd (g, p) -> let v, op = eval_prf_rule env p in (Vect.div (Q.of_bigint g) v, op) | MulPrf (p1, p2) -> let v1, o1 = eval_prf_rule env p1 in let v2, o2 = eval_prf_rule env p2 in (LinPoly.product v1 v2, opMult o1 o2) | AddPrf (p1, p2) -> let v1, o1 = eval_prf_rule env p1 in let v2, o2 = eval_prf_rule env p2 in (LinPoly.addition v1 v2, opAdd o1 o2) | CutPrf p -> eval_prf_rule env p | LetPrf (p1, p2) -> let v1, o1 = eval_prf_rule env p1 in let v2, o2 = eval_prf_rule (fun i -> if i = 0 then (v1, o1) else env (i - 1)) p2 in (v2, o2) let is_unsat (p, o) = let c, r = Vect.decomp_cst p in if Vect.is_null r then not (eval_op o c Q.zero) else false let rec eval_proof env p = match p with | Done -> failwith "Proof is not finished" | Step (i, prf, rst) -> let p, o = eval_prf_rule (fun i -> IMap.find i env) prf in if is_unsat (p, o) then true else if rst = Done then begin Printf.fprintf stdout "Last inference %a %s\n" LinPoly.pp p (string_of_op o); false end else eval_proof (IMap.add i (p, o) env) rst | Split (i, v, p1, p2) -> failwith "Not implemented" | Enum (i, r1, v, r2, l) -> let _ = eval_prf_rule (fun i -> IMap.find i env) r1 in let _ = eval_prf_rule (fun i -> IMap.find i env) r2 in (* Should check bounds *) failwith "Not implemented" | ExProof _ -> failwith "Not implemented" end module WithProof = struct type t = (LinPoly.t * op) * ProofFormat.prf_rule (* The comparison ignores proofs on purpose *) let compare : t -> t -> int = fun ((lp1, o1), _) ((lp2, o2), _) -> let c = Vect.compare lp1 lp2 in if c = 0 then compare_op o1 o2 else c let annot s (p, prf) = (p, ProofFormat.Annot (s, prf)) let output o ((lp, op), prf) = Printf.fprintf o "%a %s 0 by %a\n" LinPoly.pp lp (string_of_op op) ProofFormat.output_prf_rule prf let output_sys o l = List.iter (Printf.fprintf o "%a\n" output) l exception InvalidProof let zero = ((Vect.null, Eq), ProofFormat.Zero) let const n = ((LinPoly.constant n, Ge), ProofFormat.Cst n) let of_cstr (c, prf) = ((Vect.set 0 (Q.neg c.cst) c.coeffs, c.op), prf) let product : t -> t -> t = fun ((p1, o1), prf1) ((p2, o2), prf2) -> ((LinPoly.product p1 p2, opMult o1 o2), ProofFormat.mul_proof prf1 prf2) let addition : t -> t -> t = fun ((p1, o1), prf1) ((p2, o2), prf2) -> ((Vect.add p1 p2, opAdd o1 o2), ProofFormat.add_proof prf1 prf2) let neg : t -> t = fun ((p1, o1), prf1) -> match o1 with | Eq -> ((Vect.mul Q.minus_one p1, o1), ProofFormat.mul_cst_proof Q.minus_one prf1) | _ -> failwith "neg: invalid proof" let mult p ((p1, o1), prf1) = match o1 with | Eq -> ((LinPoly.product p p1, o1), ProofFormat.sMulC p prf1) | Gt | Ge -> let n, r = Vect.decomp_cst p in if Vect.is_null r && n >/ Q.zero then ((LinPoly.product p p1, o1), ProofFormat.mul_cst_proof n prf1) else ( if debug then Printf.printf "mult_error %a [*] %a\n" LinPoly.pp p output ((p1, o1), prf1); raise InvalidProof ) let cutting_plane ((p, o), prf) = let c, p' = Vect.decomp_cst p in let g = Vect.gcd p' in if Z.equal Z.one g || c =/ Q.zero || not (Z.equal (Q.den c) Z.one) then None (* Nothing to do *) else let c1 = c // Q.of_bigint g in let c1' = Q.floor c1 in if c1 =/ c1' then None else match o with | Eq -> Some ((Vect.set 0 Q.minus_one Vect.null, Eq), ProofFormat.CutPrf prf) | Gt -> failwith "cutting_plane ignore strict constraints" | Ge -> (* This is a non-trivial common divisor *) Some ( (Vect.set 0 c1' (Vect.div (Q.of_bigint g) p), o) , ProofFormat.CutPrf prf ) let construct_sign p = let c, p' = Vect.decomp_cst p in if Vect.is_null p' then Some ( match Q.sign c with | 0 -> (true, Eq, ProofFormat.Zero) | 1 -> (true, Gt, ProofFormat.Cst c) | _ (*-1*) -> (false, Gt, ProofFormat.Cst (Q.neg c)) ) else None let get_sign l p = match construct_sign p with | None -> ( try let (p', o), prf = List.find (fun ((p', o), prf) -> Vect.equal p p') l in Some (true, o, prf) with Not_found -> ( let p = Vect.uminus p in try let (p', o), prf = List.find (fun ((p', o), prf) -> Vect.equal p p') l in Some (false, o, prf) with Not_found -> None ) ) | Some s -> Some s let mult_sign : bool -> t -> t = fun b ((p, o), prf) -> if b then ((p, o), prf) else ((Vect.uminus p, o), prf) let rec linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) = (* lp1 = a1.x + b1 *) let a1, b1 = LinPoly.factorise x lp1 in (* lp2 = a2.x + b2 *) let a2, b2 = LinPoly.factorise x lp2 in if Vect.is_null a2 then (* We are done *) Some ((lp2, op2), prf2) else match (op1, op2) with | Eq, (Ge | Gt) -> ( match get_sign sys a1 with | None -> None (* Impossible to pivot without sign information *) | Some (b, o, prf) -> let sa1 = mult_sign b ((a1, o), prf) in let sa2 = if b then Vect.uminus a2 else a2 in let (lp2, op2), prf2 = addition (product sa1 ((lp2, op2), prf2)) (mult sa2 ((lp1, op1), prf1)) in linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) ) | Eq, Eq -> let (lp2, op2), prf2 = addition (mult a1 ((lp2, op2), prf2)) (mult (Vect.uminus a2) ((lp1, op1), prf1)) in linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) | (Ge | Gt), (Ge | Gt) -> ( match (get_sign sys a1, get_sign sys a2) with | Some (b1, o1, p1), Some (b2, o2, p2) -> if b1 <> b2 then let (lp2, op2), prf2 = addition (product (mult_sign b1 ((a1, o1), p1)) ((lp2, op2), prf2)) (product (mult_sign b2 ((a2, o2), p2)) ((lp1, op1), prf1)) in linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) else None | _ -> None ) | (Ge | Gt), Eq -> failwith "pivot: equality as second argument" let linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) = match linear_pivot sys ((lp1, op1), prf1) x ((lp2, op2), prf2) with | None -> None | Some (c, p) -> Some (c, ProofFormat.simplify_prf_rule p) let is_substitution strict ((p, o), prf) = let pred v = if strict then v =/ Q.one || v =/ Q.minus_one else true in match o with Eq -> LinPoly.search_linear pred p | _ -> None let subst1 sys0 = let oeq, sys' = extract (is_substitution true) sys0 in match oeq with | None -> sys0 | Some (v, pc) -> ( match simplify (linear_pivot sys0 pc v) sys' with | None -> sys0 | Some sys' -> sys' ) let sort (sys : t list) = let size ((p, o), prf) = let _, p' = Vect.decomp_cst p in let (x, q), p' = Vect.decomp_fst p' in Vect.fold (fun (l, (q, x)) x' q' -> let q' = Q.abs q' in (l + 1, if q </ q then (q, x) else (q', x'))) (1, (Q.abs q, x)) p in let cmp ((l1, (q1, _)), ((_, o), _)) ((l2, (q2, _)), ((_, o'), _)) = if l1 < l2 then -1 else if l1 = l2 then Q.compare q1 q2 else 1 in List.sort cmp (List.rev_map (fun wp -> (size wp, wp)) sys) let iterate_pivot p sys0 = let elim sys = let oeq, sys' = extract p sys in match oeq with | None -> None | Some (v, pc) -> simplify (linear_pivot sys0 pc v) sys' in iterate_until_stable elim (List.map snd (sort sys0)) let subst_constant is_int sys = let is_integer q = Q.(q =/ floor q) in let is_constant ((c, o), p) = match o with | Ge | Gt -> None | Eq -> ( Vect.Bound.( match of_vect c with | None -> None | Some b -> if (not is_int) || is_integer (b.cst // b.coeff) then Monomial.get_var (LinPoly.MonT.retrieve b.var) else None) ) in iterate_pivot is_constant sys let subst sys0 = iterate_pivot (is_substitution true) sys0 let saturate_subst b sys0 = let select = is_substitution b in let gen (v, pc) ((c, op), prf) = if ISet.mem v (LinPoly.variables c) then linear_pivot sys0 pc v ((c, op), prf) else None in saturate select gen sys0 let simple_pivot (q1, x) ((v1, o1), prf1) ((v2, o2), prf2) = let q2 = Vect.get x v2 in if q2 =/ Q.zero then None else let cv1, cv2 = if Q.sign q1 <> Q.sign q2 then (Q.abs q2, Q.abs q1) else match (o1, o2) with | Eq, _ -> (q2, Q.abs q1) | _, Eq -> (Q.abs q2, q2) | _, _ -> (Q.zero, Q.zero) in if cv2 =/ Q.zero then None else Some ( (Vect.mul_add cv1 v1 cv2 v2, opAdd o1 o2) , ProofFormat.add_proof (ProofFormat.mul_cst_proof cv1 prf1) (ProofFormat.mul_cst_proof cv2 prf2) ) end module BoundWithProof = struct type t = Vect.Bound.t * op * ProofFormat.prf_rule let bound_compare b1 b2 = let open Vect.Bound in let {cst = k1; var = v1; coeff = c1} = b1 in let {cst = k2; var = v2; coeff = c2} = b2 in let c = Int.compare v1 v2 in if c <> 0 then c else let c = Q.compare k1 k2 in if c <> 0 then c else Q.compare c1 c2 let compare (p1, o1, _) (p2, o2, _) = let c = bound_compare p1 p2 in if c = 0 then compare_op o1 o2 else c let make ((p, o), prf) = match Vect.Bound.of_vect p with | None -> None | Some b -> Some (b, o, prf) let padd (o1, prf1) (o2, prf2) = (opAdd o1 o2, ProofFormat.add_proof prf1 prf2) let pmul (o1, prf1) (o2, prf2) = (opMult o1 o2, ProofFormat.mul_proof prf1 prf2) let plet (o1,p1) (o2,p2) f = match ProofFormat.pr_unit p1 , ProofFormat.pr_unit p2 with | true , true -> f (o1,p1) (o2,p2) | false , false -> let (o,prf) = f (o1,ProofFormat.Ref 1) (o2,ProofFormat.Ref 0) in (o, ProofFormat.LetPrf(p1,ProofFormat.LetPrf(p2,prf))) | true , false -> let (o,prf) = f (o1,p1) (o2,ProofFormat.Ref 0) in (o, ProofFormat.LetPrf(p2,prf)) | false , true -> let (o,prf) = f (o1,ProofFormat.Ref 0) (o2,p2) in (o,ProofFormat.LetPrf(p1,prf)) let pext c (o, prf) = if c =/ Q.zero then (Eq, ProofFormat.Zero) else (o, ProofFormat.mul_cst_proof c prf) let mul_bound (b1, o1, prf1) (b2, o2, prf2) = let open Vect.Bound in match (b1, b2) with | {cst = c1; var = v1; coeff = c1'}, {cst = c2; var = v2; coeff = c2'} -> let good_coeff b o = match o with | Eq -> Some (Q.neg b) | _ -> if b <=/ Q.zero then Some (Q.neg b) else None in match (good_coeff c1 o2, good_coeff c2 o1) with | None, _ | _, None -> None | Some c1, Some c2 -> let w1 = (o1, prf1) in let w2 = (o2, prf2) in let (o, prf) = plet w1 w2 (fun w1 w2 -> padd (padd (pmul w1 w2) (pext c1 w2)) (pext c2 w1)) in let b = { cst = Q.neg (c1 */ c2); var = LinPoly.MonT.register (Monomial.prod (LinPoly.MonT.retrieve v1) (LinPoly.MonT.retrieve v2)); coeff = c1' */ c2'; } in Some (b, o, prf) let bound (b, _, _) = b let proof (b, o, w) = let p = Vect.Bound.to_vect b in ((p, o), w) end (* Local Variables: *) (* coding: utf-8 *) (* End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>